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Abstract. 

Singular integrals with hyperbolic cotangent kernel present their own numerical problems because 
of the poles of the kernel located in the complex plane. We write such integrals as ordinary Cauchy 
principal value integrals involving an appropriate (non~assical) weight function and apply quadra- 
ture methods of Gaussian and interpolatory type. The most accurate one is based on Gauss- 
Christoffel quadrature relative to the weight function in question. Its error is studied both by real- 
and complex-variable techniques. Numerical examples are given to illustrate the theory. 

AMS Categories: Primary 65D30. 

1. Introduction. 

Cauchy principal value integrals of the form 

(1.1) (l[~,~]q~)(~) = q~(~)coth d~, ~<~<#,  

where [~, fl] is a finite or infinite interval, arise in problems of fluid mechanics 
in connection with conformal mapping (see, e.g., [5, Ch. 4, §17]). The hyper- 
bolic cotangent kernel in (1.1) does not only have a pole on the segment [~t, fl], 
as the more customary Cauchy kernel, but has infinitely many additional poles 
in the complex plane. This makes the numerical evaluation of (1.1) more 
difficult, particularly if the complex poles nearest to the real line are close to the 
segment [~, fl], relative to its length, i.e., 2n << fl-at. In such cases, when [~, fl] 
is finite, we propose to use Gauss-Christoffel quadrature relative to a weight 
function that depends both on ~ and [~, fl]. Recently developed methods for 
generating orthogonal polynomials for nonclassical weight functions thus find a 
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useful application here. The results obtainable in this way are extremely accurate, 
though they require some effort. Cheaper, but correspondingly less accurate 
results can be obtained by Gauss-Legendre quadrature. 

In Section 2 we develop the two methods based on Gauss-Christoffel and 
Gauss-Legendre quadrature and illustrate them on simple examples in Section 3. 
The remainder term of the more accurate of these quadrature methods is 
analyzed in Section 4, both for real-valued and holomorphic functions. An 
alternative, less accurate, but more stable procedure is discussed in Section 5. 
The case of an infinite interval [~, 8] is considered in Section 6. 

2. Two quadrature rules of Gaussian type. 

We first assume that [~,fl] is a finite interval. By a linear change of 
variables the integral (l.1) can then be brought to the form 

(2.1) (I , f )(x)  = f ( t )coth(a( t -x) )dt ,  
J - 1  

where 

2¢ - (~ + 8) 
(2.2) a = ¼(8- ~), x - - l < x < l ,  

and 

(2.3) f(t) = ½ ( 8 - ~ ) ¢ ( ½ ( ~ + 8 ) + ½ ( / ~ - ~ ) 0 ,  - 1  _< t _< t. 

It suffices, therefore, to consider the integral (2.1). Dividing and multiplying the 
integrand by a( t - x ) ,  we can write (2.1) as a conventional Cauchy principal 
value integral, 

1 _~1 f ( t )  w(t)dt, 1 < x  < 1, 
(2.4) ( l , f ) (x)  = a 3-  1 t - x  

involving the weight function 

(2.5) w(t) = w(t;a,x)  = co(a(t-x)), co(u) = ucothu. 

Following standard procedure (cf., e.g., [2, §3.2.1]), we decompose (2.4) into a 
singular and regular part, 

~_ w ( t ) 1  f l  f ( t ) - f ( X ) w ( t ) d t  ' 
( I ° f ) (x )= f ( x )  d t + -  

t - - x  a - 1  t - - x  
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and note that the former can be evaluated in closed form. The result is 

l {f(x)lnsinha(l_x) f l  } 
(2.6) (I,f)(x) = a sinha(1 +x)  + -xg(t)w(t)dt , - - l < x < l ,  

where 

(2.7) g(t) = g(t ; x) = 

I f ( t ) - f ( x )  if t ?~ x, 
t - x  

if(X) if t = x. 

We assume here that f ¢ C l [ - l ,  1]. Note that the function co(u) in (2.5) is 
meromorphic, with poles at _+ in, + 2i7c, ___ 3in . . . .  , and co(u) > 1 for real u. 

The integral in (2.6) may now be approximated either by Gauss-Christoffel 
quadrature relative to the weight function w, 

(2.8) g(t)w(t)dt c c c = 2,g(%)+R,(g), 
- 1  , = 1  

or by Gauss-Legendre quadrature, 

(2.9) g(t)w(t)dt L L L = 2,g('c,)w(z,)+R~(qw). 
1 v--1  

The nodes z, and weights 2, required in these quadratures can be computed by 
standard techniques (see, e.g., I-2, §5.1]) in terms of eigenvalues and eigenvectors 
of the Jacobi matrix 

(2.10) J .  = 

- ~o , / f l ,  o 

N / f l 2  Ct2 

_ 0 

, / # . _ ,  
. 

- 

where {~q} and {ilk} are the coefficients in the recurrence relation 

(2.11) ~ ,  ÷ ~ (t)  = ( t -  ~ , ) ~ k ( t ) -  f l k ~ , -  ~ (t), 

_ ~(t) = O, no( t )  = 1, 

k = O, 1, 2 . . . .  , 

for the respective (monic) orthogonal polynomials. For (2.9), the orthogonal 
polynomials are the Legendre polynomials and the Jacobi matrix (2.10) is 
explicitly known. In the case of (2.8), the Jacobi matrix must be generated 
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numerically. This can be done, for example, by the discretized Stieltjes procedure 
based on Fejdr quadrature (cf. [3, §2.2]). When a is not too large, this works 
quite well. For a = 1, for example, N-point Fej6r quadrature with N = 160 yields 
the first 40 coefficients (i.e., ~k and flk for k = 0, I, 2 . . . . .  39) accurate to 26 decimal 
places, regardless of the value of x. The procedure must work a little harder 
when a is large; to get the same accuracy when x = 0 and a = 2, 4, 8, 16, for 
example, requires N to be about 160, 200, 360 and 440, respectively. 

We note that replacing x by - x ,  with a held fixed, changes ~k to --~k and 
leaves flk the same. This follows readily from the invariance of the weight 
function (2.5) under the substitution t - - , - t ,  x ~ - x .  As a consequence, 
changing the sign of x results in a reflection of the nodes zc with respect to the 
origin, the weights )c being transferred unchanged. For th6 purpose of 
generating the coefficients ak, fig, and the quadrature rule (2.8), therefore, it 
suffices to consider x > 0. 

While the quadrature rule (2.9) has the distinct advantage of being easily 
generated, independently of the values of the parameters x and a, it has some 
drawbacks that make it less attractive in certain cases. For one thing, it is rather 
difficult to estimate the error, be it by real variable techniques or contour inte- 
gration in the complex plane, owing to the appearance of the weight function 
w in the remainder term R~. In addition, when a is large, the first few poles 
x +- in~a, x +- 2 i~ /a , . . .  of the integrand lie relatively close to the interval [ -  1, 1], 
causing convergence of the Gauss-Legendre quadrature rule to slow down. For 
these reasons, (2.9) cannot be recommended unless a is small or moderately 
large, or only modest accuracy is required. Some guidelines in this regard can 

be obtained from Example 3.2 below. 
The quadrature rule (2.8), on the other hand, must be generated afresh for 

each new Ixl and a. In return, however, one gets fast convergence (ify is smooth), 
irrespective of the magnitude of a. Furthermore, as will be shown in Section 4, 
the estimation of the error is greatly simplified. 

Both formulas, in conjunction with (2.6), have one weakness in common: 
They require the evaluation of the function g(t ;x)  in (2.7). If a node z~ happens 
to be very close to x, some cancellation error will result. This calls for special 
care in programming the function g. Another approach not subject to this 

inconvenience will be described in Section 5. 

3. Examples. 

We illustrate the relative merits of the formulae (2.8) and (2.9) in the case of 

the simple function f ( t )  = exp(t). 

EXAMPLE 3.1. I I (X)  = e ' c o t h ( t - x ) d t ,  - 1  < x < 1. 
1 
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This integral can be evaluated in closed form. By (2.5), (2.6) and (2.7), with 
f (x)  = e ~ and a = 1, one has indeed 

sinh(1 - x )  f 1 e t - e  ~ 
(3.1) Ix(x) = eXln sinh(1 +x) + -1 --t-x ( t -x)coth( t -x)dt .  

The integral on the right is 

~_ f_ eZ~t-x~+ 1 dt, e ~ (e t - ~ -  1)coth(t-x)dt = e ~ e'-~+ 1 
1 1 

which, on substituting u = exp( t -x) ,  yields an elementary integral. Evaluating it, 
and substituting the result in (3.1), gives 

(sinh 2 - s i n h  2x + --- ~ 2sinh(l - x ) ) 
(3.2) I,(x) = 2sinh 1 +eXln (smnz~w~' ~ + sinh 2x + 2sinh(1 

+ x ) J "  

Table 3.1 shows the relative errors incurred when the Gauss-Christoffel 
formula (2.8) is applied to the integral in (2.6) to compute Ii(x) for x = 0. 
(Numbers in parentheses denote decimal exponents.) 

Table 3.1. Relative errors in approximating 11(0) by (2.6), (2.8). 

n rel.error n rel.error 

1 5.808(- 2) 6 5.913(-14) 
2 7.515(- 4) 7 7.062(-17) 
3 4.573(- 6) 8 6.507(-20} 
4 1.605(- 8) 9 4.766(-23) 
5 3.673(- 11) 10 3.140(-26) 

Similar results have been obtained for x = +.2, +.4, +.6, +.8, +.9, +.99, 
+.999, ---.9999, +.99999: For fixed n, the relative error is almost constant 
for negative x, though slowly increasing with x, while for positive x it continues 
to increase slightly before decreasing to a- value, at x = .99999, somewhat smaller 
than at x = -.99999. It is seen, therefore, that convergence of (2.8) is indeed 
very fast, uniformly in x. 

The Gauss-Leger~dre formula (2.9) performs almost equally well when x = 0 
(the relative errors being consistently about one decimal order larger than those 
in Table 3.1), but considerably worse (though still satisfactorily) when x :p 0. 
The results for x = .2, shown in Table 3.2, are typical. 
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Table 3.2. Relative errors in approximating 11(:2) by (2.6), (2.9). 

n ret.error n rel.error 

1 1.723(- 1) 6 3.264(- 10) 
2 4.387(-3) 7 8.752(- 12) 
3 2.075(-5) 8 2,295(- 13) 
4 5.590(-7) 9 5.895(- 15) 
5 t.131{-8) 10 1.487(--16) 

/ EXAMPLE 3.2. Ia(0) = e'coth(at)dt, 
1 

a > 0 .  

It  does not  seem possible to evaluate this integral in closed form. We 

computed  it for a = .25, .5, I., 2., 4., 8., 16., using (2.8) in (2.6). When  a = t, 

we are in the case considered in Table 3.1 and thus have the convergence 

behavior  shown there. I t  was found that  the same convergence behavior  persists, 

almost  identically, for all other  values of a tried. Thus  again, (2.8) converges 

very fast, uniformly in a. 
The Gauss-Legendre  formula (2.9), on the other  hand, converges comparab ly  

fast only when a - <  1, and much slower when a becomes large, for reasons 

already explained. Some typical results are shown in Table 3.3. 

Table 3.3. Relative errors in approximating la(O) by (2.6), (2.9). 

n a = l  a = 2  a = 4  a = 8  a = 1 6  

1 1.49 
2 3.28 
3 2.97 
4 1.26 
5 3.51 
6 6.67 
7 9.19 
8 9.60 
9 7.85 

10 5.15 

- 1 ) 3.26( = 1 ) 5.80(- 1 ) 7.75(- 1 ) 8.86( - 1 ) 
- 3) 2.93(- 3) 4.57(-2) 9.73(-2) 1.17(-1) 
- 5) 7.54(- 4) 1.21(-2) 4.63(-2) 8.03(-2) 
- 7) 6.08(- 5) 2.77(-3) 1.80(-2) 3.24(-2) 
- 10) 5.22(- 6) 6.55(-4) 8.34(-3) 2.35(-2) 
- t3 )  4.46(- 7) 1.55(-4) 3.72(-3) 1.24(-2) 
-16) 3.80{- 8) 3.67(- 5) 1.73(-3) 8.86(-3) 
-19) 3.23(- 9) 8.68(-6) 7.96(-4) 5.32(-3) 
-22) 2.75(-10) 2.06(-6) 3.70(-4) 331(-3) 
-25) 2.34( - 11) 4.87(-7) 1.72(-4) 2.37( - 3) 

4. The remainder term. Rn c. 

Combin ing  (2.6) and (2.8), we can write 

! {  s i n h a ( 1 - x )  ~ c c t 
(4.1) (l ,f)(x) = f (x) lns inha( l+x)  + ~=1 2~g(T~)+RC(g) , --1 < x < I, 

where g is given by (2.7). The remainder R c admits  well-known representations, 
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either in real variable form, involving derivatives, or in terms of con tour  
integration in the complex plane. We briefly discuss bo th  these representations. 

4.1. The remainder for smooth real-valued functions. 

Assuming g ~ C 2 n [ -  1, 1], we have 

(4.2) RC(g) = 117t"l12w 
(2n)~-. g(Z.)(~), - 1  < ¢ < l, 

where n,(" ;wdt) is the monic nth degree or thogonal  polynomial  relative to the 

measure w(t)dt and II'llw the associated Lz-norm. Fo r  the latter we have 

(4.3) I1~112 = /~031""  3~, 

where {fl~} are the recursion coefficients in (2.11) for the polynomials  

{nk(" ; wdt)}, with flo = ~[ lw(t)dt. 
Now recall that  g(t) is the first divided difference [t, x ] f o f f ;  cf. (2.7). Assuming 

f ~ C2,+ 1 [ _  i, 1] and following [1, Sec. 2], we write g(t) = S~f'(x +s ( t - x ) )d s  
and use 2n differentiations and the mean-value theorem to obtain 

fo  1 g(2n)(¢) = s2"f (z" + 1)(x + s(~ -- x))ds - 2n +~ f ( z ,  + 1)(r/) ' 

with ~/between x and 4. Therefore,  

(4.4) RC(g) = ycf(z,+l)(q) ,  - 1  < ~/ < 1, where 

(4.5) 7c _ f lo f l l"" f l ,  
( 2 n + l ) !  

The  error  constant  in (4.5) is easily computed,  once the recursion coefficients 
flo, fll . . . . .  fin have been obtained.  These (except for fin) are required anyhow to 
compute  the Gauss-Christoffet  formula (2.8). For  a = 1 and x = 0, a few of  these 
constants  are shown in Table  4.1. 

The  relative errors  in Table  3.1 are 

Table 4.1. Error constants yc in the case a = 1, x = 0. 

1 1.323(- 1) 6 1.368(- 13) 15 4.040(- 43) 
2 1.715(- 3) 7 1.637(-16) 20 9.735(- 62) 
3 1.049(- 5) 8 1.510(-19) 25 2.055(- 81) 
4 3.697(- 8) 9 1.107(-22) 30 6.143(- t02) 
5 8.482( - 1 t) t0 6.608( - 26) 35 3.584(- 123) 
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?,Ce'~/(2 sinh 1), - 1 < q < I, and are thus within a factor O, .1565 < O < 1.157, 
of 7 c. Very similar values of  ? c are obta ined  for other  values of  x, even very 

close to x = 1. When  x = 0 and a increases, the values of  7 c g row slowly, but  
are still within approx ima te ly  one order  of  magni tude  of  those in Table  4.1 
when a = 16. Again,  7 c is a lmost  constant ,  as a function of x, for fixed a and n. 

4.2. The remainder for holomorphic functions. 

Assuming  f ho lomorph ic  in lzl _< r, r > 1, we can express the remainder  in (4. t ) 
extended over  the circle C r =  ~z:tzt = rl (cf., e.g.. as a con tour  integral 

[2, Eq. (3.11)]), 

1 f c  K"(z;wdt) f (z )dz"  where (4.6) RC(g) = ~ __, z - x  

(4.7) K,(z ;wdt )  - O"(z) f _  n,(t) n,(z) '  O,(z) = 1 z - t - -  w(t)dt, 

n,( ')  = n,( ' ;wdt)  being the nth degree o r thogona l  po lynomia l  relative to the 

weight function w. There  follows 

r 
_ max  IK,(z; wdt)], max If(z)j. 

(4.8) IRC(g)l < r - I x ]  iz I =r  Izl =r  

It  can easily be verified f rom (4,7) that  

(4.9) tK,(z ; w(t ; a, - x ) )dt[ = [K,( - 2; w(t ; a, x ) ldt[, 

so that  changing the sign of x cor responds  to a reflection in the complex plane 
with respect to the imaginary  axis, as far as the magni tude  of K ,  is concerned.  

It  is fu r thermore  known  that  [4, Thm.  3.1] 

(4.10) 
= ~K. (r ;wdt )  or 

max  ]K.(z; wdt)l [ ] K . ( -  r ;  wdt)], 
Izl = r 

in the case tha t  w ( t ) / w ( - t )  is nondecreas ing or nonincreasing on [ - 1 ,  1], 
respectively. We now show, in par t  by  numerical  computa t ion ,  tha t  /f a < a*, 
where a* = 1.33803698.. .  is the unique positive root of  

4a 2 cosh 2a 
(4.1t) (s inh2a)  2 = 1, 

then the first relation in (4.10) holds ~" x < 0 and the second if  x > O. 
In view of (4.9) it suffices to consider x > 0. To  check the required mono-  
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tonicity proper ty ,  we examine the logar i thmic derivat ive of  w(t ) /w(- t ) ,  

d 1 1 

This is clearly an even function of t, so that  it suffices to consider t _> 0. 
Assume first 0 _. t < x. Since s inhu > u for u > 0, the right side of  (4.12) is 
less than  

t 2 _ x  2 + 2 a  -2a( x) + 2 a ( x - t )  = t ~ - x  2 + x E - t  ~ - 0, 

so that  w( t ) /w( - t )  is nonincreasing.  T o  show the same for 0 < x < t < 1, we 

note  by an e lementary  compu ta t i on  that  the logar i thmic derivat ive (4.12) is 
negative if 

(sinh u/u) cosh v 
(4.13) > 1, 0 < u < v, 

[sinh(u + v)/(u + v ) ] [ s i n h ( v -  u)/(v - u)] 

where u = 2ax, v = 2at. Numer ica l  compu ta t ions  reveal tha t  the funct ion on  the 
left of  (4.13), as u varies between 0 and v, '~i ther  decreases monotonical ly ,  or  

changes f rom an increasing to a decreasing function, the limit as u T v being 
obviously  I. The  inequali ty (4.13) therefore holds, if it holds for u = 0, i.e., if 

v2cosh v 
(4.14) sinh2-- ~ -  > l, v = 2at. 

Since t < 1, we want  (4.14) to hold for v = 2a, which is equivalent  to a < a*, 
where a* is the posit ive roo t  of  (4.11). Thus,  under  this assumpt ion ,  w( t ) /w( - t )  
is nonincreas ing on [ -  1, 1], hence the second relat ion in (4.10) holds  if x > 0. 

By (4.9), the first relat ion holds if x < 0. I f  x = 0, either formula  in (4.10) holds, 
since w(t) is an even funct ion in this case. 

In Table  4.2 we display K,(r; wdt) in the case a = 1, x = 0, for selected values 

of r. The  numbers  were ob ta ined  by backward  recursion, as described in 
[4, Sec. 4]. 

Table  4.2. K,(r ;wdt ) for  w(t) = t co th  t, n = 1(1)10. 
,t 

n r = 1.5 r = 2.0 r = 3.0 r = 5.0 r = 10.0 r = 20.0 

1 3.323(-1) 1.181(- 1) 3.161(- 2) 6.514(- 3) 7.990(- 4) 9.941(- 5) 
2 5.242(-2) 9.026(- 3) 9.768(- 4) 6.924(- 5) 2.084(- 6) 6.452(- 8) 
3 7.967(-3) 6,697(- 4) 2.961(- 5) 7.266(- 7) 5.381(- 9) 4.149(-11) 
4 1.188(-3) 4.894(- 5) 8.853(-- 7) 7.527(- 9) 1.372(--11) 2.635(-14) 
5 1.757(--4) 3.554(- 6) 2.633(- 8) 7.757(-11) 3.481(-14) 1.665(-17) 
6 2,588(- 5) 2.571(- 7) 7.806(- I0) 7.970(- 13) 8.805(- 17) t.049( - 20) 
7 3.801(-6) 1.857(- 8) 2.310(-11) 8.175(-15) 2.223(-19) 6.595(-24) 
8 5.575(- 7) 1.339(- 9) 6.827(- 13) 8.375(- 17) 5.607(-22) 4.143(-27) 
9 8.167(-8) 9.647(--11) 2.016(-14) 8.573(-19) 1.413(-24) 2.600(-30) 

10 1.195(-8) 6.946(-12) 5.951(-16) 8.770(-21) 3.559(-27) 1.631(-33) 
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We note  that  monotonic i ty  of w(t)/w(-t) is only a sufficient condit ion for 
one of the formulae (4.10) to hold, and is by no means necessary. Limited 
numerical  evidence (for a = 2, 4, 8, 16; x = .2, .4, .6, .8; r = 1.5, 2, 3, 5; and 
n = 1(1)I0) indeed suggests that (4.10) always holds for x < 0 and x > 0, 
respectively, regardless of  the value of a. 

5. Procedures  based on interpolatory quadratures. 

The inconvenience of having to compute  the divided difference (2.7) can be 
circumvented if an n-point in terpola tory  quadra ture  rule is employed based on 

c of (2.8). While this formula has only polynomial  degree of exactness the nodes ~ 
n, not  2n as (2.8), cf. (4.4), it can be implemented in a stable manner  (see, e.g., 
[2, §3.2.3] or [1, Sec. 3]). 

With pC_ 1(" ) c ~. = p~_ ~(.[ ,. ) denot ing the polynomial  of degree < n -  I inter- 
polating f at the nodes z c, v = 1, 2 . . . . .  n, we have 

(5.1) (I.f)(x) = (l.p c_ ~)(x)+ R~(f), 

where the first term on the right is the desired approximat ion,  and the second 
the remainder.  For  the latter, assuming f ~ C z"÷ 1[-_ 1, 1], we have the following 

representat ion (1-1, Eq. (2.9)]), 

(5.2) R~(f) = a 7~(x)f(n)(th)+Tcf(2n+l)(tl2) ' - 1  < r/1,t/2 < 1, where 

1 ~ rr.(t;wdt)w(t)dt, 
(5.3) ~,~(x) = ~ ~ t - x  

and ?c is as defined in (4.5). Numerical  values of ~c have been given in 
Table 4.1 ; selected numerical  values of  ~,~(x) in the case a = 1, x = .2 are shown 

in Table 5.1. Similar values of fT~] 

Table 5.1. Selected values of ~(x)for a = 1, x = .2. 

1 2.112(O) 6 1.001(-4) 15 1.120(-16) 
2 2.924( - 1 ) 7 - 2.440( - 7) 20 1.598(- 24) 
3 - 7 . 1 8 6 ( - 2 )  8 - 4 . 5 5 1 ( - 7 )  25 4 .00t( -33)  
4 - 9 . 8 4 5 ( - 3 )  9 - 9 . 2 6 3 ( - 9 )  30 -1 .972( -42)  
5 5.179(-4) 10 1.083(-9) 35 -8 .549( -51)  

prevail for o ther  values of x, even very close to  x = 1, except when x = 0 and 
n is even, in which case y~(0)= 0 and (5.1) indeed reduces to (2.8). Numbers  
of roughly the same order  of  magni tude were observed for other  values of a 

as large as a =- 16. No te  also that  l y ~ ( - x ) l  = ly~(x)l. 
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To compute  the approximat ion in (5.1), one expresses pC_l( f ; .  ) in terms of 
the or thogonal  polynomials  nk(" ) = nk(" ;wdt), 

n--1 
(5.4) c . p , - l ( f , t )  = ~ a%~(t), where 

k=O 

l f_ pC_l( f  ;t)nk(t)w(t)dt, k = O, 1 . . . .  , n - l .  (5.5) aC -IIn~ll~ 1 

Applying the Gauss-Christoffel formula (2.8) to the integral on the right yields 
(as is well known)  

1 ~ ~C C " C 
(5.6) aC - Ilrckll~ ~=1 ,~,,rtk(r~ ).] (~v), k -- 0, 1 . . . . .  n -  t. 

Substi tuting (5.4) in (2.6) then gives 

1 "---~o aC {z~k(x)ln s i n h a ( 1 - x )  + flTr~(t)-rc~(X)w(t)dt}. 
(IapC-1)(x) = a k sinh a( l  + x )  -1 t - x  

Here, the integral on the right is the "polynomial  of the 
associated with wdt, 

ok(x) = Ok(X;wdt) = 11 nk(O--rtk(X) w~t~ dt~ 
d- t - x  

second kind" 

It is well known that {Ok(X)} satisfies the same recurrence relation (2.11) as 
{Zrk(X) }, i.e., 

(5.7) Yk+l = ( X - - ~ k ) Y k - - f l k Y k - 1 ,  ~¢ = 0, 1,2 . . . . .  

where y_ 1 = 0, Y0 = 1 for {Zk(X)}, and y_ 1 = - 1, Y0 = 0 for {ak(X)}. (As before, 
we assume flo = ~[ 1 w(t)dt.) Therefore, 

n--I 
(5.8) (IapC_l)(x) = a-~ ~ c ak Zk(X ), 

k=O 

where {zk(x)} is the solution of (5.7) with 

(5.9) r_ l(x) = - 1, %(x) = In sinh a(1 - x )  
sinh a(1 + x ) '  

and the coefficients a c are given by (5.6). The sum (5.8) is conveniently evaluated 
by Clenshaw's algorithm. 

A similar procedure can be developed using interpolation at the nodes ~:~ 
and employing the Legendre polynomials lrkL(") = 7rk(" ; dr) in place of the ortho- 
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gonal polynomials nk(';wdt). Unfortunately, this procedure requires the 
"modified" moments 

(5.10) mk = t 1 ~I£(t)w(t)dt, k = O, 1,2 . . . . .  
d-  1" 

which are not easily computed, short of again using the quadrature rule (2.8). 
Specifically, with L p,_ 1 ( f  ;- ) denoting the polynomial of degree < n - 1 inter- 

L polating f at the nodes z~, v = 1, 2 . . . .  , n, one now has 

n-1  

(5.11) (lapL,_l)(x) = ~ afrO(x), 
k=O 

where a~ are as in (5.6), with superscripts "C" replaced by "E' and nk replaced 
by n~, and where {z~(x)} is the solution of the inhomogeneous difference 
equation 

(5.12) zk + 1 = (x - 0c~)z k - / ~ z  k_ 1 + rnk, k = 0, 1, 2 . . . . .  

corresponding to initial values 

(5.13) ~ l ( x )  = 0, ZoL(X) = In 
sinh a(1 - x )  

sinh a(1 + x ) "  

L = 0, /~ are now those in the recurrence relation (2.11) for The coefficients ~k 
the (monic) Legendre polynomials (wi th /~  = 2). 

6. Infinite interval. 

In applications one usually encounters the integral (1.1) extended over 
the whole real line, i.e., 

(l[-~, oo]~)(~) = ~oo cP(~)coth ~2 ~ dT 

(6.1) 

f _ r O  ~ - ~  dz. = lim (r)coth 2 
T ~ a o  

For this integral to be meaningful, one must assume that 

(6.2) q~(z) ~ q~o as z ~ +- oo 

for some constant q~o~. Let [~,/~] be an interval centered at ~, 



(6.3) 

For r > m a x ( - ~ ,  fl) write 

(6.4) = 

so that 

THE NUMERICAL EVALUATION OF SINGULAR INTEGRALS. . .  

¢ - - ~  = / ~ - - ~  = ( / ~ - - a ) / 2 .  

(l[_~,.]g0)(~) = ~[  q~(z)coth ~ - ~ d z +  lim (J#p)(¢) .  
T "-* o~, 

We approximate the limit on the right (assumed to exist) by 

and write 

(6.5) 

where 

(6.6) 

sinh ½ ( T -  4) 
lim (JTCp~)(4)= lim 2g}®ln = -2tpo~(, 

r-*~ r - ~  s inh½(T+~) 

(I[-  oo, ~]~P)(~) = ~p(z)coth - - f -  dr - 2 5 ~  + (Rg~)(~), 

401 

(R~)(~) = lim {(Jr~)(~)-(JrgO~)(~)} 
T ~  

denotes the error term. The integral on the right of (6.5), after transformation 
to standard form, 

~ q ~ ( z ) c o t h ~ - d T = ~ j f ( t ) c o t h ( a t ) d t ,  

a = ¼(fl-a), f(*t) = ½~-a) , (4+½(f l -c t ) t ) ,  

can be computed by the methods of Sections 2 and 5. 
In order to estimate the error (R~0)(~) in (6.5), we assume that ~p approaches 

g~  exponentially fast and that [~, fl] has been chosen such that 

(6.7) tq~(z)-~p~l - 3 e x p ( - j z - ~ l ) ,  6 > 0, 

for all z < ~ and all z > ft. Then, using (6.4), there follows 

[(Jr~)(4) -- (Jrq~o)(4)[ = I(Jr(tP - tPoo ))(~)[ 

< 26{ln 1 - e - ( r - ¢ }  1 - e  -(r+~> _½e_(a_¢)_½e_(¢_~) } 
- 1 - e  -(a-¢~ + I n  l _ e _ ~ _ ~ )  
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hence, as T ~ oo, by virtue of (6.3) and (6.6), 

(6.8) I(R#0(~)l -< 26{21n[ (1 -e -~ ' -~ ) /2 ) ]  -1 - e  -~p-~/2} < 
26 

The error, therefore, can be made arbitrarily small by choosing 6 small enough 

and/or  [ct, fl] large enough.  
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