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a b s t r a c t

A weighted quadrature rule of interpolatory type is represented as∫ b

a
f (x)w(x) dx =

n−
k=0

wkf (xk) + Rn+1[f ],

where w(x) is a weight function, {xk}nk=0 are integration nodes, {wk}
n
k=0 are the corres-

ponding weight coefficients, and Rn+1[f ] denotes the error term. During the past decades,
various kinds of formulae of the above type have been developed. In this paper, we
introduce a type of interpolatory quadrature, whose nodes are geometrically distributed
as xk = aqk, k = 0, 1, . . . , n, and obtain the explicit expressions of the coefficients {wk}

n
k=0

using the q-binomial theorem. We give an error analysis for the introduced formula and
finally we illustrate its application with a few numerical examples.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Let us start our discussion with a general (n + 1)-point weighted quadrature formula of the form∫ b

a
f (x)w(x)dx =

n−
k=0

wkf (xk) + Rn+1[f ], (1.1)

where w(x) is a positive weight function on [a, b], {xk}nk=0 and {wk}
n
k=0 are nodes and weight coefficients, respectively, and

Rn+1[f ] is the corresponding error. LetPd be the set of algebraic polynomials of degree atmost d. The quadrature formula (1.1)
has degree of exactness d if for every p∈ Pd wehave Rn+1(p) = 0. In addition, if Rn+1(p) ≠ 0 for some p∈ Pd+1, formula (1.1)
has precise degree of exactness d.

The convergence order of quadrature formula (1.1) depends on the smoothness of the function f , as well as on its degree
of exactness. It is well known that for given n + 1 mutually different nodes {xk}nk=0 we can always achieve a degree of
exactness d = n by interpolating at these nodes and integrating the interpolation polynomial instead of f . Namely, taking
the node polynomial

Ψn+1(x) =

n∏
k=0

(x − xk), (1.2)
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by integrating the Lagrange interpolation formula

f (x) =

n−
k=0

ℓk(x)f (xk) + rn+1(f ; x),

where

ℓk(x) =
Ψn+1(x)

Ψ ′

n+1(xk)(x − xk)
, k = 0, 1, . . . , n,

we obtain (1.1), with

wk =
1

Ψ ′

n+1(xk)

∫ b

a

Ψn+1(x)w(x)
x − xk

dx, k = 0, 1, . . . , n, (1.3)

and Rn+1(f ) =
 b
a rn+1(f ; x)w(x)dx. Notice that for each f ∈ Pn, we have rn+1(f ; x) = 0, and therefore Rn+1(f ) = 0.

Quadrature formulae obtained in this way are known as interpolatory. It is well known that any interpolatory quadrature
(1.1), with nonnegative coefficients (1.3) is convergent for all continuous functions on [a, b].

Usually, the simplest interpolatory quadrature formula (1.1), with given nodes xk ∈ [a, b], is called theweighted Newton–
Cotes formula. The classical Newton–Cotes formula is for w(x) = 1 and the equidistant nodes xk = a + kh, k = 0, 1, . . . , n,
where h = (b − a)/n is the step size. On the other side, the interpolatory formulae of the maximal degree of exactness are
known as Gaussian quadrature formulae. Their construction is closely connected with orthogonal polynomials. For details
on quadrature formulae see, for example, [1, pp. 152–185] and [2, pp. 319–361]. In addition, we mention that several other
types of standard and nonstandard quadratures have been recently developed (cf. [3–6]).

In this paperwe consider a kind of interpolatory quadratureswith geometric distribution of nodes. The paper is organized
as follows. In Section 2, we consider the geometric nodes {xk = aqk}nk=0 in the (n + 1)-point quadrature formula (1.1) and
by a new computational technique we explicitly find the general form for the coefficients {wk}

n
k=0, together with the error

term Rn+1[f ]. In Section 3, we give an error analysis for such quadrature formulae and obtain an explicit form of the error
bounds corresponding to the weight function w(x) = 1. Finally, in the last section, we examine the weighted quadrature
rule with geometric nodes in solving some definite integrals.

2. Weighted quadrature rules with geometric nodes

To establish weighted quadrature rules with geometric nodes, instead of the Lagrange interpolation we consider the
Newton interpolation formula [1, pp. 96–1001] at the nodes 0 < a = x0 < x1 < · · · < xn−1 < xn = b as follows

f (x) = b0 + b1(x − x0) + b2(x − x0)(x − x1) + · · · + bn(x − x0)(x − x1) · · · (x − xn−1) + rn+1(f ; x), (2.1)

where b0 = f [x0], b1 = f [x0, x1], b2 = f [x0, x1, x2], . . . , bn = f [x0, x1, . . . , xn] respectively denote divided differences, and
rn+1(f ; x) is the corresponding error

rn+1(f ; x) = f [x0, x1, . . . , xn, x]Ψn+1(x),

where the node polynomialΨn+1(x) is defined in (1.2). Furthermore, if f ∈ Cn+1
[a, b] this error can be expressed in the form

rn+1(f ; x) =
f (n+1)(ξ(x))

(n + 1)!
Ψn+1(x), ξ(x) ∈ (a, b).

Precisely, the point ξ(x) is strictly between the smallest and largest of the points x0, x1, . . . , xn, x.
Using Newton interpolation formula, we can directly obtain the coefficients {wi}

n
i=0 in the weighted quadrature rules

with the geometric nodes. For this purpose, we first assume in (2.1) that {xi}ni=0 = {aqi}ni=0 for q =
n
√
b/a. According to the

Cauchy q-binomial theorem [7] we have

(x; q)n =

n∏
i=1

(1 − xqi−1) =

n−
k=0

(−1)k
n
k


q
q


k
2


xk, (2.2)

wheren
k


q
=

(q; q)n
(q; q)k(q; q)n−k

,


k
2


=

k(k − 1)
2

, (q; q)m =

m∏
i=1

(1 − qi).

If x = t/a and q → 1/q, then (2.2) reduces to
t
a
;
1
q


n

=

n∏
i=1


1 −

t
aqi−1


=

n−
k=0

(−1)k
n
k


1/q

q−


k
2


a−ktk,
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which is equivalent to
n∏

i=1


t − aqi−1

= (−a)nq
n(n−1)

2

n−
k=0

(−1)k
n
k


1/q

q−
k(k−1)

2 a−ktk. (2.3)

On the other hand, sincen
k


1/q

= q−k(n−k)
n
k


q
,

the polynomials (2.3) are eventually transformed to

Gn(x) = Gn(x; a, q) =

n∏
i=1


x − aqi−1

=

n−
k=0

(−a)n−k
n
k


q
q

n−k
2


xk,

where n = 1, 2, . . . , and G0(x) = 1.
By using (2.3) one can easily find out that

Am(a, q) =

∫ b

a
Gm(x; a, q)w(x)dx

=

m−
k=0

(−a)m−k
m
k


q
q

m−k
2

 ∫ b

a
xkw(x)dx


, (2.4)

where
 b
a xkw(x)dx = µk denotes the moment of order kwith respect to the weight function w(x). Hence, (2.4) becomes

Am(a, q) =

m−
k=0

(−a)m−k
m
k


q
q

m−k
2


µk.

Now, let us replace {xi} = {aqi}ni=0 into Newton interpolation formula (2.1) to get

f (x) = b0 + b1G1(x) + · · · + bnGn(x) + f [x0, x1, . . . , xn, x]Gn+1(x), (2.5)

where bi = f [a, aq, . . . , aqi], i = 0, 1, . . . , n. Multiplying by w(x) and then integrating from both sides of (2.5) on [a, b],
we obtain∫ b

a
w(x)f (x)dx =

n−
i=0

Ai(a, q)f [a, aq, . . . , aqi] +

∫ b

a
f [x0, x1, . . . , xn, x]Gn+1(x)w(x)dx. (2.6)

This formula can still be simplified if one uses the general identity

f [x0, x1, . . . , xn] =

n−
k=0

f (xk)
Ψ ′

n+1(xk)
,

in which Ψ ′

n+1(xk) is the derivative of the node polynomial Ψn+1(x) at x = xk. Therefore, summation on the right hand side
of (2.6) is simplified as

n−
i=0

Ai(a, q)f [a, aq, . . . , aqi] =

n−
i=0

Ai(a, q)


i+1−
k=1

f (aqk−1)

G′

i+1(aqk−1)



=

n−
i=0

f (aqi)


n−

k=i

Ak(a, q)
G′

k+1(aqi)


.

Consequently, to compute the coefficients of the quadrature rule∫ b

a
w(x)f (x)dx =

n−
i=0

wi(a, q)f (aqi) + Rn+1[f ], (2.7)

where

Rn+1[f ] =

∫ b

a
f [x0, x1, . . . , xn, x]Gn+1(x)w(x)dx,

we finally obtain

wi(a, q) =

n−
k=i

Ak(a, q)
G′

k+1(aqi)
, i = 0, 1, . . . , n,
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where

Am(a, q) =

m−
k=0

(−a)m−k
m
k


q
q

m−k
2


µk


µk =

∫ b

a
xkw(x)dx


(2.8)

and

Gm(x; a, q) =

m−
k=0

(−a)m−k
m
k


q
q

m−k
2


xk. (2.9)

In this way we have just proved the following statement:

Theorem 2.1. The coefficients of the interpolatory quadrature formula (2.7) with geometric distributed nodes {xk} = {aqk}nk=0
for q =

n
√
b/a can be expressed in the form

wi(a, q) =

n−
k=i

Ak(a, q)
G′

k+1(aqi)
, (2.10)

where Ak(a, q) and Gm(x; a, q) are determined by (2.8) and (2.9), respectively.
For functions f ∈ Cn+1

[a, b], the remainder Rn+1[f ] has the form

Rn+1[f ] =
1

(n + 1)!

∫ b

a
f (n+1)(ξ(x))Gn+1(x; a, q)w(x)dx,

where ξ(x) ∈ (a, b). Moreover, if |f (n+1)(x)| ≤ Mn+1 for each x ∈ (a, b), then

|Rn+1[f ]| ≤
Mn+1

(n + 1)!

∫ b

a
|Gn+1(x; a, q)|w(x)dx.

Using the following program, written by Maple 12, one can easily generate the coefficients wi(a, q) for any given i and a, b.
However, note that in this program we took N = 5, w(x) = 1 and [a, b] = [1, 2], which can be changed by the user easily.

restart:
with(combinat):
Digits:= 10:
N:= 5:
a:= 1.:
b:= 2.:
w:= 1:
q:= (b/a)**(1/N):
for i from 0 to N do
X[i]:= a*q**(i);
od:
for i from 0 to N do
G[i+1]:= product((x-X[k]),k=0..i);
od:
for i from 0 to N do
G[i+1]:= diff(G[i+1],x);
od:
for i from 0 to N do
G[i+1]:= unapply(G[i+1],x);
od:
for i from 0 to N do
A[i]:= add((-a)**(i-k)*q**(numbcomb(i-k,2))*((product((1-q**j),j=1..i))/
((product((1-q**j),j=1..k))*(product((1-q**j),j=1..i-k))))*(int(w*x**k,x=a..b)),
k=0..i);
od:
for i from 0 to N do
W[i]:= add(A[k]/(G[k+1](X[i])),k=i..N);
od;
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Remark 2.2. The coefficients {wi(a, q)}ni=0 given by (2.10) can be also obtained from the following systemof linear equations∫ b

a
f (x)w(x)dx =

n−
i=0

wi(a, q)f (aqi), (2.11)

for f (x) = xj, j = 0, 1, . . . , n. Thus, replacing f (x) = xj in (2.11) we obtain
n−

i=0

wi(a, q)(aqi)j =

n−
i=0

wix
j
i =

∫ b

a
xjw(x dx = µj), j = 0, 1, . . . , n,

which is equivalent to the following Vandermonde matrix system of equations
1 1 1 · · · 1
x0 x1 x2 · · · xn
x20 x21 x22 · · · x2n
...

...
...

...
...

xn0 xn1 xn2 · · · xnn




w0
w1
w2
...

wn

 =


µ0
µ1
µ2
...

µn

 .

The system has the unique solution because the Vandermonde matrix for the mutually different nodes xk = aqk, k = 0,
1, . . . , n, where q =

n
√
b/a > 0, is non-singular. However, such a matrix is ill-conditioned because its condition number

increases significantly with n, and therefore this method for determining coefficients {wi(a, q)}ni=0 is not applicable for n
sufficiently large.

3. Error analysis

By referring to the shape of quadrature (2.7) one can find an error bound for it in the class of functions from Cn+1
[a, b].

First, according to Theorem 2.1, we have

|Rn+1[f ]| ≤
1

(n + 1)!
max
x∈[a,b]

|f n+1(x)|
∫ b

a
|Gn+1(x; a, q)|w(x)dx. (3.1)

But, since Gn+1(x) is decomposable, the integral of the right hand side of (3.1), i.e.,

Fn(q; a, w) =

∫ b

a
|Gn+1(x)|w(x)dx,

can directly be computed. For this purpose, two odd and even cases should be considered for n.
If in the first case n is odd (say n = 2m + 1) then the mentioned integral is computed as

F2m+1(q; a, w) =

∫ b

a
|(x − a)(x − aq) · · · (x − aq2m+1)|w(x)dx

= −

∫ aq

a
G2m+2(x)w(x)dx +

∫ aq2

aq
G2m+2(x)w(x)dx − · · · −

∫ aq2m+1

aq2m
G2m+2(x)w(x)dx

=

2m−
k=0

(−1)k+1
∫ aqk+1

aqk
G2m+2(x)w(x)dx

=

2m−
k=0

(−1)k+1
∫ aqk+1

aqk


2m+2−
j=0

(−a)2m+2−j
[
2m + 2

j

]
q
q

2m+2−j

2


xj


w(x)dx

=

2m−
k=0

(−1)k+1


2m+2−
j=0

(−a)2m+2−j
[
2m + 2

j

]
q
q

2m+2−j

2

 ∫ aqk+1

aqk
xjw(x)dx


.

Similarly for n = 2m we have

F2m(q; a, w) =

∫ b

a
|(x − a)(x − aq) · · · (x − aq2m)|w(x)dx

=

∫ aq

a
G2m+1(x)w(x)dx −

∫ aq2

aq
G2m+1(x)w(x)dx + · · · −

∫ aq2m

aq2m−1
G2m+1(x)w(x)dx

=

2m−1−
k=0

(−1)k
∫ aqk+1

aqk
G2m+1(x)w(x)dx
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=

2m−1−
k=0

(−1)k
∫ aqk+1

aqk


2m+1−
j=0

(−a)2m+1−j
[
2m + 1

j

]
q
q

2m+1−j

2


xj


w(x)dx

=

2m−1−
k=0

(−1)k


2m+1−
j=0

(−a)2m+1−j
[
2m + 1

j

]
q
q

2m+1−j

2

 ∫ aqk+1

aqk
xjw(x)dx


.

Combining these two latter equalities, we finally obtain

Fn(q; a, w) =

∫ b

a
|Gn+1(x)|w(x)dx

=

n−1−
k=0

(−1)n+k


n+1−
j=0

(−a)n+1−j
[
n + 1

j

]
q
q

n+1−j

2

 ∫ aqk+1

aqk
xjw(x)dx



= (−1)n
n+1−
j=0

(−a)n+1−j
[
n + 1

j

]
q
q

n+1−j

2

 n−1−
k=0

(−1)k
∫ aqk+1

aqk
xjw(x)dx


.

In a special case for w(x) = 1 we get the following explicit formula

Fn(q; a, 1) = an+2
n+1−
j=0

(−1)j+1
[
n + 1

j

]
q
q

n+1−j

2


(−1)n+1q(j+1)n

+ 1
j + 1

·
qj+1

− 1
qj+1 + 1

,

so that

|Rn+1[f ]| =


∫ b

a
f (x)dx −

n−
k=0

wk(a, q)f (aqk)

 ≤
Mn+1

(n + 1)!
Fn(q; a, 1),

where |f (n+1)(x)| ≤ Mn+1.

4. Applications

In order to illustrate the application of our quadrature formula with geometric distribution of nodes, we consider two
examples.

Example 4.1. In this examplewe consider application of the (non-weighted) quadrature formula (2.7) to
 b
a f (x)dx for a few

standard functions. We take nodes as xk = aqk, k = 0, 1, . . . , n, with q =
n
√
b/a and n = 5, 10, 15, and 20. The absolute

errors of quadrature approximations are displayed in Table 4.1.
Evidently, the fastest convergence is for analytic (holomorphic) functions (exponential and trigonometric functions), and

the slowest convergence is for the function 1/x, because of the influence of its singularity at the origin.

Example 4.2. We apply now our quadrature (2.7) to numerical calculation of the integral

I =

∫ 3

1
e−x log x dx = 0.15163886817562858131 . . . .

Since the both functions e−x and log x are nonnegative on the interval [1, 3], we illustrate three possible applications:
Case 1. f (x) = e−x log x, w(x) = 1;
Case 2. f (x) = log x, w(x) = e−x;
Case 3. f (x) = e−x, w(x) = log x.

Table 4.1
Absolute errors of geometric (non-weighted) quadrature rules for n = 5(5)20.

(a, b) f (x) n = 5 n = 10 n = 15 n = 20

(1, 2)
√
x 8.62 × 10−7 2.20 × 10−10 1.62 × 10−13 1.68 × 10−16

(1, 2) 3
√
x 9.28 × 10−7 2.66 × 10−10 2.10 × 10−13 2.28 × 10−16

(3, 5) ex 2.98 × 10−3 5.04 × 10−9 1.87 × 10−15 1.75 × 10−22

(π/3, π) sin x 1.22 × 10−4 2.99 × 10−10 5.41 × 10−16 5.14 × 10−23

(π/3, π) cos x 6.83 × 10−5 6.32 × 10−10 2.39 × 10−16 1.22 × 10−22

(1, 3) log x 2.97 × 10−4 2.06 × 10−6 3.14 × 10−8 6.58 × 10−10

(1, 3) 1/x 1.02 × 10−3 1.32 × 10−5 2.97 × 10−7 8.21 × 10−9
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Table 4.2
Absolute errors en of quadrature sums In, n = 5(5)20, in three different cases.

(a, b) f (x) w(x) n = 5 n = 10 n = 15 n = 20

(1, 3) e−x log x 1 4.69 × 10−4 2.50 × 10−6 3.55 × 10−8 7.19 × 10−10

(1, 3) log x e−x 2.13 × 10−5 1.08 × 10−7 1.67 × 10−8 3.44 × 10−11

(1, 3) e−x log x 1.50 × 10−5 6.40 × 10−11 4.47 × 10−17 8.07 × 10−24

(1, 5) e−x log x 2.38 × 10−3 5.42 × 10−7 1.96 × 10−11 1.81 × 10−16

Applying the corresponding quadrature for n = 5, 10, 15, and 20, we obtain results In with absolute errors en = |I − In|,
which are presented in Table 4.2.

As we can see the best results are obtained in the third case. It is quite clear because in that case we have an integration
of the exponential function, which is an entire function (holomorphic over the whole complex plane). Even taking double
interval of integration, i.e.,

I ′ =

∫ 5

1
e−x log x dx = 0.20739133145194522248 . . . ,

the convergence is fast (last row in Table 4.2). In other cases the integrand has a logarithmic behavior and therefore the
convergence is significantly slower.
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