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ZERO DISTRIBUTION OF A CLASS OF POLYNOMIALS
ASSOCIATED WITH THE GENERALIZED

HERMITE POLYNOMIALS*

G. V. Milovanović and N. M. Stojanović

Abstract. We prove that polynomials P
(m,q)
N (t) associated with the generalized

Hermite polynomials, where m ∈ N and q ∈ {0, 1, . . . ,m − 1}, has only real
postive zeros for every N ∈ N.

The sequence of polynomials {hλn,m(x)}+∞n=0, where λ is a real parameter
and m is an arbitrary positive integer, was studied in [4]. For m = 2, the
polynomial hλn,m(x) reduces to Hn(x, λ)/n!, where Hn(x, λ) is the Hermite

polynomial with a parameter. For λ = 1, h1n,2(x) = Hn(x)/n!, where Hn(x)
is the classical Hermite polynomial. Taking λ = 1 and n = mN + q, where
N = [n/m] and 0 ≤ q ≤ m − 1, D̄ord̄ević [4] introduced the polynomials

P
(m,q)
N (t) by h1n,m(x) = (2x)qP

(m,q)
N ((2x)m), and proved that they satisfy an

(m+ 1)-term linear recurrence relation of the form

(1)

m∑
i=0

AN (i, q)P
(m,q)
N+1−i(t) = BN (q)tP

(m,q)
N (t),

where BN (q) and AN (i, q) (i = 0, 1, . . . ,m) are constants depending only
on N , m and q. Recently, one of us [7] determined the explicit expressions
for the coefficients in (1) using some combinatorial identities.

An explicit representation of the polynomial P
(m,q)
N (t) can be given in the

form (see [4], [7]),

(2) P
(m,q)
N (t) =

N∑
k=0

(−1)N−k
tk

(N − k)!(q +mk)!
,

where m ∈ N and q ∈ {0, 1, . . . ,m− 1}.
In this note we prove a zero distribution of polynomials (2):
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Theorem 1. The polynomial P
(m,q)
N (t) defined by (2), where m ∈ N and

q ∈ {0, 1, . . . ,m− 1}, has only real and positive zeros for every N ∈ N.

In the proof of this theorem we use the following result (cf. Obreschkoff
[11, p. 107]):

Theorem A. Let a0 +a1x+ · · ·+anx
n be a polynomial with only real zeros

and let x 7→ f(x) be an entire function of the second kind without positive
zeros. Then the polynomial

a0f(0) + a1f(1)x+ · · ·+ anf(n)xn

has only real zeros.

It is known that an entire function of the second kind (in the Laguerre-
Pólya class) can be expressed in the form

(3) f(x) = Ce−ax
2+bxxm

+∞∏
n=1

(
1− x

αn

)
ex/αn ,

where C, a, b ∈ R, m ∈ N0, αn ∈ R (n = 1, 2, . . . ) and
∑+∞
n=1 1/α2

n < +∞.

We first prove an auxiliary results regarding the ratio Γ(x + 1)/Γ(mx +
q + 1), where Γ(x) is the gamma function.

Lemma 1. Let m ∈ N and q ∈ {0, 1, . . . ,m− 1}. The equality

(3)
Γ(x+ 1)

Γ(mx+ q + 1)
= Aeγ(m−1)x

+∞∏
n=1

(
1 +

(m− 1)x+ q

n+ x

)
e−((m−1)x+q)/n

holds, where A and γ are constants (γ = 0.57721566 . . . is known as Euler’s
constant).

Proof. In 1856 Weierstrass proved the formula

1

Γ(z + 1)
= eγz

+∞∏
n=1

[(
1 +

z

n

)
e−z/n

]
.
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According to this equality we have

Γ(x+ 1)

Γ(mx+ q + 1)
=

e−γxeγ(mx+q)

+∞∏
n=1

(
1 +

x

n

)
e−x/n

+∞∏
n=1

(
1 +

mx+ q

n

)
e−(mx+q)/n

= eγ((m−1)x+q)
+∞∏
n=1

(
1 +

(m− 1)x+ q

n+ x

)
e−((m−1)x+q)/n

= Aeγ(m−1)x
+∞∏
n=1

(
1 +

(m− 1)x+ q

n+ x

)
e−((m−1)x+q)/n.

Since m ∈ N, the set of poles of Γ(x + 1) (the numerator in (3)), i.e.,
{−1,−2, . . . }, is contained in the set of poles of the denominator{

(−1− q − i)/m | i = 0, 1, . . .
}
,

so that the function (3) is an entire function without positive zeros. �

Now, we are ready to prove Theorem 1.

Proof of Theorem 1. Consider the polynomial

(t− 1)N =

N∑
k=0

(
N

k

)
(−1)N−ktk = N !

N∑
k=0

(−1)N−k
tk

(N − k)!k!
,

which zeros are evidently all real. Taking f(x) = Γ(x + 1)/Γ(mx + q + 1),
we find that

f(k) =
k!

(mk + q)!
.

Then, according to Theorem A we conclude that all zeros of the polynomial

N !

N∑
k=0

(−1)N−k
1

(N − k)!k!
· k!

(mk + q)!
tk

are real. Notice that this polynomial is exactly our polynomial P
(m,q)
N (t).

Changing t by −t in P
(m,q)
N (t) we conclude that these zeros are positive. �

At the end we mention that there are many results on transformations
of polynomials by multiplier sequences (see [1–3], [8–13]), as well as the so-
called zero-mapping transformations which map polynomials with zeros in
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a certain interval into polynomials with zeros in another interval. A general
technique for the construction of such transformations was developed by
Iserles and Nørsett [5] (see also [6]).
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DISTRIBUCIJA NULA JEDNE KLASE POLINOMA
KOJI SU PRIDRUŽENI GENERALISANIM

HERMITEOVIM POLINOMIMA

G. V. Milovanović i N. M. Stojanović

U radu se dokazuje da polinomi P
(m,q)
N (t) pridruženi generalisanim Hermiteovim

polinomima, sa m ∈ N i q ∈ {0, 1, . . . ,m − 1}, imaju samo realne pozitivne nule
za svako N ∈ N.


