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MOMENT-PRESERVING SPLINE
APPROXIMATION AND QUADRATURES*

Gradimir V. Milovanović and Milan A. Kovačević

Abstract. In this survey we discuss the problem of approximating a function f
by a spline function of degree m and defect d, with n (variable) knots, matching
as many of the initial moments of f as possible. The problem is connected with
Gauss-Turán type of quadrature rules.

1. Introduction

Following earlier work of Laframboise and Stauffer [12] and Calder and
Laframboise [1], Gautschi [7] considered the problem of approximating a
spherically symmetric function t 7→ f(t), t = ‖x‖, 0 ≤ t <∞, in Rd, d ≥ 1,
by a piecewise constant function

t 7→ sn(t) =

n∑
ν=1

aνH(τν − t) (aν ∈ R, 0 < τ1 < · · · < τn < +∞),

where H is the Heaviside step function. Also, he considered an approxima-
tion by a linear combination of Dirac delta functions. The approximation
was to preserve as many moments of f as possible. This work was extended
to spline approximation of arbitrary degree by Gautschi and Milovanović
[9]. Namely, they considered a spline function of degree m ≥ 0 on [0,+∞),
vanishing at t = +∞, with n ≥ 1 positive knots τν (ν = 1, . . . , n), which
can be written in the form

(1.1) sn,m(t) =

n∑
ν=1

aν(τν − t)m+ (aν ∈ R, 0 ≤ t < +∞),
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where the plus sign on the right is the cutoff symbol, u+ = u if u > 0 and
u+ = 0 if u ≤ 0. Given a function t 7→ f(t) on [0,+∞), they determined
sn,m such that

(1.2)

∫ +∞

0

sn,m(t)tj dV =

∫ +∞

0

f(t)tj dV (j = 0, 1, . . . , 2n− 1),

where dV is the volume element depending on the geometry of the problem.
(For example, dV = Ctd−1 dt if d > 1, where C is some constant, and
dV = dt if d = 1 were used in [9]. For some details see Gautschi [8].) In
any case, the spline sn,m is such to faithfully reproduce the first 2n moments
of f . Under suitable assumptions on f , it was shown that the problem has
a unique solution if and only if certain Gauss-Christoffel quadratures exist
corresponding to a moment functional or weight distribution depending on
f . Existence, uniqueness and pointwise convergence of such approximation
were analyzed. We mention two main results (Gautschi and Milovanović [9])
in the case when dV = dt.

Theorem 1.1. Let f ∈ Cm+1[0,+∞] and

(1.3)

∫ +∞

0

t2n+m+1|f (m+1)(t)| dt < +∞ .

Then a spline function sn,m of the form (1.1) with positive knots τν , that
satisfies (1.2), exists and is unique if and only if the measure

(1.4) dλ(t) =
(−1)m+1

m!
tm+1f (m+1)(t) dt on [0,+∞)

admits an n-point Gauss-Christoffel quadrature formula

(1.5)

∫ +∞

0

g(t) dλ(t) =

n∑
ν=1

λ(n)ν g(τ (n)ν ) +Rn(g; dλ),

with distinct positive nodes τ
(n)
ν , where Rn(g; dλ) = 0 for all g ∈ P2n−1. In

that event, the knots τν and weights aν in (1.1) are given by

(1.6) τν = τ (n)ν , aν = τ−(m+1)
ν λ(n)ν (ν = 1, . . . , n).



Moment-Preserving Spline Approximation and Quadratures 87

Theorem 1.2. Given f as in Theorem 1.2, assume that the measure dλ
in (1.4) admits the n-point Gauss-Christoffel quadrature formula (1.5) with

distinct positive nodes τν = τ
(n)
ν and the remainder term Rn(g; dλ). Define

σt(x) = x−(m+1)(x− t)m+ .

Then, for any t > 0, we have for the error of the spline approximation (1.1),
(1.2),

(1.7) f(t)− sn,m(t) = Rn(σt; dλ).

Substituting (1.1) in (1.2) yields, since τν > 0,

n∑
ν=1

aν

∫ τν

0

tj(τν − t)m dt =

∫ +∞

0

tjf(t) dt (j = 0, 1, . . . , 2n− 1),

i.e.,

(1.8)

n∑
ν=1

(
aντ

m+1
ν

)
τ jν = µj (j = 0, 1, . . . , 2n− 1),

where

(1.9) µj =
(j +m+ 1)!

m!j!

∫ +∞

0

tjf(t) dt (j = 0, 1, . . . ).

For the proof of Theorem 1.1 we suppose that j ≤ 2n−1. Because of (1.3),

the integral
∫ +∞
0

tj+m+2f (m+1)(t) dt exists and lim
t→+∞

tj+m+2f (m+1)(t) = 0.

Then, L’Hospital’s rule implies

lim
t→+∞

tj+m+1f (m)(t) = 0.

Continuing in this manner, we find that

lim
t→+∞

tj+k+1f (k)(t) = 0 (k = m,m− 1, . . . , 0).

Under these conditions we can prove that (see [9])∫ +∞

0

tjf(t) dt =
(−1)m+1

(j + 1)(j + 2) · · · (j +m+ 1)

∫ +∞

0

tj+m+1f (m+1)(t) dt.
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Therefore, the moments µj , defined by (1.9), exist and

µj =

∫ +∞

0

tj dλ(t) (j = 0, 1, . . . , 2n− 1),

where dλ(t) is given by (1.4). Hence, we conclude that Eqs. (1.2) are equiv-
alent to Eqs. (1.8), which are precisely the conditions for τν to be the nodes
of the Gauss-Christoffel formula (1.5) and aντ

m+1
ν their weights.

The nodes τ
(n)
ν , being the zeros of the orthogonal polynomial πn(·; dλ) (if

it exists), are uniquely determined, hence also the weights λ
(n)
ν .

For example, if f is completely monotonic on [0,+∞) then dλ(t) in (1.4)
is a positive measure for every m. Also, the first 2n moments exist by virtue
of the assumptions in Theorem 1.1. Then the Gauss-Christoffel quadrature

formula exists uniquely, with n distinct and positive nodes τ
(n)
ν .

Using Taylor’s formula “at +∞”, we find that

(1.10) f(t) =
(−1)m+1

m!

∫ +∞

t

(x− t)mf (m+1)(x) dx =

∫ +∞

0

σt(x) dλ(x).

On the other hand, Theorem 1.1 gives

(1.11) sn,m(t) =

n∑
ν=1

λντ
−(m+1)
ν (τν − t)m+ =

n∑
ν=1

λνσt(tν).

Subtracting (1.11) from (1.10) yields (1.7).

Theorem 1.2 shows that sn,m converges pointwise to f as n → +∞ if
the Gauss-Christoffel quadrature formula (1.5) converges for the particular
function x 7→ g(x) = σt(x) (x > 0).

2. Approximation by Defective Splines

A spline function of degree m ≥ 2 and defect k on the interval 0 ≤ t <
+∞, vanishing at t = +∞, with n ≥ 1 positive knots τν (ν = 1, . . . , n), can
be written in the form

(2.1) sn,m(t) =
n∑
ν=1

m∑
i=m−k+1

ai,ν(τν − t)i+

where ai,ν are real numbers.
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As in Section 1 we consider moment-preserving approximation of a given
function t 7→ f(t) on [0,+∞) by the defective spline sn,m, defined by (2.1).
Under suitable assumptions on f and k = 2s+1, Milovanović and Kovačević
[15] showed that the problem has a unique solution if and only if certain
generalized Turán quadratures exist corresponding to a measure depending
on f .

The generalized Gauss-Turán quadrature

(2.2)

∫
R
g(t) dλ(t) =

n∑
ν=1

2s∑
i=0

AGi,νg
(i)(τ (n)ν ) +RGn (g; dλ),

where dλ(t) is a nonnegative measure on the real line R, with compact or
infinite support, for which all moments µν =

∫
R t

ν dλ(t), ν = 0, 1, . . . , exist
and are finite, and µ0 > 0. The formula (2.2) is exact for all polynomials of
degree at most 2(s+ 1)n− 1, i.e.,

RGn (g; dλ) = 0 for g ∈ P2(s+1)n−1.

The knots τ
(n)
ν (ν = 1, . . . , n) in (2.2) are zeros of a (monic) polynomial

πn(t), which minimizes the following integral∫
R
πn(t)2s+2 dλ(t),

where πn(t) = tn + an−1t
n−1 + · · · + a1t + a0. In the other words, the

polynomial πn satisfies the following generalized orthogonality conditions

(2.3)

∫
R
πn(t)2s+1ti dλ(t) = 0, i = 0, 1, . . . , n− 1.

This polynomial πn is known as s-orthogonal (or s-self associated) poly-
nomial with respect to the measure dλ(t). For s = 0, we have the standard
case of orthogonal polynomials, and (2.3) then becomes well-known Gauss-
Christoffel formula.

The “orthogonality condition” (2.3) can be interpreted as (see Milovanović
[14]) ∫

R
πs,nν (t)ti dµ(t) = 0, i = 0, 1, . . . , ν − 1,

where {πs,nν } is a sequence of standard monic polynomials orthogonal on R
with respect to the new measure dµ(t) = dµs,n(t) = (πs,nn (t))2sdλ(t). The
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polynomials {πs,nν }, ν = 0, 1, . . . , are implicitly defined because the measure
dµ(t) depends on πs,nn (t)

(
= πn(t)

)
. We will write only πν instead of πs,nν (·).

These polynomials satisfy a three-term recurrence relation

πν+1(t) = (t− αν)πν(t)− βνπν−1(t), ν = 0, 1, . . . ,

π−1(t) = 0, π0(t) = 1,

where, because of orthogonality,

αν = αν(s, n) =
(tπν , πν)

(πν , πν)
=

∫
R tπ

2
ν(t) dµ(t)∫

R π
2
ν(t) dµ(t)

,

βν = βν(s, n) =
(πν , πν)

(πν−1, πν−1)
=

∫
R tπ

2
ν(t) dµ(t)∫

R π
2
ν−1(t) dµ(t)

,

and, for example, β0 =
∫
R dµ(t).

Finding the coefficients αν , βν (ν = 0, 1, . . . , n − 1) gives us access to
the first n + 1 orthogonal polynomials π0, π1, . . . , πn. Of course, we are
interested only in the last of them, i.e., πn ≡ πs,nn . Thus, for n = 0, 1, . . . ,
the diagonal (boxed) elements in Table 2.1 are our s-orthogonal polynomials
πs,nn .

Table 2.1

n dµs,n(t) Orthogonal Polynomials

0 (πs,00 (t))2s dλ(t) πs,00

1 (πs,11 (t))2s dλ(t) πs,10 πs,11

2 (πs,22 (t))2s dλ(t) πs,20 πs,21 πs,22

3 (πs,33 (t))2s dλ(t) πs,30 πs,31 πs,32 πs,33

...

A stable algorithm for constructing such (s-orthogonal) polynomials was
found by Milovanović [14].

Using the similar method as in Section 1, we can prove (see Milovanović
and Kovačević [15]) the following result:
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Theorem 2.1. Let f ∈ Cm+1[0,+∞] and∫ +∞

0

t2(s+1)n+m+1|f (m+1)(t)| dt < +∞ .

Then a spline function sn,m of the form (2.1) with k = 2s + 1 and positive
knots τν , that satisfies (1.2), with j = 0, 1, . . . , 2(s + 1)n − 1, exists and is
unique if and only if the measure

dλ(t) =
(−1)m+1

m!
tm+1f (m+1)(t) dt on [0,+∞)

admits a generalized Gauss-Turán quadrature formula

(2.4)

∫ +∞

0

g(t) dλ(t) =

n∑
ν=1

2s∑
i=0

A
(n)
i,ν g

(i)(τ (n)ν ) +RGn (g; dλ),

with distinct positive nodes τ
(n)
ν , where RGn (g; dλ) = 0 for all g ∈ P2(s+1)n−1.

The knots τν in (2.1) are given by τν = τ
(n)
ν , and coefficients ai,ν by the

following triangular system

A
(n)
i,ν =

2s∑
j=i

(m− j)!
m!

(
j

i

)[
Dj−itm+1

]
t=τν

am−j,ν (i = 0, 1, . . . , 2s),

where D is the standard differentiation operator.

Theorem 2.2. Given f as in Theorem 2.1, assume that the measure dλ(t)
admits the n-point generalized Gauss-Turán quadrature formula (2.4) with

distinct positive nodes τν = τ
(n)
ν and the remainder term RGn (g; dλ). Then

the error of the spline approximation is given by

f(t)− sn,m(t) = RGn (σt; dλ). (t > 0),

where x 7→ σt(x) = x−(m+1)(x− t)m+ .

Again, if f is completely monotonic on [0,+∞) then dλ(t) is a positive
measure for every m. Also, the first 2(s+1)n moments exist by virtue of the
assumptions in Theorem 2.1. Then the generalized Gauss-Turán quadrature

formula exists uniquely, with n distinct and positive nodes τ
(n)
ν .

In the special case when s = 1, the coefficients of the spline function sn,m
are

am−2,ν = m(m− 1)A
(n)
2,ν τ

−(m+1)
ν ,

am−1,ν = m
(
A

(n)
1,ν τν − 2(m+ 1)A

(n)
2,ν

)
τ−(m+2)
ν ,

am,ν =
(
(m+ 1)(m+ 2)A

(n)
2,ν − (m+ 1)A

(n)
1,ν τν +A

(n)
0,ν τ

2
ν

)
τ−(m+3)
ν .
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3. Spline Approximation on Finite Intervals

Frontini, Gautschi and Milovanović [2] and Frontini and Milovanović [3]
considered analogous problems on an arbitrary finite interval, which can
be standardized to [a, b] = [0, 1]. If the approximations exist, they can be
represented in terms of generalized Gauss-Lobatto and Gauss-Radau quad-
rature formulas relative to appropriate measures depending on f , when the
defect k = 1. Using defective splines with odd defect k = 2s+1, approxima-
tion problems reduce to certain generalized Turán-Lobatto and Turán-Radau
quadrature formulas.

A spline function of degree m ≥ 2 and defect k = 2s+ 1, with n distinct
knots τν (ν = 1, . . . , n) in (0, 1), can be written in the form

(3.1) sn,m(t) = pm(t) +

n∑
ν=1

m∑
i=m−2s

ai,ν(τν − t)i+ (0 ≤ t ≤ 1),

where ai,ν are real numbers and t 7→ pm(t) is a polynomial of degree ≤ m.
Evidently, for t ≥ 1 we have sn,m(t) ≡ pm(t).

There are two interesting approximation problems:

Problem I. Determine sn,m in (3.1) such that

(3.2)

∫ 1

0

tjsn,m(t) dt =

∫ 1

0

tjf(t) dt, j = 0, 1, . . . , 2(s+ 1)n+m.

Problem I∗. Determine sn,m in (3.1) such that

(3.3) s(k)n,m(1) = p(k)m (1) = f (k)(1), k = 0, 1, . . . ,m,

and such that (3.2) holds for j = 0, 1, ..., 2(s+ 1)n− 1.

The both problems can be reduced to the s-orthogonality and generalized
Gauss-Turán quadratures by restricting the class of functions f as before.

Putting

(3.4) φk =
(−1)k

m!
f (k)(1), bk =

(−1)k

m!
p(k)m (1) (k = 0, 1, ...,m)
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and applying m + 1 integration by parts to the integrals in the moment
equation (3.2), we obtain after much calculations

m∑
k=0

bk
[
Dm−ktm+1+j

]
t=1 +

n∑
ν=1

2s∑
k=0

(m− k)!

m!
am−k,ν

[
Dk(tm+1+j)

]
t=τν

=

m∑
k=0

φk
[
Dm−ktm+1+j

]
t=1

+

∫ 1

0

tm+1+j dλ(t),(3.5)

j = 0, 1, . . . , 2(s+ 1)n+m,

where the measure dλ(t) is defined again by

(3.6) dλ(t) =
(−1)m+1

m!
f (m+1)(t) dt on [0, 1].

The main result for Problem I can be stated in the form:

Theorem 3.1. Let f ∈ Cm+1[0, 1]. There exists a unique spline function
(3.1) on [0, 1], with d = 2s + 1, satisfying (3.2) if and only if the measure
dλ(t) in (3.6) admits a generalized Gauss-Lobatto-Turán quadrature

(3.7)

∫ 1

0

g(t) dλ(t) =

m∑
k=0

[
αkg

(k)(0) + βkg
(k)(1)

]

+

n∑
ν=1

2s∑
i=0

ALi,νg
(i)(τ (n)ν ) +RLn,m(g; dλ),

where

(3.8) RLn,m(g; dλ) = 0 for all g ∈ P2(s+1)n+2m+1,

with distinct real zeros τ
(n)
ν (ν = 1, 2, . . . , n) all contained in the open inter-

val (0, 1). The spline function in (3.1) is given by

(3.9) τν = τ (n)ν , am−k,ν =
m!

(m− k)!
ALk,ν (ν = 1, . . . , n; k = 0, 1, . . . , 2s),

where τ
(n)
ν are the interior nodes of the generalized Gauss-Lobatto-Turán

quadrature formula and ALk,ν are the corresponding weights, while the poly-

nomial pm(t) is given by

(3.10) p(k)m (1) = f (k)(1) + (−1)km!βm−k (k = 0, 1, . . . ,m),

where βm−k is the coefficient of g(m−k)(1) in (3.7).

The solution of Problem I∗ can be given in a similar way:
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Theorem 3.2. Let f ∈ Cm+1[0, 1]. There exists a unique spline function
on [0, 1],

(3.11)
s∗n,m(t) = p∗m(t)+

n∑
ν=1

m∑
i=m−2s

a∗i,ν(τ∗ν − t)i+,

0 < τ∗ν < 1, τ∗ν 6= τ∗µ for ν 6= µ,

satisfying (3.3) and (3.2), for j = 0, 1, . . . , 2(s + 1)n − 1, if and only if the
measure dλ(t) in (3.6) admits a generalized Gauss-Radau-Turán quadrature

(3.12)

∫ 1

0

g(t) dλ(t) =

m∑
k=0

α∗kg
(k)(0)+

n∑
ν=1

2s∑
i=0

ARi,νg
(i)(τ (n)∗ν )+RRn,m(g; dλ),

where
RRn,m(g; dλ) = 0 for all g ∈ P2(s+1)n+m,

with distinct real zeros τ
(n)∗
ν , ν = 1, 2, . . . , n, all contained in the open

interval (0, 1). The knots τ∗ν in (3.11) are then precisely these zeros,

(3.13) τ∗ν = τ (n)∗ν (ν = 1, . . . , n)

and

(3.14) a∗m−k,ν =
m!

(m− k)!
ARk,ν (ν = 1, 2, . . . , n; k = 0, 1, . . . , 2s),

while the polynomial t 7→ p∗m(t) is given by

(3.15) p∗m(t) =

m∑
k=0

f (k)(1)

k!
(t− 1)k.

The following statement gives the error of spline approximations:

Theorem 3.3. Define

ρt(x) = (x− t)m+ , 0 ≤ x ≤ 1.

Under conditions of Theorem 3.1 and Theorem 3.2, we have

f(t)− sn,m(t) = RLn,m(ρt; dλ) (0 < t < 1)
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and

f(t)− s∗n,m(t) = RRn,m(ρt; dλ) (0 < t < 1),

respectively, where RLn,m(g; dλ) and RRn,m(g; dλ) are the remainder terms in
the corresponding Gauss-Turán formulas of Lobatto and Radau type.

For proofs of Theorems 3.1–3.3, we refer to [3]. The case s = 0 of these
results has been obtained by Frontini, Gautschi and Milovanović [2]. A
more general case with variable defects was considered by Gori and Santi
[10]. In that case, approximation problems reduce to Gauss-Turán-Stancu
type of quadratures and σ-orthogonal polynomials (cf. Gautschi [4], Gori,
Lo Cascio and Milovanović [11]).

Further extensions of the moment-preserving spline approximation on
[0, 1] are given by Micchelli [13]. He relates this approximation to the theory
of the monosplines.

4. Construction of Spline Approximation on [0, 1]

Firstly, we mention two auxiliary results, which give a connection between
the generalized Gauss-Turán quadrature and the corresponding formulas of
Lobatto and Radau type (see [3]):

Lemma 4.1. If the measure dλ(t) in (3.6) admits the generalized Gauss-

Lobatto-Turán quadrature (3.7), with distinct real zeros τν = τ
(n)
ν (ν =

1, . . . , n) all contained in the open interval (0, 1), there exists then a gener-
alized Gauss-Turán formula

(4.1)

∫ 1

0

g(t) dσ(t) =

n∑
ν=1

2s∑
i=0

AGi,νg
(i)(τ (n)ν ) +RGn (g),

where dσ(t) = [t(1−t)]m+1dλ(t), the nodes τ
(n)
ν are the zeros of s-orthogonal

polynomial πn(·; dσ)), while the weights AGi,ν are expressible in terms of those
in (3.7) by

(4.2) AGi,ν =
2s∑
k=i

(
k

i

)[
Dk−i (t(1− t))m+1

]
t=τν

ALk,ν (i = 0, 1, . . . , 2s).
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Lemma 4.2. If the measure dλ(t) in (3.6) admits the generalized Gauss-

Radau-Turán quadrature (3.12), with distinct real zeros τν = τ
(n)∗
ν (ν =

1, . . . , n) all contained in the open interval (0, 1), there exists then a gener-
alized Gauss-Turán formula (4.1), where dσ(t) = dσ∗(t) = tm+1dλ(t), the

nodes τ
(n)∗
ν are the zeros of s-orthogonal polynomial πn(·; dσ∗), while the

weights AGi,ν are expressible in terms of those in (3.12) by

(4.3) AGi,ν =

2s∑
k=i

(
k

i

)[
Dk−itm+1

]
t=τν

ARk,ν (i = 0, 1, . . . , 2s).

A construction procedure of our spline approximations can be stated in
the form (see [3]):

1◦ For a given t 7→ f(t) and (n,m, s), we find the measure dλ(t) and the
corresponding Jacobi matrix JN (dλ), where N = (s + 1)n + 2m + 2 in the
Lobatto case, and N = (s+ 1)n+m+ 1 in the Radau case. The latter can
be computed by the discretized Stieltjes procedure (see [5, § 2.2]).

2◦ By repeated application of the algorithms in [6, § 4.1] corresponding to
multiplication of a measure by t(1−t) and t, from the above Jacobi matrices,
we generate the Jacobi matrices J(s+1)n(dσ) and J(s+1)n(dσ∗), respectively.

Here, dσ(t) = (t(1− t))m+1dλ(t) and dσ∗(t) = tm+1dλ(t).

3◦ Using the algorithm for the construction of s-orthogonal polynomi-
als, given in [14], we obtain the Jacobi matrix Jn(dµ), where dµ(t) =
(πn(t))2sdσ(t), or dµ(t) = (πn(t))2sdσ∗(t).

4◦ From Jn(dµ) we determine the Gaussian nodes τ
(n)
ν (resp. τ

(n)∗
ν in

the Radau case) and the corresponding weights AGi,ν (ν = 1, . . . , n; i =
0, 1, . . . , 2s).

5◦ From the triangular systems of linear equations (4.2) and (4.3), we
find the coefficients ALk,ν and ARk,ν , respectively.

6◦ Using (3.9) and (3.10), or (3.13), (3.14) and (3.15), we determine the
spline approximation sn,m(t), or s∗n,m(t), respectively.

5. Numerical Example

In this section we consider a simple example – exponential distribution.

Let f(t) = e−t on [0,+∞). According to Theorem 2.1 we have here the
generalized Laguerre measure

dλ(t) =
1

m!
tm+1e−t dt, 0 ≤ t < +∞.
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We analyzed the cases when n = 2(1)5, m = 2(1)5, and s = 1. All
computations were done on the MICROVAX 3400 using VAX FORTRAN
Ver. 5.3 in D-arithmetics (machine precision ≈ 2.76× 10−17).

The coefficients of the spline (2.1), i.e.,

sn,m(t) =
n∑
ν=1

[
am−2,ν(τν − t)m−2+ + am−1,ν(τν − t)m−1+ + am,ν(τν − t)m+

]
,

are given in Tables 5.1 and 5.2 (to 10 decimals only, to save space) for n = 2
and n = 3, respectively. Numbers in parenthesis idicate decimal exponents.

Table 5.1
The coefficients of spline function sn,m(t) for n = 2, m = 5, s = 1

ν τν am−2,ν am−1,ν am,ν

1 5.187737459(0) 5.298036250(−4) −2.719217472(−3) 6.344798189(−3)

2 1.418519396(1) 2.992965707(−7) −2.517818993(−6) 5.551582363(−6)

Table 5.2
The coefficients of spline function sn,m(t) for n = 3, m = 5, s = 1

ν τν am−2,ν am−1,ν am,ν

1 3.978424366(0) 1.048630112(−3) −3.676925296(−3) 8.840144142(−3)

2 1.028050094(1) 5.332404617(−6) −3.374135232(−5) 7.443616416(−5)

3 2.086562513(1) 5.370512250(−10) −4.708093471(−9) 1.017579042(−8)

Table 5.3 shows the accuracy of the spline approximation sn,m, i.e.,

en,m = max
0≤t≤τn

|sn,m(t)− e−t|,

for n = 2(1)5, m = 2(1)5, and s = 1. Clearly, for t ≥ τn, the absolute error
is equal to f(t) = e−t.

Table 5.3
Accuracy of the spline approximation sn,m(t)

n m = 2 m = 3 m = 4 m = 5

2 1.2(−1) 2.1(−2) 1.2(−2) 7.2(−3)

3 8.4(−2) 1.1(−2) 3.3(−3) 1.7(−3)

4 5.9(−2) 7.9(−3) 1.3(−3) 5.3(−4)

5 4.1(−2) 5.6(−3) 7.7(−4) 2.0(−4)
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We can see that the approximation error is more easily reduced by in-
creasing m rather than n.

A similar example of spline approximation on [0, 1] was given in [3].
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SPLAJN APROKSIMACIJE KOJE OČUVAVAJU
MOMENTE I QUADRATURNE FORMULE

Gradimir V. Milovanović i Milan A. Kovačević

U radu se diskutuje problem aproksimacije funkcije f pomoću splajn funkcije
stepena m i defekta d sa n (promenljivih) čvorova, očuvavajući pritom maksimalan
broj početnih momenata. Problem se povezuje sa Gauss-Turánovim kvadraturnim
formulama.


