ZERO DISTRIBUTION OF A CLASS OF POLYNOMIALS ASSOCIATED WITH THE GENERALIZED HERMITE POLYNOMIALS*

G. V. Milovanović and N. M. Stojanović

Abstract

We prove that polynomials $P_{N}^{(m, q)}(t)$ associated with the generalized Hermite polynomials, where $m \in \mathbb{N}$ and $q \in\{0,1, \ldots, m-1\}$, has only real postive zeros for every $N \in \mathbb{N}$.

The sequence of polynomials $\left\{h_{n, m}^{\lambda}(x)\right\}_{n=0}^{+\infty}$, where λ is a real parameter and m is an arbitrary positive integer, was studied in [4]. For $m=2$, the polynomial $h_{n, m}^{\lambda}(x)$ reduces to $H_{n}(x, \lambda) / n!$, where $H_{n}(x, \lambda)$ is the Hermite polynomial with a parameter. For $\lambda=1, h_{n, 2}^{1}(x)=H_{n}(x) / n$!, where $H_{n}(x)$ is the classical Hermite polynomial. Taking $\lambda=1$ and $n=m N+q$, where $N=[n / m]$ and $0 \leq q \leq m-1$, Đorđević [4] introduced the polynomials $P_{N}^{(m, q)}(t)$ by $h_{n, m}^{1}(x)=(2 x)^{q} P_{N}^{(m, q)}\left((2 x)^{m}\right)$, and proved that they satisfy an ($m+1$)-term linear recurrence relation of the form

$$
\begin{equation*}
\sum_{i=0}^{m} A_{N}(i, q) P_{N+1-i}^{(m, q)}(t)=B_{N}(q) t P_{N}^{(m, q)}(t) \tag{1}
\end{equation*}
$$

where $B_{N}(q)$ and $A_{N}(i, q)(i=0,1, \ldots, m)$ are constants depending only on N, m and q. Recently, one of us [7] determined the explicit expressions for the coefficients in (1) using some combinatorial identities.

An explicit representation of the polynomial $P_{N}^{(m, q)}(t)$ can be given in the form (see [4], [7]),

$$
\begin{equation*}
P_{N}^{(m, q)}(t)=\sum_{k=0}^{N}(-1)^{N-k} \frac{t^{k}}{(N-k)!(q+m k)!}, \tag{2}
\end{equation*}
$$

where $m \in \mathbb{N}$ and $q \in\{0,1, \ldots, m-1\}$.
In this note we prove a zero distribution of polynomials (2):

[^0]Theorem 1. The polynomial $P_{N}^{(m, q)}(t)$ defined by (2), where $m \in \mathbb{N}$ and $q \in\{0,1, \ldots, m-1\}$, has only real and positive zeros for every $N \in \mathbb{N}$.

In the proof of this theorem we use the following result (cf. Obreschkoff [11, p. 107]):

Theorem A. Let $a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ be a polynomial with only real zeros and let $x \mapsto f(x)$ be an entire function of the second kind without positive zeros. Then the polynomial

$$
a_{0} f(0)+a_{1} f(1) x+\cdots+a_{n} f(n) x^{n}
$$

has only real zeros.
It is known that an entire function of the second kind (in the LaguerrePólya class) can be expressed in the form

$$
\begin{equation*}
f(x)=C e^{-a x^{2}+b x} x^{m} \prod_{n=1}^{+\infty}\left(1-\frac{x}{\alpha_{n}}\right) e^{x / \alpha_{n}} \tag{3}
\end{equation*}
$$

where $C, a, b \in \mathbb{R}, m \in \mathbb{N}_{0}, \alpha_{n} \in \mathbb{R}(n=1,2, \ldots)$ and $\sum_{n=1}^{+\infty} 1 / \alpha_{n}^{2}<+\infty$.
We first prove an auxiliary results regarding the ratio $\Gamma(x+1) / \Gamma(m x+$ $q+1$), where $\Gamma(x)$ is the gamma function.

Lemma 1. Let $m \in \mathbb{N}$ and $q \in\{0,1, \ldots, m-1\}$. The equality
(3) $\frac{\Gamma(x+1)}{\Gamma(m x+q+1)}=A e^{\gamma(m-1) x} \prod_{n=1}^{+\infty}\left(1+\frac{(m-1) x+q}{n+x}\right) e^{-((m-1) x+q) / n}$
holds, where A and γ are constants $(\gamma=0.57721566 \ldots$ is known as Euler's constant).

Proof. In 1856 Weierstrass proved the formula

$$
\frac{1}{\Gamma(z+1)}=e^{\gamma z} \prod_{n=1}^{+\infty}\left[\left(1+\frac{z}{n}\right) e^{-z / n}\right] .
$$

According to this equality we have

$$
\begin{aligned}
\frac{\Gamma(x+1)}{\Gamma(m x+q+1)} & =\frac{e^{-\gamma x} e^{\gamma(m x+q)}}{\prod_{n=1}^{+\infty}\left(1+\frac{x}{n}\right) e^{-x / n}} \prod_{n=1}^{+\infty}\left(1+\frac{m x+q}{n}\right) e^{-(m x+q) / n} \\
& =e^{\gamma((m-1) x+q)} \prod_{n=1}^{+\infty}\left(1+\frac{(m-1) x+q}{n+x}\right) e^{-((m-1) x+q) / n} \\
& =A e^{\gamma(m-1) x} \prod_{n=1}^{+\infty}\left(1+\frac{(m-1) x+q}{n+x}\right) e^{-((m-1) x+q) / n} .
\end{aligned}
$$

Since $m \in \mathbb{N}$, the set of poles of $\Gamma(x+1)$ (the numerator in (3)), i.e., $\{-1,-2, \ldots\}$, is contained in the set of poles of the denominator

$$
\{(-1-q-i) / m \mid i=0,1, \ldots\},
$$

so that the function (3) is an entire function without positive zeros.
Now, we are ready to prove Theorem 1.
Proof of Theorem 1. Consider the polynomial

$$
(t-1)^{N}=\sum_{k=0}^{N}\binom{N}{k}(-1)^{N-k} t^{k}=N!\sum_{k=0}^{N}(-1)^{N-k} \frac{t^{k}}{(N-k)!k!},
$$

which zeros are evidently all real. Taking $f(x)=\Gamma(x+1) / \Gamma(m x+q+1)$, we find that

$$
f(k)=\frac{k!}{(m k+q)!} .
$$

Then, according to Theorem A we conclude that all zeros of the polynomial

$$
N!\sum_{k=0}^{N}(-1)^{N-k} \frac{1}{(N-k)!k!} \cdot \frac{k!}{(m k+q)!} t^{k}
$$

are real. Notice that this polynomial is exactly our polynomial $P_{N}^{(m, q)}(t)$. Changing t by $-t$ in $P_{N}^{(m, q)}(t)$ we conclude that these zeros are positive.

At the end we mention that there are many results on transformations of polynomials by multiplier sequences (see [1-3], [8-13]), as well as the socalled zero-mapping transformations which map polynomials with zeros in
a certain interval into polynomials with zeros in another interval. A general technique for the construction of such transformations was developed by Iserles and Nørsett [5] (see also [6]).

REFERENCES

1. T. Craven and G. Csordas: An inequality for the distribution of zeros of polynomials and entire functions. Pacific J. Math. 95 (1981), 263-280.
2. T. Craven and G. Csordas: On the number of real roots of polynomials. Pacific J. Math. 102 (1982), 15-28.
3. T. Craven and G. Csordas: The Gauss-Lucas and Jensen polynomials. Trans. Amer. Math. Soc. 278 (1983), 415-429.
4. G. B. ĐorĐević: Generalized Hermite polynomials. Publ. Inst. Math. (Beograd) (N.S.) 53 (67) (1993), 69-72.
5. A. Iserles and S.P. Nørsett: Zeros of transformed polynomials. SIAM J. Math. Anal. 21 (1990), 483-509.
6. A. Iserles, S. P. NøRSett, and E. B. Saff: On transformations and zeros of polynomials. Rocky Mountain J. Math. 21 (1991), 331-357.
7. G. V. Milovanović: Recurrence relation for a class of polynomials associated with the generalized Hermite polynomials. Publ. Inst. Math. (Beograd) (N.S.) 54 (68) (1993), 35-37.
8. G. V. Milovanović, D. S. Mitrinović, and Th. M. Rassias: Topics in Polynomials: Extremal Problems, Inequalities, Zeros. World Scientific, Singapore - New Jersey - London - Hong Kong, 1994.
9. N. Obreškov: Über einige Multiplikatoren in der Theorie der algebraischen Gleichungen. Jber. Deutschen Math. Ver. 35 (1926), 301304.
10. N. Obreškov: Quelques classes de fonctions entières limites de polynomes et de fonctions méromorphes limites de fonctions rationnelles. Actualités scientifiques et industrielles, Paris, 1941.
11. N. Obreškov: Zeros of Polynomials. Bulgar. Acad. Sci., Sofia, 1963 (in Bulgarian).
12. G. Pólya: Über Annäherung durch Polynome mit lauter reellen Wurzeln. Rend. Circ. Matem. Palermo 36 (1913), 279-295.
13. G. Pólya and I. Schur: Über zwei Arten der Faktorfolgen in der Theorie der algebraischen Gleichungen. J. Reine Angew. Math. 144 (1914), 89-113.

University of Niš
Faculty of Electronic Engineering
Department of Mathematics, P. O. Box 73
18000 Niš, Yugoslavia

DISTRIBUCIJA NULA JEDNE KLASE POLINOMA
 KOJI SU PRIDRUŽENI GENERALISANIM HERMITEOVIM POLINOMIMA

G. V. Milovanović i N. M. Stojanović

U radu se dokazuje da polinomi $P_{N}^{(m, q)}(t)$ pridruženi generalisanim Hermiteovim polinomima, sa $m \in \mathbb{N}$ i $q \in\{0,1, \ldots, m-1\}$, imaju samo realne pozitivne nule za svako $N \in \mathbb{N}$.

[^0]: Received February 11, 1993.
 1991 Mathematics Subject Classification. Primary 30C15, 33C55.
 *This work was supported in part by the Science Fund of Serbia under grant 0401F.

