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Abstract. In this survey paper we consider some important classes of rational
functions and generalized polynomial systems, so-called Müntz systems, which are
an important extension of the orthogonal polynomial systems. Rational functions
are orthogonal with respect to certain inner products defined on some lines or
on the unit circle in the complex plane. In particular, we give a short account
of Malmquist-Takenaka systems which are orthogonal on the unit circle. In the
second part of the paper we consider several Müntz systems, including some classes
of algebraic-logarithmic type. Defining an unusual inner product of the generalized
polynomials we introduce the corresponding class of orthogonal Müntz polynomials
and connect them with a Malmquist-Takenaka system. Finally, we give a short
account on numerical evaluation of orthogonal Müntz polynomials and point out
an application of such orthogonal polynomials in numerical integration.

1 Introduction

Polynomial systems are very attractive in many applications in mathematics,
physics, and other computational and applied sciences (electronics and com-
munication, signal processing, control system theory, process identification,
etc.). In particular, classical orthogonal polynomials (cf. [25,30,26]) play very
important role in many problems in approximation theory and numerical
analysis, as well as in applied sciences. Such polynomials are very useful for
design and construction of electrical network, transfer functions, orthogonal
filters, adaptive control, etc. These applications are mainly based on the least
squares polynomial approximations. The orthogonality of these polynomials
enable the construction of optimal network and optimal filters. Moreover,
the Laplace transforms of the classical polynomials (or their modifications)
are rational functions, which can be easy factorized. This property is very
convenient in constructing simple procedures for several applications. For in-
stance, for designing orthogonal filters and optimal transfer functions may
be used some modifications of Jacobi polynomials, which are orthogonal on
the interval (−1, 1). By changing variables x = 2 e−at−1 (a > 0), one can
find exponential polynomials orthogonal on the (0,+∞). Then, applying the
Laplace transform, one can obtain orthogonal rational functions. The follow-
ing approach shows it (see [12]).
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Starting from the orthogonality relation for Jacobi polynomials P
(α,β)
n (x)

with α, β > −1, we obtain, after changing variables x+ 1 = 2 e−2t,∫ +∞

0

ϕn(t)ϕm(t) dt = δnm,

where

ϕn(t) =
2(α+β+2)/2

‖P (α,β)
n ‖

e−(β+1)t(1− e−2t)α/2P (α,β)
n (2 e−2t−1).

Then, the Laplace transform of ϕn can be expressed in the form

Wn(s) = L[ϕn(t)] =

∫ +∞

0

e−st ϕn(t) dt

=
2−(s+1)/2

‖P (α,β)
n ‖

∫ 1

−1

(1− x)α/2(1 + x)(s+β−1)/2P (α,β)
n (x) dx

× 3F2

(
−n, α+ β + n+ 1, 1

2 α+ 1;α+ 1, 1
2 (α+ β + s+ 3); 1

)
,

where the hypergeometric function 3F2 is reduced to the following series

+∞∑
k=0

(−1)k
(n
k

) (α+ β + n+ 1)k
(

1
2 α+ 1

)
k

(α+ 1)k
(

1
2 (α+ β + s+ 3)

)
k

.

In a simpler case when α = 0, the function 3F2 can be reduced to 2F1, and
then we find (see [12])

Wn(s) =
√

2(2n+ β + 1)

n−1∏
ν=0

(s− (2ν + 1 + β))

n∏
ν=0

(s+ (2ν + 1 + β))
.

Such rational functions are orthogonal in certain sense in the complex
plane. In this survey paper we consider several classes of orthogonal rational
functions and connect them with some generalized polynomial systems, so-
called Müntz systems.

The paper is organized as follows. In Section 2 we study several systems of
rational functions which are orthogonal with respect to certain inner products
defined on some lines or on the unit circle in the complex plane. Section 3
is devoted to the orthogonal Müntz systems which represent an important
extension of the orthogonal polynomial systems. Finally, in Section 5 we give
some remarks on numerical evaluation of Müntz polynomials and mention an
application in numerical integration.

2 Orthogonal Systems of Rational Functions

We start this section with a system of generalized exponential polynomi-
als defined on (0,+∞) and then we connect their orthogonality with some
systems of rational functions in the complex domain.
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2.1 Generalized exponential polynomials and orthogonal rational
functions

Let A = {α0, α1, α2, . . . } be a complex sequence such that Reαk > 0. For
each k (k ≥ 0) denote by mk ≥ 1 the multiplicity of the appearance of
the numbers αk in the set Ak = {α0, α1, α2, . . . , αk}. With the sequence

A we associate the sequence of functions
{
tmk−1 e−αkt

}+∞
k=0

, which can be
orthogonalized with respect to the inner product

(f, g) =

∫ +∞

0

f(t)g(t) dt, (1)

for example, using the well-known Gram-Schmidt method. Such an orthonor-
mal system {qk(t)}+∞k=0 is unique up to a multiplicative constant of the form
eiγk (Im γk = 0).

For example, if we take A = {1/2, 1, 1, 2, 5/2, . . . }, for which m0 = m1 =
1, m2 = 2, m3 = m4 = 1, . . . , using Mathematica package:

In[1]:= <<LinearAlgebra‘Orthogonalization‘

In[2]:=L[t_]:={Exp[-t/2],Exp[-t],t Exp[-t],Exp[-2t],Exp[-5t/2]}

In[3]:= q=GramSchmidt[L[t],InnerProduct->

(Integrate[#1 #2,{t,0,Infinity}]&)] //Simplify

we get

q0(t) = e−t/2,

q1(t) = −
√

2 e−t
(
−3 + 2 et/2

)
,

q2(t) = −
√

2 e−t
(
−5 + 6 et/2−6t

)
,

q3(t) = −2 e−2t
(
−15 + 8 et +6 e3t/2−12t et

)
,

q4(t) = 1
2

√
5 e−5t/2

(
147− 240 et/2 +80 e3t/2 +15 e2t−48t e3t/2

)
.

If mk = 1 for each k ∈ N0, then

qk(t) =

k∑
i=0

ck,ie
−αit, ck,i =

√
2Reλk

k−1∏
ν=0

(αi + ᾱν)

k∏
ν=0
ν 6=i

(αi − αν)

(i = 0, 1, . . . , k).

It was given first by Erdélyi [18]. A study of exponential polynomials was
given by Schwartz [38].

A more effective way for finding these orthogonal functions uses their
representation in terms of Fourier integrals. Namely, Djrbashian [16] (see
also [17]) proved the following result:
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Theorem 1. Let

ψ0(z) =

√
Reα0

π

i

z + iα0
, ψk(z) =

√
Reαk
π

i

z + iαk

k−1∏
ν=0

z − iᾱν
z + iαν

(k ∈ N).

Then

1√
2π

∫ +∞

−∞
ψk(ω) e−iωt dω =

{
qk(t), t ∈ (0,+∞),

0, t ∈ (−∞, 0).

The condition
+∞∑
k=0

Reαk
1 + |αk|2

= +∞

is necessary and sufficient for the L2(0,+∞) completeness of the orthogonal
system {qk(t)}+∞k=0.

The proof is based on the fact that the rational functions ψk belong to
the class H2(G+) of analytic functions f(z) in the upper half-plane G+ =
{z ∈ C | Im z > 0} for which

‖f‖ = sup
0<y<+∞

(∫ +∞

−∞
|f(x+ iy)|2 dx

) 1
2
< +∞.

Using Paley-Wiener theorem and Parseval’s equality one can find

(qk, qm) =

∫ +∞

−∞
ψk(x)ψm(x) dx =

1

π

∫ +∞

−∞
Ψk(x)Ψm(x) dx, (2)

where the inner product ( · , · ) is given by (1) and ψk(z) = (i/
√
π)Ψn(z).

Putting βk = iᾱk, where Imβk = Reαk > 0 for each k, the functions Ψk(z)
can be expressed in the form

Ψ0(z) =

√
Imβ0

z − β̄0
, Ψk(z) =

√
Imβk
z − β̄k

k−1∏
ν=0

z − βν
z − β̄ν

(k ∈ N). (3)

Using Cauchy’s residue theorem, it is very easy to prove the following or-
thogonality result for the rational functions Ψk(z) (cf. Djrbashian [16]):

Theorem 2. The system of functions {Ψk(z)}+∞k=0 is orthonormal on the real
line, i.e.,

1

π

∫ +∞

−∞
Ψk(x)Ψm(x) dx = δk,m. (4)

The corresponding completeness condition for this orthogonal system re-
duces to

+∞∑
k=0

Imβk
1 + |βk|2

= +∞.

Obviously, (2) and (4) give (qk, qm) = δk,m.
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2.2 Malmquist-Takenaka systems of orthogonal rational
functions

It is easy to see that the simple Moebius transformation z = i 1 + s
1− s changes

the system (3) into the well-known Malmquist–Takenaka system of rational
functions {Φk(s)}+∞k=0 orthogonal on the unit circle |s| = 1 (see Malmquist
[22], Takenaka [44], Walsh [47, Sections 9.1 and 10.7], and Djrbashian [17]).
This transformation maps the upper-half plane Im z > 0 into the unit disk
|s| < 1, so that the point βk maps to the point ak = (iβk+1)/(iβk−1) inside
the unit circle,

|ak|2 =
1 + |βk|2 − 2Imβk

1 + |βk|2
< 1 (k = 0, 1, . . .).

Usually, such rational functions are represented in the following way (cf.
Djrbashian [17])

Φ0(s) =
(1− |a0|2)1/2

1− ā0s
,

Φk(s) =
(1− |ak|2)1/2

1− āks

k−1∏
ν=0

aν − s
1− āνs

· |aν |
aν

(k ∈ N), (5)

where for aν = 0 we put |aν |/aν = āν/|aν | = −1. The following orthogonality
result holds:

Theorem 3. The system of functions {Φk(s)}+∞k=0 is orthonormal on the unit
circle, i.e.,

(Φk, Φm) =
1

2πi

∮
|s|=1

Φk(s)Φm(s)
ds

s
=

1

2π

∫ π

−π
Φk(eiθ)Φm(eiθ) dθ = δk,m.

Practically, this system is the result of an orthogonalization process of the
ordered sequence of the rational functions from the system{

smk−1

(1− āks)mk

}+∞

k=0

on the unit circle s = eiθ (−π ≤ θ ≤ π) with respect to the Lebesgue measure
dθ
2π .

Excluding the normalization constants, the Malquist-Takenaka system (5)
can be represented in the form

Wn(s) =

n−1∏
ν=0

(s− aν)

n∏
ν=0

(s− a∗ν)
, (6)
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where a∗ν = 1/āν . For aν = 0 we put only s instead of (s− aν)/(s− a∗ν).
Supposing that aν 6= aµ for ν 6= µ, we can see that (6) can be written in

the form

Wn(s) =

n∑
k=0

An,k
s− a∗k

,

where

An,k =

n−1∏
ν=0

(a∗k − aν)

n∏
ν=0
ν 6=k

(a∗k − a∗ν)
(k = 0, 1, . . . , n). (7)

The case when aν = aµ can be considered as a limiting process aν → aµ.
By using Theorem 3 it is easy to see that the system of rational functions{

Wn(s)
}+∞
n=0

, defined by (6), satisfies the following orthogonality relation

(Wn,Wm) = ‖Wn‖2δnm,

where

‖Wn‖2 =
|a0a1 · · · an|2

1− |an|2
.

An important auxiliary result was proved in [29]:

Lemma 1. Let −1 ≤ t ≤ 1 and let F be defined by

F (t) =
1

2πi

∮
|s|=1

Wn(s)Wm(ts)
ds

s
, (8)

where the system functions {Wn(s)} is defined by (6) with mutually different
numbers aν (ν = 0, 1, . . .) in the unit circle |s| = 1. Then

F (t) =

n∑
i=0

m∑
j=0

An,iĀm,j
a∗i ā
∗
j − t

,

where the numbers An,k are given in (7).

For t = 1, from (8) we obtain that F (1) = (Wn,Wm). Thus,

(Wn,Wm) =

n∑
i=0

m∑
j=0

An,iĀm,j
a∗i ā
∗
j − 1

=
|a0a1 · · · an|2

1− |an|2
δnm . (9)

This equality gives a connection between the Malmquist-Takenaka system of
rational functions (6) and a Müntz system, which is orthogonal with respect
to an unusual inner product defined in the next section.
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In a general case, we can use a positive Borel measure dµ(θ) on [−π, π]
so that the previous inner product reduces to

(f, g) =
1

2π

∫ π

−π
f(s)g(s) dµ(θ) (s = eiθ).

The corresponding orthogonal systems of rational functions were intensively
investigated in several papers by Djrbashian [13–17], Bultheel, González-
Vera, Hendriksen, and Nj̊astad [9–11], Pan [33–36], etc.

In the extreme case when αk = 0 (k = 0, 1, . . .), the corresponding system
of functions turns into the system of Szegő polynomials {Pk(s)}+∞k=0 (see [43,
pp. 287–295] which are orthogonal on the unit circle with the same measure
(2π)−1 dµ(θ). This kind of orthogonal polynomials on the unit circle have
been introduced and studied by Szegő [41,42] and Smirnov [39,40]. A more
general case was considered by Achieser and Krĕın [1], Geronimus [19,20],
Nevai [31,32], Alfaro and Marcellán [2], Marcellán and Sansigre [23], etc.
These polynomials are linked with many questions in the theory of time
series, digital filters, statistics, image processing, scattering theory, control
theory, etc.

In the simplest case, for the Lebesgue measure (when dµ(θ) = dθ), these
polynomials reduce to the polynomials Pk(z) = zk (k = 0, 1, . . .).

A survey on orthogonal polynomials, including basic properties of poly-
nomials orthogonal on the unit circle, can be found in [26].

3 Orthogonal Müntz Systems

Let Λ =
{
λ0, λ1, . . .

}
be a given sequence of complex numbers. Taking the

following definition for xλ:

xλ = eλ log x, x ∈ (0,+∞), λ ∈ C,

and the value at x = 0 is defined to be the limit of xλ as x→ 0 from (0,+∞)
whenever the limits exists, we will consider orthogonal Müntz polynomials as
linear combinations of the Müntz system

{
xλ0 , xλ1 , . . . , xλn

}
(see [7,8]). The

set of all such polynomials we will denote by Mn(Λ), i.e.,

Mn(Λ) = span
{
xλ0 , xλ1 , . . . , xλn

}
,

where the linear span is over the complex numbers C in general. The union
of all Mn(Λ) is denoted by M(Λ).

For real numbers 0 ≤ λ0 < λ1 < · · · → ∞, it is well-known that the real

Müntz polynomials of the form
n∑
k=0

akx
λk are dense in L2[0, 1] if and only if

+∞∑
k=1

λ−1
k = +∞.
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In addition, if λ0 = 0 this condition also characterizes the denseness of the
Müntz polynomials in C[0, 1] in the uniform norm.

The first considerations of orthogonal Müntz systems were made by the
Armenian mathematicians Badalyan [4,5] and Taslakyan [45]. Recently, it was
rediscovered by McCarthy, Sayre and Shawyer [24]. A complete investigation
of such systems, including some inequalities of Markov type, was done by
Borwein, Erdélyi, and Zhang [8].

3.1 Müntz-Legendre polynomials

Supposing Re (λk) > −1/2 for each k ∈ N0 and Λn = {λ0, λ1, . . . , λn}, we
can give the following definition of the Müntz-Legendre polynomials on (0, 1]
(see [4,45,8]):

Definition 1. Let

Wn(s) =

n−1∏
ν=0

s+ λ̄ν + 1

s− λν
· 1

s− λn
(n ∈ N0), (10)

where an empty product for n = 0 should be taken to be equal to 1. The nth
Müntz-Legendre polynomial on (0, 1] is given by

Pn(x;Λn) =
1

2πi

∮
Γ

Wn(s)xs ds (n = 0, 1, . . .), (11)

where the simple contour Γ surrounds all poles of the rational function (10).

For polynomials Pn(x) ≡ Pn(x;Λn) one can prove an orthogonality rela-
tion on (0, 1):

Theorem 4. Let the polynomials Pn(x) be defined by (11). Then, for every
n,m = 0, 1, . . . , we have∫ 1

0

Pn(x)Pm(x) dx =
δn,m

1 + λn + λn
.

Evidently, that the polynomials P ∗n(x) = (1 + λn + λn)1/2Pn(x) are or-
thonormal. In the simplest case when λν 6= λµ (ν 6= µ) it is easy to show that
polynomials Pn(x) can be expressed in a power form

Pn(x) =

n∑
k=0

cn,kx
λk , (12)

where

cn,k =

n−1∏
ν=0

(1 + λk + λ̄ν)

n∏
ν=0
ν 6=k

(λk − λν)
.
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In a limit case when λ0 = λ1 = · · · = λn = λ, the polynomials (11) reduce
to

Pn(x;Λn) = xλLn(−(1 + λ+ λ̄) log x),

where Ln(x) is the Laguerre polynomial orthogonal on the (0,∞) with respect
to the exponential weight e−x, and for which Ln(0) = 1.

If we put x = e−t, Müntz-Legendre polynomials reduce to the generalized
exponential polynomials. For example, (12) becomes

Pn(e−t) =

n∑
k=0

cn,k e−λkt .

In a general case, such polynomials can be expressed in terms of a Laplace
transform (see [27]):

Theorem 5. If Wn(s) given by (10) and

Gn(s) = −Wn(−s) =

n−1∏
k=0

s− (λ̄k + 1)

s+ λk
· 1

s+ λn
,

then Pn(e−t) is the inverse Laplace transform of Gn(s), i.e.,

Pn(e−t) = L−1[Gn(s)].

Taking, for example, α > 1/2 we can prove that

Pn(e−t) =
1

2πi

α+i∞∫
α−i∞

Gn(s) e−st ds.

There is also a kind of the generalized Rodrigues formula for the Müntz-
Legendre polynomials (see [24])

Pn(x) = Dλ0Dλ1 · · ·Dλn−1`n(x),

where

`n(x) =

n∑
k=0

xλk
n∏

j=0,j 6=k
(λk − λj)

and Dλ is the differential operator defined by

Dλf(x) = x−λ̄
d

dx

(
x1+λ̄f(x)

)
.

It is easy to prove that `n(x) and its first n−1 derivatives vanish at the point
x = 1.
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The polynomials (11) satisfy some recurrence relations, e.g.,

xP ′n(x)− xP ′n−1(x) = λnPn(x) + (1 + λ̄n−1)Pn−1(x) (13)

and

Pn(x) = Pn−1(x)− (λn + λ̄n−1 + 1)xλn
∫ 1

x

t−λn−1Pn−1(t) dt (x ∈ (0, 1]).

Also, it is easy to prove that

Pn(1) = 1 and P ′n(1) = λn +

n−1∑
k=0

(λk + λ̄k + 1).

An interesting question is connected by the zero distribution of the Müntz-
Legendre polynomials. Badalyan [6] proved the following result (see also [8]):

Theorem 6. For real numbers λν > −1/2 (ν = 0, 1, . . . ) the Müntz-Legendre
polynomial Pn(x;Λn) has exactly n distinct zeros in (0, 1), and it changes sign
at each of these zeros. Furthermore, the zeros of the polynomials

Pn−1(x;Λn−1) and Pn(x;Λn)

in (0, 1) strictly interlace.

3.2 Some algebraic-logarithmic polynomials

An important special case of Müntz-Legendre polynomials when

λ2k = λ2k+1 = k (k = 0, 1, . . .)

was considered in [27]. Namely, we put λ2k = k and λ2k+1 = k + ε (k =
0, 1, . . . ), where ε decreases to zero. The corresponding limit process leads to
orthogonal Müntz polynomials with logarithmic terms,

Pn(x) = Rn(x) + Sn(x) log x (n = 0, 1, . . .), (14)

where Rn(x) and Sn(x) are algebraic polynomials of degree
[
n
2

]
and

[
n−1

2

]
,

respectively, i.e.,

Rn(x) =

[n/2]∑
ν=0

a(n)
ν xν , Sn(x) =

[(n−1)/2]∑
ν=0

b(n)
ν xν . (15)

Notice that Pn(1) = Rn(1) = 1. The first few Müntz polynomials (14) are:

P0(x) = 1,

P1(x) = 1 + log x,

P2(x) = −3 + 4x− log x,

P3(x) = 9− 8x+ 2(1 + 6x) log x,

P4(x) = −11− 24x+ 36x2 − 2(1 + 18x) log x,

P5(x) = 19 + 276x− 294x2 + 3(1 + 48x+ 60x2) log x,

P6(x) = −21− 768x+ 390x2 + 400x3 − 3(1 + 96x+ 300x2) log x.
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The explicit expressions for the coefficients of the polynomials (15) for
arbitrary n are given in [27]. These Müntz polynomials can be used in the
proof of the irrationality of ζ(3) and of other familiar numbers (see [7, pp. 372–
381] and [46]).

Similarly, if we take

λ3k = λ3k+1 = λ3k+2 = k (k = 0, 1, . . .),

i.e., λ3k = k − ε, λ3k+1 = k, λ3k+2 = k + ε (k = 0, 1, . . .), where ε tends to
zero, we get the corresponding orthogonal Müntz polynomials:

P0(x) = 1,

P1(x) = 1 + log x,

P2(x) = 1 + 2 log x+
1

2
log2 x,

P3(x) = −7 + 8x− 4 log x− 1

2
log2 x,

P4(x) = 29− 28x+ (11 + 24x) log x+ log2 x,

P5(x) = −97 + 98x− 4(7 + 15x) log x+ (36x− 2) log2 x,

P6(x) = 127− 342x+ 216x2 + (32− 108x) log x+ (2− 108x) log2 x.

These polynomials have the form

Pn(x) = Rn(x) + Sn(x) log x+ Tn(x) log2 x,

where Rn(x), Sn(x), and Tn(x) are algebraic polynomials of degree
[
n
3

]
,[

n−1
3

]
, and

[
n−2

3

]
, respectively. Notice that Pn(1) = Rn(1) = 1.

3.3 One-parametric Müntz-Jacobi polynomials

A little generalization of Müntz-Legendre polynomials can be done in the
following way. Namely, putting λk + β/2 instead of λk, k = 0, 1, . . ., in the

sequence Λ, we can define a kind of Müntz-Jacobi polynomials P
(β)
n (x) by

P (β)
n (x) =

x−β/2

2πi

∮
Γ

W (β)
n (s)xs ds,

where

W (β)
n (s) =

n−1∏
k=0

s+ λ̄k + β/2 + 1

s− λk − β/2
· 1

s− λn − β/2
.

Then, the following result holds:

Theorem 7. Let β ∈ R and Reλk > −(β + 1)/2 for each k ∈ N0. Then

(P (β)
n , P (β)

m ) =

∫ 1

0

P (β)
n (x)P

(β)
m (x)xβ dx =

δnm
λn + λ̄n + β + 1

.
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In the special case λk = k (k = 0, 1, . . .), these generalized polynomials re-

duce to the classical Jacobi polynomials P̃
(0,β)
n (β > −1) shifted to [0, 1] (see

[27]). It would be very interesting to construct the Müntz-Jacobi polynomials

P
(α,β)
n (x) orthogonal with respect to the inner product

(f, g) =

∫ 1

0

f(x)g(x) (1− x)αxβ dx.

3.4 Another type of orthogonal Müntz polynomials

In [12] and [29] we defined an external operation for the Müntz polynomials
from M(Λ) and the corresponding inner product.

At first, we introduced an operation � for monomials in the following
way:

xα � xβ = xαβ (x ∈ (0,∞), α, β ∈ C).

An extension of this operation to the Müntz polynomials P ∈ Mn(Λ) and
Q ∈Mm(Λ), i.e.,

P (x) =

n∑
i=0

pix
λi and Q(x) =

m∑
j=0

qjx
λj , (16)

can be done as

(P �Q)(x) =

n∑
i=0

m∑
j=0

piqjx
λiλj . (17)

Under the restrictions that for each i and j we have

|λi| > 1, Re (λiλ̄j − 1) > 0, (18)

we introduce an unusual inner product for Müntz polynomials (16)

[P,Q] =

∫ 1

0

(P �Q)(x)
dx

x2
, (19)

where (P �Q)(x) is defined by (17).
It is not clear immediately that (19) represents an inner product. A proof

of this fact was given in [29], where the Sylvester’s necessary and sufficient
conditions [25, p. 214] were used in order to prove a positive definiteness of the
matrix Hn =

[
1/(λiλ̄j−1)

]n
i,j=0

. Also, it can be done by taking the functions

fk(θ) = 1/
(
λk − eiθ

)
(k = 0, 1, . . .) and interpreted Hn as the corresponding

Gram’s matrix. Indeed,

1

λiλ̄j − 1
=

1

2π

∫ π

−π
fi(θ)fj(θ) dθ = (fi, fj).

Professor Dušan R. Georgijević (Belgrade) pointed out this fact.
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Under the conditions (18), we introduced and studied (see [29]) the Müntz
polynomials Qn(x) ≡ Qn(x;Λn), n = 0, 1, . . ., orthogonal with respect to
the inner product (19). These polynomials are associated with the rational
functions

Wn(s) =

n−1∏
ν=0

(s− 1/λ̄ν)

n∏
ν=0

(s− λν)
(n = 0, 1, . . .) (20)

in the sense that

Qn(x) =
1

2πi

∮
Γ

Wn(s)xs ds, (21)

where the simple contour Γ surrounds all the points λν (ν = 0, 1, . . . , n).

Assuming that λi 6= λj (i 6= j), we get a representation of (21) in the
form

Qn(x) =

n∑
k=0

An,kx
λk , An,k =

n−1∏
ν=0

(λk − 1/λ̄ν)

n∏
ν=0
ν 6=k

(λk − λν)
(k = 0, 1, . . . , n).

The case when λi = λj can be considered as a limiting process λi → λj .

We note that the rational functions (20) form a Malmquist-Takenaka
system. Indeed, putting aν = 1/λ̄ν (ν = 0, 1, . . .), these functions reduce to
(6) and the previous coefficients An,k become

An,k =

n−1∏
ν=0

(
1/āν − aν

)
n∏
ν=0
ν 6=k

(
1/āk − 1/āν

) (k = 0, 1, . . . , n),

i.e., (7). Then,

[Qn, Qm] =

∫ 1

0

(Qn �Qm)(x)
dx

x2
=

n∑
i=0

m∑
j=0

An,iAn,j

∫ 1

0

xλiλ̄j−2 dx,

i.e.,

[Qn, Qm] =

n∑
i=0

m∑
j=0

An,iAn,j
λiλ̄j − 1

.

According to Lemma 1 and equality (9), we see that [Qn, Qm] = (Wn,Wm)
and prove the following orthogonality relation for the polynomials Qn(x):
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Theorem 8. Under the conditions (18) on the sequence Λ, the Müntz poly-
nomials Qn(x), n = 0, 1, . . ., defined by (21), are orthogonal with respect to
the inner product (19), i.e.,

[Qn, Qm] =
δn,m

(|λn|2 − 1)|λ0λ1 · · ·λn−1|2
.

We mention now some recurrence relations for the polynomials Qn(x):

Theorem 9. Suppose that Λ is a complex sequence satisfying (18). Then the
polynomials Qn(x), defined by (21), satisfy

xQ′n(x)=xQ′n−1(x) + λnQn(x)− (1/λ̄n−1)Qn−1(x),

xQ′n(x)=λnQn(x) +
n−1∑
k=0

(
λk − 1/λ̄k

)
Qk(x),

xQ′′n(x)=(λn − 1)Q′n(x) +

n−1∑
k=0

(
λk − 1/λ̄k

)
Q′k(x),

Qn(1)=1, Q′n(1) = λn +

n−1∑
k=0

(
λk − 1/λ̄k

)
,

Qn(x)=Qn−1(x)−
(
λn − 1/λ̄n−1

)
xλn

∫ 1

x

t−λn−1Qn−1(t) dt (x ∈ (0, 1]).

When λν → λ for each ν, we obtain the following particular result of
Müntz polynomials (21):

Corollary 1. Let Qn(x) be defined by (21) and let λ0 = λ1 = · · · = λn = λ.
Then

Qn(x) = xλLn
(
−(λ− 1/λ̄) log x

)
,

where Ln(x) is the Laguerre polynomial.

For real sequences Λ we can prove ([29,37]):

Theorem 10. Let Λ be a real sequence such that 1 < λ0 < λ1 < · · · . Then
the polynomial Qn(x), defined by (21), has exactly n simple zeros in (0, 1)
and no other zeros in [1,∞).

The graphics of polynomials Q4(x) and Q5(x) are displayed in Fig. 1.
Their zeros are more densely distributed around 0 than in other parts of the
interval [0, 1]. From Fig. 1 we can see that only two zeros of Q5 are in the
interval [0.1, 1]. In Fig. 2 we display the graphic of Q5(x) on the intervals
[0, 10−7], [10−7, 10−3], and [10−3, 0.1]. Notice that Q5(x) has one zero in each
of these intervals.
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Fig. 1. Graphics x 7→ Q4(x) (solid line) and x 7→ Q5(x) (broken line)
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Fig. 2. The Müntz polynomial Q5(x) on [0, 10−7], [10−7, 10−3], and [10−3, 0.1]

4 Numerical Evaluation of Orthogonal Müntz
Polynomials and an Application

In this section we give a short account on numerical evaluation of orthogonal
Müntz polynomials and point out an application of such orthogonal polyno-
mials in numerical integration.

4.1 Numerical evaluation of orthogonal Müntz polynomials

A direct evaluation of Müntz polynomials Pn(x) (or Qn(x)) in the power form
can be problematic in finite arithmetic, especially when n is a large number
and x is close to 1. The polynomial coefficients become very large numbers
when n increases, but their sums are always equal to 1, i.e., Pn(1) = 1 and
Qn(1) = 1. An illustrative numerical example was considered in [27].

Using (11) and an integration along a contour in the complex plane, we
can prove the following result ([27]):

Theorem 11. Let σ < −1/2, ω = log(1/x), and

ϕn(t;ω) =
1

2i

(
fn(t;ω) eit +fn(−t;ω) e−it

)
,

where

fn(t;ω) =

n−1∏
ν=0

t+ i(σ + λ̄ν + 1)ω

t+ i(σ − λν)ω
· 1

t+ i(σ − λn)ω
. (22)
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Then the Müntz-Legendre polynomials can be represented in the integral form

Pn(x) =
xσ

π

∫ +∞

0

ϕn(t;ω) dt.

For real sequences Λ we get an useful result:

Theorem 12. Let Λ = {λ0, λ1, . . .} be a real sequence such that λk > −1/2
for every k ≥ 0, fn(t;ω) be defined by (22), and σ < −1/2. Then, the
Müntz-Legendre polynomials have a computable representation

Pn(x) =
xσ

π
Im
{
L1(fn( · ;ω)) + L2(fn( · ;ω))

}
,

where

L1(fn( · ;ω)) = π

∫ 1

0

[ m∑
k=1

fn
(
π(y + k − 1);ω

)
eiπ(y+k−1)

]
dy,

L2(fn( · ;ω)) = (−1)m
∫ +∞

0

ψn(y;ω) e−y dy,

and ψn(y;ω) = ifn(a+ iy;ω), m ≥ 1.

In the numerical implementation we use the Gauss-Legendre rule on (0, 1)
and the Gauss-Laguerre rule for calculating L1(fn( · ;ω)) and L2(fn( · ;ω)),
respectively. Numerical experiments show that a convenient choice for the
parameter σ is λmin − π/ω, where λmin = min{λ0, λ1, . . .}.

For evaluating Müntz polynomials Qn(x), defined by (21), we can use the
same procedure with the rational function (20).

4.2 Some remarks on an application in numerical integration

Let dσ(x) be a given nonnegative measure on [0, 1] and

{φ0(x), φ1(x), φ2(x), . . .} (x ∈ [0, 1]), (23)

be a system of linearly independent functions chosen to be complete in some
suitable space of functions. If the quadrature rule∫ 1

0

f(x)dσ(x) =

n∑
k=1

Akf(xk) +Rn(f) (24)

is such that it integrates exactly the first 2n functions in (23), we call the rule
(24) Gaussian with respect to the system (23). The existence and uniqueness
of a Gaussian quadrature rule (24) with respect to the system (23), or shorter
a generalized Gaussian formula, is always guaranteed if the first 2n functions
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of this system constitute a Chebyshev system on [0, 1]. Then, all the weights
A1, . . . , An in (24) are positive.

A numerical algorithm for the construction of generalized Gaussian quad-
ratures was investigated by Ma, Rokhlin and Wandzura [21]. They take a
Chebyshev system of functions {φ0, φ1, . . . , φ2n−1} with certain conditions
on [0, 1] and call it extended Hermite (EH) system. Their algorithm is ill
conditioned.

Namely, in order to obtain the double precision results, the authors ([21])
have performed the computations in an extended precision (Q-arithmetic
– REAL*16) for generating Gaussian quadratures up to order 20, and in
Matematica (120 digits operations) for generating Gaussain quadratures of
higher orders (n ≤ 40). In particular, the following important cases of EH
systems: {

1, log x, x, x log x, . . . , xn−1, xn−1 log x
}

(25)

and {
1, xs, x, xs+1, . . . , xn−1, xs+n−1

}
(26)

for s = 1/3, s = −1/3, s = −2/3, were considered in [21]. The case (25) was
also considered by Andronov [3].

Recently, we presented a stable numerical method for constructing the
generalized Gaussian quadratures for Müntz polynomials {P0, P1, . . . , P2n−1}.
Our constructive method [28] is based on an application of orthogonal Müntz
polynomials Pn(x), as well as on a numerical procedure for evaluation of such
polynomials with a high-precision [27].

Notice that for

λ2k = k, λ2k+1 = k + s (k = 0, 1, . . .),

the Müntz polynomials {P0, P1, . . . , P2n−1} reduces to (26). The case s = 0
corresponds to (25). Such algebraic-logarithmic polynomials are considered
in Subsection 3.2.
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10. Bultheel A., González-Vera P., Hendriksen E., Nj̊astad O. (1992) A Favard
theorem for orthogonal rational functions on the unit circle. Numer. Algorithms
3, 81–89.
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28. Milovanović G.V. (1999) Construction of Gaussian type quadrature formulas for
Müntz systems. Invited Lecture at the International Meeting on Approximation
Theory and Numerical Analysis (dedicated to 60th birthday of Professor G.
Mastroianni), Vico Equense, Italy (August 31 – September 1, 1999).
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complèxe. Ž. Leningrad. Fiz.-Mat. Ob. 2, 155–179.
40. Smirnov I (1928) Sur les valeurs limites des fonctions regulières à l’intérieur
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