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MOMENT-PRESERVING SPLINE
APPROXIMATION AND QUADRATURES*

Gradimir V. Milovanovié and Milan A. Kovacevié

Abstract. In this survey we discuss the problem of approximating a function f
by a spline function of degree m and defect d, with n (variable) knots, matching
as many of the initial moments of f as possible. The problem is connected with
Gauss-Turan type of quadrature rules.

1. Introduction

Following earlier work of Laframboise and Stauffer [12] and Calder and
Laframboise [1], Gautschi [7] considered the problem of approximating a
spherically symmetric function t — f(t), t = ||z|/, 0 <t < oo, in R?, d > 1,
by a piecewise constant function

tersa(t)=> aH(r,—t) (6 €R, 0< 1 < <7, < +00),
v=1

where H is the Heaviside step function. Also, he considered an approxima-
tion by a linear combination of Dirac delta functions. The approximation
was to preserve as many moments of f as possible. This work was extended
to spline approximation of arbitrary degree by Gautschi and Milovanovié
[9]. Namely, they considered a spline function of degree m > 0 on [0, +00),
vanishing at t = +oo, with n > 1 positive knots 7, (v = 1,... ,n), which
can be written in the form

(1.1) Smm(t) =D _ay(m, —1)7  (ay €R, 0 <t < +00),
v=1
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where the plus sign on the right is the cutoff symbol, uy = u if u > 0 and
uy = 0if w < 0. Given a function ¢t — f(t) on [0,+00), they determined
Sn,m such that

(1.2) /Omsn,m(t)tjdvz/O+Oof(t)tﬂ'dv (j=0,1,...,2n—1),

where dV is the volume element depending on the geometry of the problem.
(For example, dV = Ct?~'dt if d > 1, where C is some constant, and
dV = dt if d = 1 were used in [9]. For some details see Gautschi [8].) In
any case, the spline s,, ,,, is such to faithfully reproduce the first 2n moments
of f. Under suitable assumptions on f, it was shown that the problem has
a unique solution if and only if certain Gauss-Christoffel quadratures exist
corresponding to a moment functional or weight distribution depending on
f. Existence, uniqueness and pointwise convergence of such approximation
were analyzed. We mention two main results (Gautschi and Milovanovié¢ [9])
in the case when dV = dt.

Theorem 1.1. Let f € C™+1[0, +00] and

+oo
(1.3) / g2ntme L) pmD) ()] dt < oo
0

Then a spline function sy, of the form (1.1) with positive knots 1, that
satisfies (1.2), exists and is unique if and only if the measure

(_1>m+1 m—+1 £(m+1)
(1.4) d)\(t):Tt f (t)dt on [0,400)

admits an n-point Gauss-Christoffel quadrature formula
+oo n
(15) | amans =S APg(rf) + Ralgian),
0 v=1

with distinct positive nodes Ty("), where Ry, (g;d\) =0 for all g € Pap_1. In
that event, the knots 1, and weights a, in (1.1) are given by

(1.6) =7, a, =7, MM (v=1,...,n).
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Theorem 1.2. Given f as in Theorem 1.2, assume that the measure dA
in (1.4) admits the n-point Gauss-Christoffel quadrature formula (1.5) with

distinct positive nodes 1, = 7™ and the remainder term R, (g;d\). Define
op(z) =z~ "D (2 — )™,

Then, for any t > 0, we have for the error of the spline approzimation (1.1),
(1.2),

(1.7) f() = Snm(t) = Ry (og; dN).

Substituting (1.1) in (1.2) yields, since 7, > 0,

n TV . +OO .
Zay/ tJ(T,,—t)mdt:/ f)dt (j=0,1,...,2n—1),
v=1 0 0

ie.,
n .
(1.8) > ar ™= (G=0,1,...,2n-1),
v=1
where
(j+m+1ﬂ/“”» ,
1.9 = 7 f(t)dt =0,1,...).

For the proof of Theorem 1.1 we suppose that j < 2n—1. Because of (1.3),
the integral f0+o° t7tm+2 f(m+1) (1) dt exists and . ligl trm+2 (1) (1) = 0,
—+0o0

Then, L’Hospital’s rule implies

lim ¢+ M) () = 0.

t—4o00

Continuing in this manner, we find that

lim LR =0 (k=m,m—1,...,0).

t——4o0

Under these conditions we can prove that (see [9])

/+OO tjf(t) dt = (_1)m+1 /+OO tj+m+1f(m+1) (t) dt
0 G+DG+2)---G+m+1) Jo '
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Therefore, the moments p;, defined by (1.9), exist and

+oo
uj—/ Hdrt)  (j=0,1,...,2n—1),
0

where dA(t) is given by (1.4). Hence, we conclude that Eqgs. (1.2) are equiv-
alent to Egs. (1.8), which are precisely the conditions for 7, to be the nodes
of the Gauss-Christoffel formula (1.5) and a, 7 *! their weights.

The nodes 3", being the zeros of the orthogonal polynomial 7, (-; d\) (if
it exists), are uniquely determined, hence also the weights )\(yn).

For example, if f is completely monotonic on [0, +00) then dA(t) in (1.4)
is a positive measure for every m. Also, the first 2n moments exist by virtue

of the assumptions in Theorem 1.1. Then the Gauss-Christoffel quadrature
formula exists uniquely, with n distinct and positive nodes Tlsn).

Using Taylor’s formula “at +00”, we find that

_7(_1)m+1 +oox— mpmAD) () dy = +OOU T T
(110) f(t) = / (2 — )" D () d / () dA(x).

m!

On the other hand, Theorem 1.1 gives
n n
(1.11) Snam() =Y A7, T (1, — )T =" Aoy (ty).
v=1 v=1

Subtracting (1.11) from (1.10) yields (1.7).

Theorem 1.2 shows that s, ,, converges pointwise to f as n — +oo if
the Gauss-Christoffel quadrature formula (1.5) converges for the particular
function z — g(x) = o¢(z) (z > 0).

2. Approximation by Defective Splines

A spline function of degree m > 2 and defect k on the interval 0 < ¢ <
+o00, vanishing at ¢ = +o00, with n > 1 positive knots 7, (v =1,... ,n), can
be written in the form

(2.1) Sn,m(t) = Z ' Z (li,u(Tu - t):_

where a;, are real numbers.
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As in Section 1 we consider moment-preserving approximation of a given
function ¢ — f(t) on [0, +00) by the defective spline s,, ,,,, defined by (2.1).
Under suitable assumptions on f and k = 25+ 1, Milovanovié¢ and Kovacevié¢
[15] showed that the problem has a unique solution if and only if certain
generalized Turan quadratures exist corresponding to a measure depending

on f.

The generalized Gauss-Turan quadrature

n 2s

(2.2) / gty drt) = 33 4G, g0 () + R (g; d),
R

v=1 i=0

where dA(t) is a nonnegative measure on the real line R, with compact or
infinite support, for which all moments u, = fR tYdA(t), v =0,1,..., exist
and are finite, and pg > 0. The formula (2.2) is exact for all polynomials of
degree at most 2(s + 1)n — 1, i.e.,

RS(% d\) =0 for g€ Pasqr1yn—1-

The knots 7" (v =1,...,n) in (2.2) are zeros of a (monic) polynomial
Tn(t), which minimizes the following integral

/ (822 dA(D),

where 7, (t) = t" + an_1t"" ' + -+ + ait + ag. In the other words, the
polynomial 7, satisfies the following generalized orthogonality conditions

(2.3) / T (H)*THEdA(t) = 0, i=0,1,...,n—1.
R

This polynomial m,, is known as s-orthogonal (or s-self associated) poly-
nomial with respect to the measure dA(t). For s = 0, we have the standard
case of orthogonal polynomials, and (2.3) then becomes well-known Gauss-
Christoffel formula.

The “orthogonality condition” (2.3) can be interpreted as (see Milovanovié¢
[14))

/ﬂ—im(t)tldll(t) :07 2:0717 71/_1’
R

where {75} is a sequence of standard monic polynomials orthogonal on R
with respect to the new measure du(t) = du®"(t) = (75"(t))%*d\(t). The

n
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polynomials {75"}, v = 0,1,..., are implicitly defined because the measure
dp(t) depends on 7™ (t) (= mp(t)). We will write only 7, instead of 757 (-).
These polynomials satisfy a three-term recurrence relation

Tyt1(t) = (t — a)m(t) — Bumu—1(t), v=0,1,...,

7T_1(t) = 0, 7T0<t) = 1,

where, because of orthogonality,

(trsm) _ Jotnd(t) du(t)
(m,m)  Jpmo(t)du(t)’

(v, m)  _ Jetmo(t) du(t)
(Ty—1,Tu—1) f]R 7r12/—1(t) du(t)’

and, for example, By = [, dpu(t).

oy = 0411(57”) =

61/ = Bu(sa n) =

Finding the coefficients a,,, 8, (v = 0,1,... ,n — 1) gives us access to
the first n + 1 orthogonal polynomials mg, 71, ..., m,. Of course, we are
interested only in the last of them, i.e., m, = n)". Thus, for n =0,1,...,
the diagonal (boxed) elements in Table 2.1 are our s-orthogonal polynomials

s,n
T

TABLE 2.1

n du®"(t) Orthogonal Polynomials

0| =2)%da@)| |=3°

1 (ﬂ'f’l(t))zs d\(t) 7r8’1 71';’1

2 (71'5’2(25))25 d\(t) 71'8’2 7rf’2 71';’2

3 (71';’3(25))25 d\(t) 71'8’3 7rf’3 71';’3 71';’3

A stable algorithm for constructing such (s-orthogonal) polynomials was
found by Milovanovié¢ [14].

Using the similar method as in Section 1, we can prove (see Milovanovié¢
and Kovacevié¢ [15]) the following result:
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Theorem 2.1. Let f € C™1[0, +00] and
+oo
/ t2(s+1)n+m+1’f(m+1)(t)‘ dt < 4+00.
0

Then a spline function s, of the form (2.1) with k = 2s + 1 and positive
knots 1, that satisfies (1.2), with j = 0,1,...,2(s+ 1)n — 1, exists and is
unique if and only if the measure

d)\ _ (_1)ﬂ1+1 m—+1 (m+l) d 0
()= CEL st for Dty at on [0, +00)

admits a generalized Gauss-Turdn quadmture formula
n

+oo
(2.4) / SO =3 S AT GO () 4 B (g5 ),
0

v=1 =0

with distinct positive nodes T,Sn), where RS (g;d\) = 0 for all g € Potst1)n—1-
The knots 7, in (2.1) are given by 1, = 75"), and coefficients a;, by the

following triangular system

2s
AE?/) — Z Q <]> [DJ Ztm-l-l]t:TV U (’L —0,1,... ,28),

— m]! i
j=t
where D 1is the standard differentiation operator.

Theorem 2.2. Given f as in Theorem 2.1, assume that the measure dA(t)
admits the n-point generalized Gauss-Turdn quadrature formula (2.4) with

distinct positive nodes T, = ™ and the remainder term R%(g;d\). Then

the error of the spline approzimation is given by
f(t) = 8nm(t) = RS (0r3dN). (¢t >0),

where x — oy(z) = =MD (z — )™

Again, if f is completely monotonic on [0, 400) then dA(t) is a positive
measure for every m. Also, the first 2(s+ 1)n moments exist by virtue of the
assumptions in Theorem 2.1. Then the generalized Gauss-Turan quadrature
formula exists uniquely, with n distinct and positive nodes T( ),

In the special case when s = 1, the coefficients of the spline function s, ,,
are

A2, = m(m — D) Ag)7, ",
— A(n) -9 1 A(n) 7(m+2)

Um—1,0 = m( 1, vTv (m + ) )

= ((m+1)(m +2)AF") — (m +1 )Agngn + A 727 (),
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3. Spline Approximation on Finite Intervals

Frontini, Gautschi and Milovanovi¢ [2] and Frontini and Milovanovié¢ [3]
considered analogous problems on an arbitrary finite interval, which can
be standardized to [a,b] = [0,1]. If the approximations exist, they can be
represented in terms of generalized Gauss-Lobatto and Gauss-Radau quad-
rature formulas relative to appropriate measures depending on f, when the
defect k = 1. Using defective splines with odd defect k = 2s+ 1, approxima-
tion problems reduce to certain generalized Turan-Lobatto and Turan-Radau
quadrature formulas.

A spline function of degree m > 2 and defect k = 2s + 1, with n distinct

knots 7, (v =1,...,n) in (0,1), can be written in the form

n

(31) Sn,m(t) = pm(t) + Z Z ai,u(Tu - t)z- (0 <t< 1)7

v=1i=m—2s

where a; , are real numbers and ¢t — p,,(t) is a polynomial of degree < m.
Evidently, for ¢t > 1 we have s, »,(t) = pm(1).

There are two interesting approximation problems:

Problem I. Determine s,, ,,, in (3.1) such that

1 1
(3.2) / t7 8p.m (t) dt:/ tft)ydt,  j=0,1,...,2(s+1)n+m.
0 0

Problem I*. Determine s,, ,,, in (3.1) such that
(33) S0 =pP (1) = FOQ), k=01, ,m,

and such that (3.2) holds for j =0,1,...,2(s + 1)n — 1.

The both problems can be reduced to the s-orthogonality and generalized
Gauss-Turan quadratures by restricting the class of functions f as before.

Putting

G4 o= Dm0,

REY
bk:( 1)
m!

Wp%)(l) (k=0,1,....,m)
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and applying m + 1 integration by parts to the integrals in the moment
equation (3.2), we obtain after much calculations

n 2s

k
Zbk Dm kthﬂ -1+ ZIZ mm)am kv [Dk(tmﬂﬂ)]t:n
=0 v k=0

m 1
(3.5) => ¢ [D™” ktm+1+f]t:1+/0 T dA (1),
k=0

j=0,1,...,2(s+ 1)n+m,
where the measure d\(t) is defined again by
(=)™

The main result for Problem I can be stated in the form:

Theorem 3.1. Let f € C™*1[0,1]. There exists a unique spline function
(3.1) on [0,1], with d = 2s + 1, satisfying (3.2) if and only if the measure
dA(t) in (3.6) admits a generalized Gauss-Lobatto-Turdn quadrature

[ 9030 =3 [axg®(©0) + 9O 1)

k=
(3.7) °
+ ZZAZ LD (M) + RE L (g5dN),
v=11=0
where
(3.8) Ry p(g:dA) =0 for all g € Pa(syiynsamr1,
with distinct real zeros T,Sn) (v=1,2,...,n) all contained in the open inter-

val (0,1). The spline function in (3.1) is given by

3.9) 7, =7 am_p, = v=1,...,mk=0,1,...,2s),

——A

(m — k)R
where T,S ") are the interior nodes of the generalized Gauss-Lobatto-Turdn
quadrature formula and A are the corresponding weights, while the poly-

nomial py,(t) is given by
(310) P = fO) + (C)Fml (b=0,1,... ,m),
where B4, is the coefficient of g™ ~*) (1) in (3.7).

The solution of Problem I* can be given in a similar way:

vV
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Theorem 3.2. Let f € C™*10,1]. There exists a unique spline function
on [0, 1],

n

m
shn(®) =P+ > ai, (=),
(311) v=1i=m—2s

0<71, <1, 75 #7, forv#yu,

satisfying (3.3) and (3.2), for 5 = 0,1,...,2(s+ 1)n — 1, if and only if the
measure dA(t) in (3.6) admits a generalized Gauss-Radau-Turdn quadrature

n 2s

1 m
(M%/9®M®=Z%WWHZ§}%W%W%R%@M%
0 k=0

v=1 i=0

where
erim(ga d)‘) =0 fO’F all g & :])2(s+1)n+ma

with distinct real zeros T,Sn)*, v = 1,2,...,n, all contained in the open
interval (0,1). The knots 7,; in (3.11) are then precisely these zeros,

(3.13) =7 (v=1,...,n)
and
|
(3.14)  a',_,, = ﬁAQV (v=1,2...,m k=0,1,...,2s),
’ m — ! 9

while the polynomial t — pf, (t) is given by

mor(k)
(3.15) p =3 T Wy

k=0

The following statement gives the error of spline approximations:

Theorem 3.3. Define
pi(x) = (x — 1), 0<z<1.
Under conditions of Theorem 3.1 and Theorem 3.2, we have

F@) = sum(t) = Ry (pis dX) - (0<t<1)
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and

f) = shn®) =RE (pi;d\)  (0<t<1),

respectively, where R, (g; d\) and RE . (g; dX) are the remainder terms in
the corresponding Gauss-Turdn formulas of Lobatto and Radau type.

For proofs of Theorems 3.1-3.3, we refer to [3]. The case s = 0 of these
results has been obtained by Frontini, Gautschi and Milovanovi¢ [2]. A
more general case with variable defects was considered by Gori and Santi
[10]. In that case, approximation problems reduce to Gauss-Turan-Stancu
type of quadratures and o-orthogonal polynomials (cf. Gautschi [4], Gori,
Lo Cascio and Milovanovié¢ [11]).

Further extensions of the moment-preserving spline approximation on
[0, 1] are given by Micchelli [13]. He relates this approximation to the theory
of the monosplines.

4. Construction of Spline Approximation on [0, 1]

Firstly, we mention two auxiliary results, which give a connection between
the generalized Gauss-Turdn quadrature and the corresponding formulas of
Lobatto and Radau type (see [3]):

Lemma 4.1. If the measure d\(t) in (3.6) admits the generalized Gauss-

Lobatto-Turdan quadrature (3.7), with distinct real zeros T, = s (v =
1,...,n) all contained in the open interval (0,1), there exists then a gener-
alized Gauss-Turdn formula

(4.1) /Og( ZZAWQ (™) + RS (9),

v=1 =0

where do(t) = [t(1—1t)]™ 1d\(t), the nodes 7™ are the zeros of s-orthogonal
polynomial m,(+; do)), while the weights Aicfl, are expressible in terms of those
in (3.7) by

2s

(4.2) AG, =" (f) [D’H’ (t(1 — t))m+1]t:TV Ab, (i=0,1,...,2).

k=1
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Lemma 4.2. If the measure d\(t) in (3.6) admits the generalized Gauss-

Radau-Turdn quadrature (3.12), with distinct real zeros 1, = T (v =
1,...,n) all contained in the open interval (0,1), there exists then a gener-
alized Gauss-Turdn formula (4.1), where do(t) = do*(t) = t™T1d\(t), the

nodes T,E")* are the zeros of s-orthogonal polynomial 7, (-; do*), while the

weights Afy are expressible in terms of those in (3.12) by
2s k

(4.3) AG, =" (z) (D] AR, (i=0,1,...,2s).
k=i

A construction procedure of our spline approximations can be stated in
the form (see [3]):

1° For a given t — f(t) and (n,m,s), we find the measure dA(t) and the
corresponding Jacobi matrix Jy(dA), where N = (s + 1)n 4+ 2m + 2 in the
Lobatto case, and N = (s + 1)n +m + 1 in the Radau case. The latter can
be computed by the discretized Stieltjes procedure (see [5, §2.2]).

2° By repeated application of the algorithms in [6, § 4.1] corresponding to
multiplication of a measure by t(1—t) and ¢, from the above Jacobi matrices,
we generate the Jacobi matrices J(s41),(do) and Jis11),(do™), respectively.
Here, do(t) = (t(1 — t))™1dA(t) and do*(t) = t™T1dA(t).

3° Using the algorithm for the construction of s-orthogonal polynomi-
als, given in [14], we obtain the Jacobi matrix .J,(du), where du(t) =
(m(£))25dor(8), ot dyu(t) = (o (£))2*do™ ().

4° From J,(dp) we determine the Gaussian nodes ) (resp. % in
the Radau case) and the corresponding weights Aicfy (v =1,...,n;i =
0,1,...,2s).

5° From the triangular systems of linear equations (4.2) and (4.3), we
find the coefficients Aéu and Aﬁy, respectively.

6° Using (3.9) and (3.10), or (3.13), (3.14) and (3.15), we determine the
spline approximation s,, ,,(t), or s, ,,(t), respectively.

5. Numerical Example

In this section we consider a simple example — exponential distribution.

Let f(t) = e ' on [0,400). According to Theorem 2.1 we have here the
generalized Laguerre measure

1
dA(t) = — tm et dt, 0<1t< +oo.
m!
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We analyzed the cases when n = 2(1)5, m = 2(1)5, and s = 1. All
computations were done on the MICROVAX 3400 using VAX FORTRAN

Ver. 5.3 in D-arithmetics (machine precision ~ 2.76 x 10717).
The coefficients of the spline (2.1), i.e.,

n
sn,m(t) - Z [am—Q,u(Ty - t)T_2 + am—l,u(Tu - t)T_l + am,u(Tu - t)T] )

v=1

are given in Tables 5.1 and 5.2 (to 10 decimals only, to save space) for n = 2
and n = 3, respectively. Numbers in parenthesis idicate decimal exponents.

TABLE 5.1
The coefficients of spline function sp m(t) forn =2, m=5,s=1

v Tv Am—2,v am—1,v am,v
1|5.187737459(0) | 5.298036250(—4) | —2.719217472(—3) | 6.344798189(—3)
21.418519396(1) | 2.992965707(—7) | —2.517818993(—6) | 5.551582363(—6)

TABLE 5.2
The coefficients of spline function sp m(t) forn =3, m=5,s=1

14 Tv Am—2,v am—1,v Qm,v
1]3.978424366(0) | 1.048630112(—3) | —3.676925296(_3) | 8.840144142(—3)
2(1.028050094(1) | 5.332404617(—6) | —3.374135232(—5) | 7.443616416(—5)
3 2.086562513(1) 5.370512250(—10) —4.708093471(—9) 1.017579042(—8)

Table 5.3 shows the accuracy of the spline approximation s,, y,, i.e.,

—t
€nm = MAX |$ym(t) — e

I

for n = 2(1)5, m = 2(1)5, and s = 1. Clearly, for ¢t > 7,,, the absolute error
is equal to f(t) = e~ .

TABLE 5.3
Accuracy of the spline approximation sn,m (t)
nfm=2|m=3| m= m=>5
211.2(-1)|2.1(=2) | 1.2(=2) | 7.2(-3)
3]8.4(=2) | 1.1(—2) | 3.3(=3) | 1.7(=3)
415.9(—=2)|7.9(—3)|1.3(—3) | 5.3(—4)
54.1(=2) | 5.6(=3) | 7.7(=4) | 2.0(—4)
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We can see that the approximation error is more easily reduced by in-
creasing m rather than n.

A similar example of spline approximation on [0, 1] was given in [3].

10.

11.

12.
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SPLAJN APROKSIMACIJE KOJE OCUVAVAJU
MOMENTE I QUADRATURNE FORMULE

Gradimir V. Milovanovié¢ i Milan A. Kovacevié

U radu se diskutuje problem aproksimacije funkcije f pomocu splajn funkcije
stepena m i defekta d sa n (promenljivih) ¢vorova, ocuvavajuéi pritom maksimalan
broj pocetnih momenata. Problem se povezuje sa Gauss-Turdnovim kvadraturnim
formulama.



