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S -ORTHOGONALITY AND GENERALIZED

TURÁN QUADRATURES:

CONSTRUCTION AND APPLICATIONS

Gradimir V. Milovanović

1. Introduction

Solving some problems in computational plasma physics, Calder and Laframboise
[1] considered the problem of approximating the Maxwell velocity distribution by a
step function, i.e., by “multiple-water-bag distribution” in their terminology, in such
a way that as many of the initial moments as possible of the Maxwell distribution
are preserved. They used a classical method of reduction to an eigenvalue prob-
lem for Hankel matrices, requiring high precision calculations because of numerical
instability. A similar problem, involving Dirac’s δ-function instead of Heaviside’s
step function, was treated earlier by Laframboise and Stauffer [23], using the classi-
cal Prony’s method. A stable procedure for these problems was given by Gautschi
[10]. Precisely, he considered the problem of approximating a spherically symmetric
function t 7→ f(t), t = ‖x‖, 0 ≤ t < ∞, in R

d, d ≥ 1, by a piecewise constant
function

t 7→ sn(t) =

n
∑

ν=1

aνH(τν − t) (aν ∈ R, 0 < τ1 < · · · < τn < +∞),

where H is the Heaviside step function, and found the close connection of this
problem with Gaussian quadrature formulas. Also, he considered an approximation
by a linear combination of Dirac delta functions. This work was extended to spline
approximation of arbitrary degree by Gautschi and Milovanović [13]. Namely, they
considered a spline function of degree m ≥ 0 on [0,+∞), vanishing at t = +∞,
with n ≥ 1 positive knots τν , ν = 1, . . . , n, which can be written in the form

sn,m(t) =

n
∑

ν=1

aν(τν − t)m+ (aν ∈ R, 0 ≤ t < +∞),
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where the plus sign on the right is the cutoff symbol, u+ = u if u > 0 and u+ = 0
if u ≤ 0. Given a function t 7→ f(t) on [0,+∞), they determined sn,m such that

∫ +∞

0

sn,m(t)tj dV =

∫ +∞

0

f(t)tj dV (j = 0, 1, . . . , 2n− 1),

where dV is the volume element depending on the geometry of the problem. (For
example, dV = Ctd−1 dt if d > 1, where C is some constant, and dV = dt if d = 1
were used in [13]. For some details see Gautschi [11].) In any case, the spline sn,m is
such to faithfully reproduce the first 2n moments of f . Under suitable assumptions
on f , it was shown that the problem has a unique solution if and only if certain
Gauss-Christoffel quadratures exist corresponding to a moment functional or weight
distribution depending on f . Existence, uniqueness and pointwise convergence of
such approximation were analyzed.

Frontini, Gautschi and Milovanović [5] and Frontini and Milovanović [6] consid-
ered analogous problems on an arbitrary finite interval, which can be standardized
to [a, b] = [0, 1]. If the approximations exist, they can be represented in terms of
generalized Gauss-Lobatto and Gauss-Radau quadrature formulas relative to ap-
propriate measures depending on f .

At the Singapore Conference on Numerical Mathematics (1988) we presented
a moment-preserving approximation on [0,+∞) by defective splines of degree m,
with odd defect (see Milovanović and Kovačević [26]).

A spline function of degree m ≥ 1 on the interval 0 ≤ t < +∞, vanishing at
t = +∞, with the variable positive knots τν , ν = 1, . . . , n, and multiplicity kν
(≤ m), ν = 1, . . . , n (n > 1), respectively, can be represented in the form

Sn,m(t) =

n
∑

ν=1

kν−1
∑

i=0

αν,i(τν − t)m−i
+ , 0 ≤ t < +∞, (1.1)

where αν,i are real numbers.

Using the following conditions

+∞
∫

0

tj+d−1Sn,m(t) dt =

+∞
∫

0

tj+d−1f(t) dt, j = 0, 1, . . . , 2(s+ 1)n− 1, (1.2)

we [26] considered the problem of approximating a function f(t) of the radial dis-
tance t = ‖x‖, 0 ≤ t < +∞ in R

d, d ≥ 1, by the spline function (1.1), where
kν = 2s + 1, ν = 1, . . . , n, s ∈ N0. Under suitable assumptions on f , we showed
that the problem has a unique solution if and only if certain generalized Turán
quadratures exist corresponding to a measure depending on f . A more general
case with variable defects was considered by Gori and Santi [17] and Kovačević and
Milovanović [22]. In that case, approximation problems reduce to Gauss-Turán-
Stancu type of quadratures and σ-orthogonal polynomials (cf. Gautschi [8], Gori,
Lo Cascio and Milovanović [18]).

Further extensions of the moment-preserving spline approximation on [0, 1] are
given by Micchelli [24]. He relates this approximation to the theory of the monos-
plines. A similar problem by defective spline functions on the finite interval [0, 1]
has been studied by Gori and Santi [16] and solved by means of monosplines.
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In Section 2 we give a survey on generalized Gauss-Turán quadrature formu-
las and s-orthogonal polynomials. A stable method for numerically constructing
s-orthogonal polynomials and their zeros is presented in Section 3, and calcula-
tion of the corresponding coefficients (i.e., Cotes numbers of higher order) is given
in Section 4. Some alternative methods for coefficients were proposed by Stroud
and Stancu [36] (see also [33]) and Milovanović and Spalević [28]. A few numeri-
cal examples and some applications in moment-preseving spline approximation are
presented in Setions 5 and 6, respectively.

2. Generalized Gauss-Turán quadratures and s-orthogonality

Let Pm be the set of all algebraic polynomials of degree at most m. In 1950, P.
Turán [37] studied numerical quadratures of the form

∫ 1

−1

f(t) dt =
k−1
∑

i=0

n
∑

ν=1

Ai,νf
(i)(τν) +Rn,k(f), (2.1)

where

Ai,ν =

∫ 1

−1

ℓν,i(t) dt (ν = 1, . . . , n; i = 0, 1, . . . , k − 1)

and ℓν,i(t) are the fundamental functions of Hermite interpolation. The coefficients
Ai,ν are Cotes numbers of higher order. Evidently, the formula (2.1) is exact if
f ∈ Pkn−1 and the points −1 ≤ τ1 ≤ · · · ≤ τn ≤ 1 are arbitrary.

For k = 1 the formula (2.1), i.e.,

∫ 1

−1

f(t) dt =

n
∑

ν=1

A0,νf(τν) +Rn,1(f),

can be exact for all polynomials of degree at most 2n − 1 if the nodes τν are the
zeros of the Legendre polynomial Pn, and it is the well-known Gauss-Legendre
quadrature rule.

Because of Gauss’s result it is natural to ask whether knots τν can be chosen so
that the quadrature formula (2.1) will be exact for algebraic polynomials of degree
not exceeding (k+1)n−1. Turán [37] showed that the answer is negative for k = 2,
and for k = 3 it is positive. He proved that the knots τν should be chosen as the
zeros of the monic polynomial π∗

n(t) = tn + · · · which minimizes the integral

∫ 1

−1

[πn(t)]
4dt,

where πn(t) = tn + an−1t
n−1 + · · ·+ a1t+ a0.

More generally, the answer is negative for even, and positive for odd k, and then
τν are the zeros of the polynomial minimizing

∫ 1

−1

[πn(t)]
k+1dt.

When k = 1, then πn is the monic Legendre polynomial P̂n.
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Because of the above, we put k = 2s+1. It is also interesting to consider, instead
of (2.1), more general Gauss-Turán type quadrature formulae

∫

R

f(t) dλ(t) =
2s
∑

i=0

n
∑

ν=1

Ai,νf
(i)(τν) +Rn,2s(f), (2.2)

where dλ(t) is a nonnegative measure on the real line R, with compact or infinite
support, for which all moments

µk =

∫

R

tkdλ(t), k = 0, 1, . . . ,

exist and are finite, and µ0 > 0. It is known that formula (2.2) is exact for all
polynomials of degree at most 2(s+ 1)n− 1, i.e.,

Rn,2s(f) = 0 for f ∈ P2(s+1)n−1.

The knots τν (ν = 1, . . . , n) in (2.2) are the zeros of the monic polynomial πs
n(t),

which minimizes the integral

F (a0, a1, . . . , an−1) =

∫

R

[πn(t)]
2s+2 dλ(t),

where πn(t) = tn + an−1t
n−1 + · · · + a1t + a0. This minimization leads to the

conditions
∫

R

[πn(t)]
2s+1tk dλ(t) = 0 (k = 0, 1, . . . , n− 1). (2.3)

Usually, instead of πs
n(t) we write Ps,n(t).

The case dλ(t) = w(t) dt on [a, b] has been investigated by the Italian mathe-
maticians Ossicini [29], Ghizzetti and Ossicini [15], Guerra [19–20]. It is known

that there exists a unique Ps,n(t) =
n
∏

ν=1
(t − τν), whose zeros τν are real, distinct

and located in the interior of the interval [a, b]. These polynomials are known as
s-orthogonal (or s-self associated) polynomials in the interval [a, b] with respect to
the weight function w (for more details see [8], [29–31]). For s = 0 we have the
standard case of orthogonal polynomials, and (2.2) then becomes the well-known
Gauss-Christoffel formula.

A generalization of the formula (2.1) to rules having nodes with arbitrary mul-
tiplicities was given, independently, by Chakalov [2–3] and Popoviciu [32]. In that
case the nodes are zeros of so-called σ-orthogonal polynomials. A deep theoretical
progress in this subject was made by Stancu [33–35]. An algorithm for constructing
σ-orthogonal polynomials was given in [18].

3. Construction of S -Orthogonal Polynomials

An iterative process for computing the coefficients of s-orthogonal polynomials
in a special case, when the interval [a, b] is symmetric with respect to the origin
and the weight function w is an even function, was proposed by Vincenti [38]. He
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applied his process to the Legendre case. When n and s increase, the process
becomes numerically unstable.

We presented now a stable method for numerically constructing s-orthogonal
polynomials and their zeros (see [25] and [14]). It uses an iterative method with
quadratic convergence based on a discretized Stieltjes procedure and the Newton-
Kantorovič method.

The basic idea for our method to numerically construct s-orthogonal polynomials
with respect to the measure dλ(t) on the real line R is a reinterpretation of the
“orthogonality conditions” (2.3). For given n and s, we put dµ(t) = dµs,n(t) =
(πn(t))

2sdλ(t). The conditions can then be written as

∫

R

πs,n
k (t)tνdµ(t) = 0 (ν = 0, 1, . . . , k − 1),

where {πs,n
k } is a sequence of monic orthogonal polynomials with respect to the

new measure dµ(t). Of course, Ps,n( · ) = πs,n
n ( · ). As we can see, the polynomials

πs,n
k (k = 0, 1, . . . ) are implicitly defined, because the measure dµ(t) depends of

πs,n
n (t). A general class of such polynomials was introduced and studied by Engels

(cf. [4, pp. 214–226]).

We will write simply πk( · ) instead of πs,n
k ( · ). These polynomials satisfy a three-

term recurrence relation

πν+1(t) = (t− αν)πν(t)− βνπν−1(t), ν = 0, 1, . . . , (3.1)

π−1(t) = 0, π0(t) = 1,

where, because of orthogonality,

αν = αν(s, n) =
(tπν , πν)

(πν , πν)
=

∫

R
tπ2

ν(t) dµ(t)
∫

R
π2
ν(t) dµ(t)

,

βν = βν(s, n) =
(πν , πν)

(πν−1, πν−1)
=

∫

R
π2
ν(t) dµ(t)

∫

R
π2
ν−1(t) dµ(t)

,

(3.2)

and, by convention, β0 =
∫

R
dµ(t).

The coefficients αν and βν are the fundamental quantities in the constructive
theory of orthogonal polynomials. They provide a compact way of representing
orthogonal polynomials, requiring only a linear array of parameters. The coefficients
of orthogonal polynomials, or their zeros, in contrast need two-dimensional arrays.

Knowing the coefficients αν , βν (ν = 0, 1, . . . , n− 1) gives us access to the first
n + 1 orthogonal polynomials π0, π1, . . . , πn. Of course, for a given n, we are
interested only in the last of them, i.e., πn ≡ πs,n

n . Thus, for n = 0, 1, . . . , the
diagonal (boxed) elements in Table 3.1 are our s-orthogonal polynomials πs,n

n .

Table 3.1
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n dµs,n(t) Orthogonal Polynomials

0 (πs,0
0

(t))2s dλ(t) π
s,0
0

1 (πs,1
1

(t))2s dλ(t) π
s,1
0

π
s,1
1

2 (π
s,2
2

(t))2s dλ(t) π
s,2
0

π
s,2
1

π
s,2
2

3 (πs,3
3

(t))2s dλ(t) π
s,3
0

π
s,3
1

π
s,3
2

π
s,3
3

.

.

.

A stable procedure for finding the coefficients αν , βν is the discretized Stielt-
jes procedure, especially for infinite intervals of orthogonality (see [7–9] and [12]).
Unfortunately, in our case this procedure cannot be applied directly, because the
measure dµ(t) involves an unknown polynomial πs,n

n . Consequently, we consider
the system of nonlinear equations

f0 ≡ β0 −
∫

R

π2s
n (t) dλ(t) = 0,

f2ν+1 ≡
∫

R

(αν − t)π2
ν(t)π

2s
n (t) dλ(t) = 0 (ν = 0, 1, . . . , n− 1),

f2ν ≡
∫

R

(βνπ
2
ν−1(t)− π2

ν(t))π
2s
n (t) dλ(t) = 0 (ν = 1, . . . , n− 1),

(3.3)

which follows from (3.2).

Let x be a (2n)-dimensional column vector with components α0, β0, . . . , αn−1,
βn−1 and f(x) a (2n)-dimensional vector with components f0, f1, . . . , f2n−1, given
by (3.3), in which π0, π1, . . . , πn are thought of as being expressed in terms of the
α’s and β’s via (3.1). If W = W (x) is the corresponding Jacobian of f(x), then
we can apply Newton-Kantorovič’s method

x[k+1] = x[k] −W−1(x[k])f(x[k]) (k = 0, 1, . . . ) (3.4)

for determining the coefficients of the recurrence relation (3.1). If a sufficiently good
approximation x[0] is chosen, the convergence of the method (3.4) is quadratic.

Notice that the elements of the Jacobian can be easily computed in the following
manner.

First, we have to determine the partial derivatives aν,i =
∂πν

∂αi

and bν,i =
∂πν

∂βi
.

Differentiating the recurrence relation (3.1) with respect to αi and βi, we obtain

aν+1,i = (t− αν)aν,i − βνaν−1,i, bν+1,i = (t− αν)bν,i − βνbν−1,i,

where

aν,i = 0, bν,i = 0 (ν ≤ i),

ai+1,i = −πi(t), bi+1,i = −πi−1(t).
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These relations are the same as those for πν , but with other (delayed) initial values.
The elements of the Jacobian are

∂f2ν+1

∂αi

= 2

∫

R

π2s−1
n (t)

[

(αν − t)pν,i(t) +
1
2δν,iπ

2
ν(t)πn(t)

]

dλ(t),

∂f2ν+1

∂βi
= 2

∫

R

π2s−1
n (t)(αν − t)qν,i(t) dλ(t),

∂f2ν
∂αi

= 2

∫

R

π2s−1
n (t)(βνpν−1,i(t)− pν,i(t)) dλ(t),

∂f2ν
∂βi

= 2

∫

R

π2s−1
n (t)

[

(βνqν−1,i(t)− qν,i(t)) +
1
2
δν,iπ

2
ν−1(t)πn(t)

]

dλ(t),

(3.5)

where

pν,i(t) = πν(t)(aν,iπn(t) + san,iπν(t)), qν,i(t) = πν(t)(bν,iπn(t) + sbn,iπν(t)),

and δν,i is Kronecker’s delta.

All of the above integrals in (3.3) and (3.5) can be computed exactly, except for
rounding errors, by using a Gauss-Christoffel quadrature formula with respect to
the measure dλ(t),

∫

R

g(t) dλ(t) =

N
∑

ν=1

A(N)
ν g(τ (N)

ν ) +RN (g), (3.6)

taking N = (s + 1)n knots. This formula is exact for all polynomials of degree at
most 2N − 1 = 2(s+ 1)n− 1 = 2(n− 1) + 2ns+ 1.

Thus, for all calculations we use only the fundamental three-term recurrence
relation (3.1) for the orthogonal polynomials πk( · ; dλ) and the Gauss-Christoffel

quadrature (3.6). As intial values α
[0]
ν = α

[0]
ν (s, n) and β

[0]
ν = β

[0]
ν (s, n) we take the

values obtained for n − 1, i.e., α
[0]
ν = αν(s, n − 1), β

[0]
ν = βν(s, n − 1), ν ≤ n − 2.

For α
[0]
n−1 and β

[0]
n−1 we use corresponding extrapolated values.

In the case n = 1 we solve the equation

φ(α0) = φ(α0(s, 1)) =

∫

R

(t− α0)
2s+1 dλ(t) = 0,

and then determine

β0 = β0(s, 1) =

∫

R

(t− α0)
2s dλ(t).

The zeros τν = τν(s, n) (ν = 1, . . . , n) of πs,n
n , i.e., the nodes of the Gauss-Turán

type quadrature formula (2.2), we obtain very easily as eigenvalues of a (symmetric
tridiagonal) Jacobi matrix Jn using the QR algorithm, namely

Jn =

















α0

√
β1 O√

β1 α1

√
β2

√
β2 α2

. . .
. . .

. . .
√

βn−1

O
√

βn−1 αn−1

















,

where αν = αν(s, n), βν = βν(s, n) (ν = 0, 1, . . . , n− 1).
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4. Calculation of Cotes Coefficients

Let τν = τν(s, n), ν = 1, . . . , n, be the zeros of the s-orthogonal (monic) poly-
nomial πn(t) (≡ πs,n

n (t)). In order to find the coefficients Ai,ν in the Gauss-Turán
type quadrature formula

∫

R

f(t) dλ(t) =
2s
∑

i=0

n
∑

ν=1

Ai,νf
(i)(τν) +R(f), (4.1)

we define

Ων(t) =

(

πn(t)

t− τν

)2s+1

=
∏

i6=ν

(t− τi)
2s+1 (ν = 1, . . . , n). (4.2)

Then the coefficients Ai,ν can be expressed in the form (see Stancu [35])

Ai,ν =
1

i!(2s− i)!

[

D2s−i 1

Ων(t)

∫

R

πn(x)
2s+1 − πn(t)

2s+1

x− t
dλ(x)

]

t=τν

,

where D is the differentiation operator. In particular, for i = 2s, we have

A2s,ν =
1

(2s)!(πn
′(τν))2s+1

∫

R

πn(x)
2s+1

x− τν
dλ(x),

i.e.,

A2s,ν =
Bν

(s)

(2s)!(π′

n(τν))
2s

(ν = 1, . . . , n),

where B
(s)
ν are the Christoffel numbers of the following Gaussian quadrature (with

respect to the measure dµ(t) = π2s
n (t)dλ(t)),

∫

R

g(t) dµ(t) =

n
∑

ν=1

B(s)
ν g(τν) +Rn(g), Rn(P2n−1) = 0. (4.3)

Since B
(s)
ν > 0, we conclude that A2s,ν > 0. The expressions for the other coeffi-

cients (i < 2s) become very complicated. For numerical calculation we could use a
triangular system of linear equations obtained from the formula (4.1) by replacing
f with the Newton polynomials: 1, t− τ1, . . . , (t− τ1)

2s+1, (t− τ1)
2s+1(t− τ2), . . . ,

(t− τ1)
2s+1(t− τ2)

2s+1 · · · (t− τn)
2s (cf. [8, §2.2.4]).

In this paper we take instead the polynomials

fk,ν(t) = (t− τν)
kΩν(t) = (t− τν)

k
∏

i6=ν

(t− τi)
2s+1, (4.4)

where 0 ≤ k ≤ 2s, 1 ≤ ν ≤ n.

Since the quadrature (4.1) is exact for all polynomials of degree at most 2(s +
1)n− 1 and

deg fk,ν = (n− 1)(2s+ 1) + k ≤ (2s+ 1)n− 1,
8



we see that (4.1) is exact for the polynomials (4.4), i.e.,

R(fk,ν) = 0 (0 ≤ k ≤ 2s, 1 ≤ ν ≤ n).

Thus, we have
2s
∑

i=0

n
∑

j=1

Ai,jf
(i)
k,ν(τj) =

∫

R

fk,ν(t) dλ(t),

that is,
2s
∑

i=0

Ai,νf
(i)
k,ν(τν) = µk,ν , (4.5)

because for every j 6= ν we have f
(i)
k,ν(τj) = 0 when 0 ≤ i ≤ 2s. Here, we have put

µk,ν =

∫

R

fk,ν(t) dλ(t) =

∫

R

(t− τν)
k
∏

i6=ν

(t− τi)
2s+1dλ(t).

For each ν, we have in (4.5) a system of 2s+1 linear equations in the same number
of unknowns, Ai,ν , i = 0, 1, . . . , 2s.

Using Leibniz’s formula of differentiation, we can prove that for polynomials fk,ν
given by (4.4), the following differentiation formula

f
(i)
k,ν(τν) =

{

0, i < k,

i(k)Ω
(i−k)
ν (τν), i ≥ k,

holds, where i(k) = i(i− 1) · · · (i− k+ 1) [with 0(0) = 1] and Ων is defined in (4.1).

This shows that each system of linear equations (4.5) is upper triangular. Thus,
once all zeros of the s-orthogonal polynomial πn, i.e., the nodes of the quadrature
formula (4.1), are known, the determination of its weights Ai,ν is reduced to solving
the n linear systems of (2s+ 1) equations













f0,ν(τν) f ′
0,ν(τν) . . . f

(2s)
0,ν (τν)

f ′
1,ν(τν) . . . f

(2s)
1,ν (τν)

. . .

f
(2s)
2s,ν (τν)

























A0,ν

A1,ν

...

A2s,ν













=













µ0,ν

µ1,ν

...

µ2s,ν













.

Put ak,k+j = f
(k−1+j)
k−1,ν (τν), so that the matrix of the system has elements aℓ,j

(1 ≤ ℓ, j ≤ 2s+ 1), with aℓ,j = 0 for j < ℓ. Then, we have

aℓ,j = (j − 1)(ℓ−1)Ω(j−ℓ)
ν (τν) (j ≥ ℓ; 1 ≤ ℓ, j ≤ 2s+ 1). (4.6)

Also we can prove (see Gautschi and Milovanović [14]) that for the elements aℓ,j ,
defined by (4.6). the following relations hold:

ak,k = (k − 1)!a1,1 (1 ≤ k ≤ 2s+ 1),

ak,k+j = −(2s+ 1)(k + j − 1)(k−1)

j
∑

ℓ=1

uℓaℓ,j

(

1 ≤ k ≤ 2s− j + 1

j = 1, . . . , 2s

)

,
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where
a1,1 = Ων(τν) = [π′

n(τν)]
2s+1,

uℓ =
∑

i6=ν

(τi − τν)
−ℓ (l = 1, . . . , 2s) (4.7)

and τ1, . . . , τn are the zeros of the s-orthogonal polynomial πn.

Using the normalization

âk,j =
ak,j

(j − 1)!a1,1
(1 ≤ k, j ≤ 2s+ 1),

and putting

bk = (k − 1)Ak−1,ν (1 ≤ k ≤ 2s+ 1),

µ̂k,ν =
µk,ν

(π′
n(τν))

2s+1
=

∫

R

(t− τν)
k

(

∏

i6=ν

t− τi
τν − τi

)2s+1

dλ(t), (4.8)

we have the following result:

Theorem 4.1. For fixed ν (1 ≤ ν ≤ n), the coefficients Ai,ν in the generalized
Gauss-Turán type quadrature formula (4.1) are given by

b2s+1 = (2s)!A2s,ν = µ̂2s,ν ,

bk = (k − 1)!Ak−1,ν = µ̂k−1,ν −
2s+1
∑

j=k+1

âk,jbj (k = 2s, . . . , 1),

where µ̂k,ν are given by (4.8), and

âk,k = 1, âk,k+j = −2s+ 1

j

j
∑

ℓ=1

uℓâℓ,j (k = 1, . . . , 2s; j = 1, . . . , 2s− k + 1),

the uℓ being defined by (4.7).

The coefficients bk (1 ≤ k ≤ 2s+ 1) are obtained from the corresponding upper

triangular system of equations Âb = c, where

Â = [âij ], b = [ b1, . . . , b2s+1 ]
T
, c = [ µ̂0,ν , . . . , µ̂2s,ν ]

T
.

The normalized moments µ̂k,ν can be computed exactly, except for rounding
errors, by using the same Gauss-Christoffel formula as in the construction of s-
orthogonal polynomials, i.e., (3.6) with N = (s+ 1)n knots.

5. Numerical Examples

Using the procedures for constructing s-orthogonal polynomials and calculat-
ing the coefficients in the generalized Gauss-Turán type quadrature formulae, we
prepared corresponding software with the following types of polynomials πn( · ; dλ)
(identified by the integer ipoly):

10



c ipoly - integer identifying the kind of polynomials:
c
c 0 = Nonclassical polynomials with given coefficients
c in the three-term recurrence relation
c 1 = Legendre polynomials on [-1,1]
c 2 = Legendre polynomials on [0,1]
c 3 = Chebyshev polynomials of the first kind
c 4 = Chebyshev polynomials of the second kind
c 5 = Jacobi polynomials with parameters al=.5, be=-.5
c 6 = Jacobi polynomials with parameters al,be
c 7 = generalized Laguerre polynomials with parameter al
c 8 = Hermite polynomials
c 9 = generalized Gegenbauer polynomials with parameters al,be
c 10 = polynomials for the logistic weight
c w(t)=e^{-t}/(1+e^{-t})^2 on the real line
c
c al,be - parameters for Jacobi, generalized Laguerre
c and generalized Gegenbauer polynomials
c For ipoly=9, the weight function is given by
c w(x)=|x|^mu(1-x^2)^al, where be=(mu-1)/2.

All computations were done on the MICROVAX 3400 computer using VAX
FORTRAN Ver. 5.3 in D- and Q-arithmetic, with machine precision ≈ 2.76×10−17

and ≈ 1.93× 10−34, respectively.

For example, taking the simplest case dλ(t) = dt on (−1, 1) (Legendre case) for
s = 3 and n = 6 we obtain the following results in D-arithmetic:

-------------------------------------------------------------
EXAMPLE: Legendre case (s=3, n= 6)
-------------------------------------------------------------
k alpha(k) beta(k)
-------------------------------------------------------------
-------------------------------------------------------------
0 .000000000000000E+00 .421734239962151E-09
1 .000000000000000E+00 .440736117396359E+00
2 .000000000000000E+00 .261370723991856E+00
3 .000000000000000E+00 .254308492588985E+00
4 .000000000000000E+00 .252419703332403E+00
5 .000000000000000E+00 .251673508288773E+00
-------------------------------------------------------------
zero(4)= .253024354005831E+00 zero(5)= .693971226426183E+00
-------------------------------------------------------------
A(0,4)= .490428415587130E+00 A(0,5)= .364261355363419E+00
A(1,4)= -.337436711843437E-02 A(1,5)= -.687117834633461E-02
A(2,4)= .410826884080729E-02 A(2,5)= .172546325400200E-02
A(3,4)= -.199019633412152E-04 A(3,5)= -.224545089649575E-04
A(4,4)= .731050299239644E-05 A(4,5)= .172499364044568E-05
A(5,4)= -.187335372501814E-07 A(5,5)= -.116086450996926E-07
A(6,4)= .328312605939431E-08 A(6,5)= .409342595779103E-09
-------------------------------------------------------------
zero(6)= .956499429571622E+00
-------------------------------------------------------------
A(0,6)= .145310229049452E+00
A(1,6)= -.373106603607300E-02
A(2,6)= .140016792703096E-03
A(3,6)= -.203140295590650E-05
A(4,6)= .256664306399549E-07
A(5,6)= -.157872874923525E-09
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A(6,6)= .644174120159092E-12
-------------------------------------------------------------

In this symmetric case we have

τν = −τn−ν+1, Ai,ν = (−1)iAi,n−ν+1 (i = 0, 1, . . . , 2s; ν = 1, . . . , [n/2]).

In a similar way, taking dλ(t) = e−t dt on (0,+∞), for s = 2 and n = 4 we
obtain the following results:

-------------------------------------------------------------
EXAMPLE: Laguerre case (s=2, n= 4)
-------------------------------------------------------------
k alpha(k) beta(k)
-------------------------------------------------------------
0 .207388624792579E+01 .303230635818922E+12
1 .822463761482710E+01 .634173445888648E+01
2 .144897291810527E+02 .319077166841049E+02
3 .207314448414547E+02 .777497393014401E+02
-------------------------------------------------------------
zero(1)= .632063951424839E+00 zero(2)= .455606576114603E+01
-------------------------------------------------------------
A(0,1)= .893868706048056E+00 A(0,2)= .105965892148938E+00
A(1,1)= .722539387113141E-01 A(1,2)= -.121748335429446E+00
A(2,1)= .122430172532510E+00 A(2,2)= .992761298904123E-01
A(3,1)= .138636735614257E-01 A(3,2)= -.332242372472303E-01
A(4,1)= .320971772057328E-02 A(4,2)= .119138715350092E-01
-------------------------------------------------------------
zero(3)= .127761233967315E+02 zero(4)= .275554447759580E+02
-------------------------------------------------------------
A(0,3)= .165401159420847E-03 A(0,4)= .643585948965624E-09
A(1,3)= -.388563922187372E-03 A(1,4)= -.218551256526161E-08
A(2,3)= .424601031799787E-03 A(2,4)= .303427339086507E-08
A(3,3)= -.239091931672140E-03 A(3,4)= -.202889024796821E-08
A(4,3)= .686760628323864E-04 A(4,4)= .558927293454754E-09
-------------------------------------------------------------

Now, we give an example where it is preferable to use a formula of Turán type
rather than the standard Gaussian formula,

∫

R

f(t) dλ(t) =
n
∑

ν=1

Aνf(tν) +Rn(f), (5.1)

for which Rn(P2n−1) = 0. The example is

I =

∫ 1

−1

et
√

1− t2 dt = 1.7754996892121809468785765372 . . . .

Here we have f(t) = et and dλ(t) =
√
1− t2 dt on [−1, 1] (the Chebyshev measure

of the second kind). Notice that f (i)(t) = f(t) for every i ≥ 0.

The Gaussian formula (5.1) and the corresponding Gauss-Turán formula (4.1)
give

I ≈ IGn =

n
∑

ν=1

Aνe
tν (5.2)
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and

I ≈ ITn,s =
n
∑

ν=1

C(s)
ν eτν , (5.3)

respectively, where C
(s)
ν =

2s
∑

i=0
Ai,ν .

Table 5.1 shows the relative errors |(ITn,s − I)/ITn,s| for n = 1(1)5 and s = 0(1)5.
(Numbers in parentheses indicate decimal exponents and m.p. stands for machine
precision.)

Table 5.1.
Relative errors in quadrature sums ITn,s

n s = 0 s = 1 s = 2 s = 3 s = 4 s = 5

1 1.15(−1) 4.71(−3) 9.72(−5) 1.21(−6) 1.01(−8) 5.98(−11)

2 2.38(−3) 2.05(−7) 3.06(−12) 1.36(−17) 2.40(−23) 1.88(−29)

3 1.97(−5) 1.15(−12) 4.02(−21) 9.26(−31) m.p. m.p.

4 8.76(−8) 1.71(−18) 4.68(−31) m.p. m.p. m.p.

5 2.43(−10) 9.40(−25) m.p. m.p. m.p. m.p.

For s = 0 the quadrature formula (5.3) reduces to (5.2), i.e., ITn,0 ≡ IGn . No-
tice that Turán’s formula (5.3) with n nodes has the same degree of exactness as
Gaussian formula with (s+1)n nodes, which explains its superior behavior in Table
5.1.

6. An Application in the Moment-Preserving Spline Approximation

In this section we discuss two problems of approximating a function f(t), 0 ≤ t <
+∞, by the defective spline function (1.1). Let N denote the sum of the variable
knots τν , ν = 1, . . . , n, of the spline function (1.1), counting multiplicities, i.e.,
N = k1 + · · ·+ kn.

Problem 1. Determine Sn,m in (1.1) such that

S(k)
n,m(0) = f (k)(0), k = 0, 1, . . . , N + n− 1, m ≥ N + n− 1. (6.1)

Problem 2. Determine Sn,m in (1.1) such that

S(k)
n,m(0) = f (k)(0), k = 0, 1, . . . , l (l ≤ m) (6.2)

and
+∞
∫

0

tjSn,m(t) dt =

+∞
∫

0

tjf(t) dt, j = 0, 1, . . . , N + n− l − 2. (6.3)

We first consider the Problem 2.

Theorem 6.1. Let f ∈ Cm+1[0,+∞) and

+∞
∫

0

tN+n−l+m
∣

∣f (m+1)(t)
∣

∣ dt < +∞.
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Then a spline function Sn,m of the form (1.1) with positive knots τν that satisfies
(6.2) and (6.3), exists and is unique if and only if the measure

dλ(t) =
(−1)m+1

m!
tm−lf (m+1)(t) dt (6.4)

admits a generalized Gauss-Turán quadrature

+∞
∫

0

g(t) dλ(t) =
n
∑

ν=1

kν−1
∑

k=0

A
(n)
ν,kg

(k)(τ (n)ν ) +Rn(g; dλ), (6.5)

with n distinct positive nodes τ
(n)
ν , where Rn(g; dλ) = 0 for all g ∈ PN+n−1. The

knots in (1.1) are given by τν = τ
(n)
ν , th coefficients αν,i by the following triangular

system:

A
(n)
ν,k =

kν−i
∑

i=k

(m− i)!

m!

(

i

k

)

[

D i−ktm−l
]

t=τν
αν,i (k = 0, 1, . . . , kν − 1), (6.6)

where D is the standard differentiation operator.

For proof see Kovačević and Milovanović [21–22].

If we let l = N + n− 1, Theorem 6.1 gives the solution of Problem 1. The case
k1 = k2 = · · · = kn = 1, l = −1, of Theorem 2.1 has been obtained by Gautschi
and Milovanović [13].

Similarly as in [26–27], we can prove the following result regarding the approxi-
mating error (see Kovačević and Milovanović [22]):

Theorem 6.2. Let f be given as in Theorem 6.1 and such that the measure dλ
in (6.4) admits a generalized Gauss-Turán quadrature formula (6.5) with distinct

positive nodes τν = τ
(n)
ν . Define

σr(x) = x−(m−l)(x− t)m+ .

Then the error of the spline approximation (1.1), (6.1) (l = N + n − 1) or (1.1),
(6.2), (6.3), is given by

f(t)− Sn,m(t) = R(σr(x); dλ(x)), t > 0,

where R(σr(x); dλ(x)) is the remainder term in the formula (6.4)− (6.5)

+∞
∫

0

g(t) dλ(t) =
n
∑

ν=1

kν−1
∑

k=0

A
(n)
ν,kg

(k)(τ (n)ν ) +R(g(x); dλ(x)).

If in the spline function (1.1) we take kν = 2s+ 1, ν = 1, . . . , n, s ∈ N0, i.e.,

Sn,m(t) =
n
∑

ν=1

2s
∑

i=0

αν,i(τν − t)m−i
+ , 0 ≤ t < +∞, (6.7)
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and l is formally replaced by −d in Theorem 6.1, in view of the approximative
requirement (1.2), then we get the identical statement as in [26, Theorem 2.1].
Therefore, this fact enables us in this case to use the previously developed software
for the problem (1.2). Now, for solving problems (6.1) or (6.2)–(6.3), one can take
d := −l.

Let f(t) = e−t on [0,+∞). For this function the measure (6.4) becomes the
generalized Laguerre measure

dλ(t) =
1

m!
tm−le−t dt, 0 ≤ t < +∞.

First, for a given (n, s,m, l), we determine τnν (the zeros of the polynomial πs,n
n ) and

the weight coefficients of the Turán quadrature (6.5). Then, the knots in (2.2) are

given by τν = τ
(n)
ν , ν = 1, . . . , n, and we find the coefficients of the spline function

(6.7) using the triangular system of equations (6.6).

In Tables 6.1 and 6.2 we can see the behavior of approximate values of the

resulting maximum absolute errors e
(l)
n,m = max

0≤t≤τn

∣

∣Sn,m(t) − f(t)
∣

∣, for different

values of (n, s,m, l). Clearly, for t ≥ τn, the absolute error is equal to f(t).

Table 6.1.

Accuracy of the spline approximation for s = 1

l = 0 l = 1 l = 2

n m = 2 m = 3 m = 4 m = 2 m = 3 m = 4 m = 3 m = 4

2 1.5(−1) 1.8(−2) 4.9(−3) 1.5(−1) 2.6(−2) 6.4(−3) 3.0(−2) 6.5(−3)

3 8.4(−2) 1.3(−2) 2.5(−3) 6.7(−2) 1.3(−2) 2.3(−3) 1.1(−2) 1.9(−3)

4 5.1(−2) 8.1(−3) 1.2(−3) 4.1(−2) 7.1(−3) 9.2(−4) 4.8(−3) 8.6(−4)

5 3.3(−2) 5.1(−3) 6.2(−4) 3.0(−2) 4.0(−3) 5.2(−4) 4.0(−3) 6.1(−4)

Table 6.2.

Accuracy of the spline approximation for m = 8

l = 0 l = 4

n s = 1 s = 2 s = 1 s = 2

6 2.37(−6) 1.24(−6) 2.10(−6) 1.24(−6)

7 1.08(−6) 5.31(−7) 1.00(−6) 6.73(−7)

8 5.62(−7) 2.62(−7) 5.13(−7) 3.59(−7)

9 3.20(−7) 1.88(−7) 2.85(−7) 1.93(−7)

10 2.01(−7) 1.31(−7) 1.80(−7) 1.07(−7)
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[22] M.A. Kovačević and G.V. Milovanović, Spline approximation and generalized Turán quadra-

tures, Portugal. Math. 53 (1996), 355–366.

[23] J. G. Laframboise and A. D. Stauffer, Optimum discrete approximation of the Maxwell dis-

tribution, AIAA J. 7 (1969), 520–523.

[24] C.A. Micchelli, Monosplines and moment preserving spline approximation, Numerical Inte-

gration III (H. Brass and G. Hämmerlin, eds.), Birkhäuser, Basel, 1988, pp. 130–139.
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