ORTHOGONAL POLYNOMIALS ON THE RADIAL RAYS
IN THE COMPLEX PLANE AND APPLICATIONS*

Gradimir V. Milovanovié¢

We consider polynomials orthogonal on the radial rays in the complex plane as well as
some applications of such polynomials. Beside the problems on existence and uniqueness
of such polynomials, we give a numerical construction of these polynomials. We describe
a discretized procedure, in particular for Jacobi weights on the rays, and analyze a special
case of so-called two-sided Chebyshev polynomials. A distribution of zeros in a general
case is included.

Some interesting special classes of orthogonal polynomials when the rays are dis-
tributed equidistant in the complex plane, with equal lengths and the same weights on
the rays are also considered. A recurrence relation for these polynomials, a connection
with standard polynomials orthogonal on the real line, and a differential equation are
derived. It is shown that their zeros are simple and distributed symmetrically on the
radial rays, with the possible exception of a multiple zero at the origin. An analogue
of the Jacobi polynomials and the corresponding problem with the generalized Laguerre
polynomials are also treated. Finally, some applications of these polynomials in physics
and electrostatic are discussed.

1. Introduction

In this paper we study orthogonal polynomials on the radial rays in the complex

plane. Let M € N, a;, >0,s=1,2,...,M,and 0 < 6; <0y < --- < Oy < 2m. Putting

(*) This paper is in final form and no version of it will be submitted for publication elsewhere.
The work was partly supported by the Serbian Ministry of Science, Technology and Development.
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F1ag. 1.1: The rays in the complex plane (M = 6)

e, =¢€", s=1,2...,M, we consider M points in the complex plane, z;, = a,c, € C,

s =1,2,..., M, with different arguments 6. Some of a, (or all) can be co. The case

M = 6 is shown in Figure 1.1.

We define an inner product (f, g) by

(L.1) () =3 e it / F(2)9(2) Jws(2)] dz.

where ¢, are the radial rays in the complex plane which connect the origin z = 0

and the points z;, s = 1,2,..., M, and z — ws(z) are suitable complex (weight)
functions. Precisely, we suppose that the functions = — w,(x) = |ws(zes)| = |ws(2)]
(2 €ls; s=1,2,..., M) are weight functions on (0, a,), i.e., they are nonnegative on

(0,as) and [;” wy(z)dz > 0. In the case when a; = +oo all moments must exist and

be finite.

The inner product (1.1) can be also expressed in the form

(1.2 )= [ flaz)alam ) de
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In a simple case when M =2, 6; =0, f; = 7, (1.2) becomes

(f,9) = /f e dx+/ F(—a)g (=) wale) de,

i.e., . -
(1.3) (f,9) = / f(z)g(z) w(z) dz,
where we put @ = —ag, b = a1, and

wi(z), 0<z<b,
w(z) =
wa(—x), a<xz<O0.

Thus, it reduces to the standard case of polynomials orthogonal on (a,b) with respect

to the weight function z — w(z).

Using the characteristic function of a set A, defined by

1, z €A,
x(4;2) =
0, z ¢ A,
and putting L = (1 Uly U... U/, the inner product (1.1) can be expressed in an usual

form
(L4) (f,9) = / F(2)9(@) dul2),

where the measure dyu(z) is given by

(1.5) Zs Hw,(2)] x(€s; 2) dz.

The paper is organized as follows. In Section 2 we develop preliminary material on
existence and uniqueness of the orthogonal polynomials on the radial rays in the com-
plex plane, and in Section 3 we consider numerical construction of these polynomials.
We describe a discretized procedure, in particular for Jacobi weights on the rays, and
analyze a special case of so-called two-sided Chebyshev polynomials. A distribution of
zeros is discussed in Section 4. In Section 5 we consider the complete symmetric cases
when the rays are distributed equidistant in the complex plane, with equal lengths

and the same weights on the rays. We give the recurrence relation for polynomials in
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such cases, as well as a connection with standard polynomials orthogonal on the real
line. Also, we show that their zeros are simple and distributed symmetrically on the
radial rays, with the possible exception of a multiple zero at the origin. An analogue of
the Jacobi polynomials and the corresponding problem with the generalized Laguerre
polynomials are treated in Section 6. Finally, some applications of these polynomials

in physics and electrostatic are discussed in Section 7.

2. Moments, Existence, and Uniqueness

First we see that
M .,
11?2 =(f, f) = Z/ | f(2e,) [Pws () do > 0,
s=1 0

except when f(z) = 0. The moments are given by

M a
fpg = (2P, 27) = ng_q/ 2P () dz,
s=1 0
ie.,
M
(2.1) Hp,qg = Zgls’iq/‘z(ﬁq’
s=1

where u,(,s) are single moments which correspond to the weight function z — w,(x) on

the rays /5,
Qg
uz(f):/ 2Pwy(x) de, s=1,2,..., M.
0
Notice that

M
Hpp = Z/Lg;) > 0 and ﬁq,p = lp.g-
s=1

Using the moment determinants

Hoo H1o tt MN-1,0
Ag=1, Ay= /L‘Ol H11 Tt MN-11 N>,
HoN—-1 MH1N-1 - HN-1,N-1

where the moments are given by (2.1), we can state the following existence result for the

(monic) orthogonal polynomials {my(2)} 4>, with respect to the inner product (1.2).
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Theorem 2.1. If Ay > 0 for all N > 1 the monic polynomials {mn(2)} 52, or-
thogonal with respect to the inner product (1.2), exist uniquely and the norm is given
by

A
(2.2) Il =/ =

An

Proof. Write
N
n(2) = Za,(,N)z”, ol =1,
v=0

and consider the orthogonality conditions
(TrNaZk) = Zal(/N)(Zyazk) = Zaz(/N),U/V,k = KN(Sk:Na k S Na

where Ky = ||mx||* # 0 and &y is the Kronecker delta. These conditions are equivalent

to the system of linear equations

Moo Mo -+ HUNO [ a(()N) | 0
Mot HM11 -+ MUNIL agN) 0
(2.3) : =
a(N)
| tov N -0 kNN | LON 1 | Ky |

Since Ayny1 # 0 the system (2.3) has a unique solution for the coefficients o

For the monic polynomials we have a%v) =1 and

) _ KnAy >
ay’ = = [|7n||
AN—l—l

Ay
ANt

=1

)

Le., [|[my|* = Ani/Ay. O

It is clear that such monic orthogonal polynomials can be expressed in the form

mo(2) = 1,
F00 Mo 00 HN-10 1
Ho1 H11 vt UN-11 z
mn(z) = ALN , N>1
Ho,N—1 HMHi,N—-1 *** HUN-1,N—1 2Nl
Ho,N Nt UN-1,N 2N
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In some cases it is possible to evaluate the moment determinants in an explicit
form and so get the corresponding orthogonal polynomials. The following symmetric
case was considered in [13].

Let ag =1, 0s =2n(s —1)/M, s = 1,2,..., M, with Legendre weight on the rays
(ws(x) =1 for each s). Then, the inner product (1.2) reduces to

M 1
(fa g) = ;/{; f(xss)g(xss) d$,
and the moments (2.1) to

M _
fpg = (2F,27) =
0, otherwise,
ie.,
M
M@i+j)+2v+1°
The corresponding moment-determinants can be evaluated as

UM itv,Mj+y = 0<v<M-1, 1i4,5>0.

Awn = BOED ... gD
v—1 _ M-1

AMn+1/ = HEy(:j_l H Eéj), O<r< M,
=0 j=v

where E{”) =1 and

Huv KA +v,p cee KM (n—1)+vp
E(V) _ My, M+v KM +v,M+v e ,U/M(n—l)-l—u,M—l—V
n
My Mn-1)+v HM+v,Mn—1)+v -+ HMn-1)+v,M(n—1)4v

The value of E) is
> [0l (n—1)1)?

EY) =M" — .
IT M@+ j)+2v+1]
i,j=0
Using (2.2) we find
M _
e T n=0,

2 __
||7TMn+u|| - E(V) - M Im—1 M(k—n—l—l) 2
2nM +2v +1 kl;[n MEk+2v+1 ’
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where 0 <v < M — 1.

These formulas enable us to obtain the explicit expressions for coefficients in the
corresponding recurrence relation for polynomials orthogonal on the symmetric rays.
Such considerations will be given in Section 5. For more details see the references [11]

and [13].

3. Numerical Construction of Polynomials

In this section we present a numerical method for constructing orthogonal poly-
nomials as well as a method for zero finding of such polynomials. We suppose that for
a given inner product the corresponding orthogonal polynomials {m(2)}/25 exist. In

particular, some special cases of Jacobi weights will be considered.

Thus, let 7 (2) (k € Ny) be monic polynomials orthogonal with respect to the inner
product (1.2). Since 74 (2) — 2m;_1 (%) is a polynomial of degree at most £ —1 and 7;(%),

j=0,1,...,k — 1, form a basis of P;_1, it is clear that for any integer £k € N, there

exist constants S, 7 = 1,...,k, such that
k

(3.1) mh(z) = 2m1(2) = Y Bumioa(z), k€N
j=1

Because of orthogonality, the coefficients j3;; are given by

(Z7Tk71,7ij1)

(-1, mj-1)

For a fixed N € N we put
an(z) = [m(2) m(z) ... axna(2)]",  ex=[00...0 1.

Then, the previous relations can be represented in a matrix form

(3.3) 2qn(2) = Byan(2) + mn(2)en,
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where By is the following lower Hessenberg matrix

| B 1 0 - 0 |
B Ba2 r -0
(3.4) By =
Brn-1,1 Bn-i12 . 1
| Ong Bwe o BNy

Let & = fj(.N) (j=1,...,N) be zeros of my(2). Then (3.3) reduces to the eigenvalue
problem
&ian(&) = Byan(§;)-
Thus, &; are eigenvalues of the matrix By and qu(&;) are the corresponding eigenvec-
tors.

According to (3.3) one can obtain the following determinant representation of the

monic polynomials
wn(z) = det(zIy — By),
where Iy is the identity matrix of the order N.

For computing zeros of my(2) as the eigenvalues of the matrix By we use the
EISPACK routine COMQR [17, pp. 277-284]. Notice that this routine needs an upper
Hessenberg matrix, i.e., B%. Also, the MATLAB can be used.

We remark that in the case of the standard orthogonal polynomials on the real line,
the matrix By reduces to a tridiagonal matrix and (3.1) is then the well-known three-
term recurrence relation. The reason for this is the basic property (zf,g) = (f, z9)
satisfied by the inner product. Therefore, (2mp_1,71) = (71, 2mj_1) = 0, i.e,
Brj =0 for j <k —1.

Regarding to the inner product (1.2), we have (see [13]):

Lemma 3.1. If there exists any p € N such that €2’ =1 for each s = 1,..., M, then

the inner product (1.2) has the property

(3.5) (2" f,9) = (f,2"9).
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Theorem 3.2. Let the inner product (1.2) satisfies (3.5). Then the monic polynomials

{mn(2) Y5, satisfy a (2p + 1)-recurrence relation

N+p—1

(3.6) rn(2) = anap(2) + Y adVmi(z), N>
J=N—p

Proof. Writing
N+p—-1

ZpWN(Z) = 7TN+p(Z) + Z Oég-N)Wj(Z), N Z 0,
j=0

we see that (z/7my, ;) = agN) (mj,m;) for 0 < j < N+ p— 1. However, because of (3.5)
and orthogonality, we have (2’7, ;) = (7n, 2°7m;) = 0 for p+ j < N. Thus, ag-N) =0
forj<N—p. O

Of course, the minimal p with the previous property is interesting in applications.

Such p provides the simplest form of the recurrence relation (3.6).

Regarding to the previous remark on the standard orthogonal polynomials on the
real line and the basic property (zf,g) = (f, zg), we see that in this case we have two
rays (M = 2) with e = 1 and e, = —1. It is easy to see that p = 1 satisfies the

condition of Lemma 3.1, so that (3.6) becomes a three-term recurrence relation.

3.1. Discretized Stieltjes-Gautschi procedure

In order to determine my(z), m1(2), ..., Tn(z), in a general case of the inner product
(1.2), we must compute the matrix By. Because of that, we consider here an effective
method for numerical calculation of the elements f; in (3.2).

At first we suppose that all ag are finite. Then, we transform the integrals in (1.2)

to the interval (0,1) and obtain

(3.7) (f,9) = Z/o asf(asesz)glasesx) Qs () da.

where Qg (x) = wy(asz), s=1,2,..., M.

In order to evaluate the integrals in (3.7) we need n-point Gaussian quadratures

1 n

(3.8) $(2)Q(z) dz =Y " AI(7) + Ry o(6),
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which are exact for all algebraic polynomials of degree at most 2n — 1. Thus, in this

way we get a discretized form of the inner product

M n
(3.9) (f,9) ~ Z s Z A9 (a8 709) g (a8 75"
s=1 =1

which is very easy for computing.

In the cases when some of a; (or all) are infinity we should use certain quadratures
over (0,+o00) depending on the corresponding weight functions.

Since the maximal degree of polynomials which appear in the inner products in
(3.2)is14+(k—1)+(j—1) < 2N —1, it is enough to take n = N nodes in the previous
quadratures. In that case, the all elements f(i; in the lower Hessenberg matrix (3.4)
will be computed exactly, except for rounding errors.

In numerical construction of the Hessenberg matrix By we use some kind of the
Stieltjes procedure (cf. [4]) and call it as the discretized Stieltjes-Gautschi procedure.
Namely, we apply (3.2), with inner products in discretized form (3.9), in tandem with
the basic linear relations (3.1).

Since my(z) = 1, we can compute f1; from (3.2). Having obtained (;;, we then use
(3.1) with £ = 1 to compute m(z) for all {asesT,SN’s)} to obtain its values needed to
reapply (3.2) with k& = 2. This yields (5 and (32, which in turn can be used in (3.1) to
obtain the corresponding values of m(2) needed to return to (3.2) for computing fs1,
fs2, and f33. Thus, in this way, alternating between (3.2) and (3.1), we can ‘bootstrap’
ourselves up to any desired order N.

In a numerical implementation of the previous procedure it is very convenient to

use the M ATLAB.

3.2. Jacobi weights on the rays

In this section we consider polynomials orthogonal with respect to the inner prod-
uct (1.2), i.e., (3.7), when the corresponding weight functions w,(z) on the radial rays

ly, s =1,2,..., M, are defined by

wy(2) = (2, — 2)* 2%, as, Bs > —1 (s=1,2,..., M).
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Fi1G. 3.1: Zeros of mp(z) for Legendre weight (left) and different Jacobi weights (right) on
the rays

In other words, on the each of the rays (z = zases, 25 = ases, €5 = ewS), we have a

Jacobi weight with parameters ay, [, i.e.,

Qs

2| = a2 (1 — z)* 2P (z € 4y)

lws(2)] = |ases — 2
for each s =1,2,..., M.

Then (3.7) becomes

M 1
(3.10) (f,9) = Z aytos / fzase)g(zase,) (1 — )% 2P d.
s=1 0

Thus, in this case (3.8) are the Gauss-Jacobi quadratures transformed to the inter-
val (0,1). For a selected N, using the discretized Stieltjes-Gautschi procedure we can
compute the matrix By. It gives us access to the first N + 1 orthogonal polynomials
mr(2), k=0,1,..., N. As we have seen on the beginning of this section, the eigenval-
ues of the matrix By are zeros of the polynomial 7y(2). Of course, the zeros of m;(z)

(1 <k < N) are the eigenvalues of the leading principal submatrix By.
The case of a polynomial of degree 10, which is orthogonal on the rays defined by
21 =3, 29 = 4€3™/7 | 25 = 2e?™/3 is presented in Figure 3.1. The zeros of the polynomial

are denoted by *. We considered two cases of the weights: (a) the Legendre weight
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on each of the rays (the left figure); and (b) the Jacobi weights with parameters:
ap =1 =—1/2, ay = =1/2, and a3 = —f3 = 1/2 (the right figure).

3.3. Two-sided Chebyshev polynomials

In this subsection we consider some special cases when M = 2, a; = ay = 1,
61 = 0, 5 = 7, and weights on the rays are pairs of the Chebyshev weights of the first,
second, third, and fourth kind, shifted to (0, 1), i.e.,

wV(z) = ;, w?(z) = /(1 -2)zx,

1—=2x

1—=z T
Thus, for the weights on the rays we take the pair (w®, @), where p,q € {1,2,3,4}.
According to (1.3) we have standard polynomials orthogonal on (—1,1) with respect

to the weight function

w?(z), 0O0<wz<l,
w(z) = wP?(z) =
w9 (—z), —1<z<0.

The corresponding orthogonal polynomials will be called the two-sided Chebyshev poly-
nomials of (p, q)-type and denoted by C’,Ep’q) (z), where p,q € {1,2,3,4}. These (monic)
polynomials satisfy the basic three-term recurrence relation

() = (@ —a)OP (@) - BPOCI (@), k=0,1,...,

c"z) = 0, CPV(z)=1.

Notice that w(@?)(—x) = w9 (z), and therefore
al(cq,p) _ _al(cp,q) and Bl(cq,p) — 5](cp,q) (k=0,1,...).

Thus, it is enough to investigate only cases when p < ¢. In Figure 3.2 we display
the weights x — w®%(z), when (p, ¢) run over the following sequence of pairs: (1,1),

(172)5 (173)7 (174); (272)7 (273); (274)7 (373)5 (374)7 (474)'
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Fia. 3.2: The weight functions z +— wPa) () for 1 <p<qg<4
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Evidently, Oé](f’Q) = 0 for p = ¢, because the weight function is even. By A®9

and BP9 we denote the sequences of recursion coefficients {a” ’q)};:o?) and {79 g

respectively.

For an even weight function, the recursion coefficients BP?) p=1,2,3, 4, are

By _ - § 1_7 ﬂ 12723 2413235 91312277
B "848’ 8167 437927 109248167 332155120 ")’
pea _ T 5 17 381 23525 7746713 8004121533
B 47167 80" 1360° 1036327 28681680 34304267920" "~ ’
BB - 5 13 321 14185 4092673 3233397369
N 787807 10407 66768 145708327 14290354832 |’
1 5 17 381 23525 7746713
B(474) — T, — — . — e
"87167 807 1360 103632 28681680’ ’
respectively. Also, we give coefficients for two non-symmetric cases ((p,¢) = (1,2) and
(p,q) = (1,3)):
4(12) 7607 518309 8485627223  49034107172287781
~ 187 5058"  5069802° 85691074386°  524482597302736618" "’
B _ 9m 281 405945 1334618773 498086602437333 ‘
B 8 1296’ 1263376 6510275280 1804645097447120° |’
AL3) {

143 95157 1592897243 380934910863589
127 3907 8823107 29467538694 14965099689812742" "~ |’

By _ {37r 65 20361 141107265 23393297835017 }

27144 67600° 737013904 75403589058576

In Figure 3.3 we presented the graphics of two-sided polynomials C,gl’l)(x) and
") (z) for k = 2,3,4,5.

4. Distribution of Zeros

One of the most relevant questions relating to orthogonal polynomials is their
zero distribution. A general result on this subject and a few numerical examples are

presented here.

Let my(z) (N € Ny) be monic polynomials orthogonal with respect to the inner

product (1.1), i.e., (1.4), where the measure dyu(z) is given by (1.5). Let Co(B) denotes
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o
[ )

o.z \ é : ﬁ/‘\y#

F1c. 3.3: Two-sided polynomials C,(cl’l)(x) (left) and C,(CI’Q) (z) (right) for k = 2(1)5

the convex hull of a set B € C (i.e., the smallest convex set containing B) and let
E = supp(dpu) be the support of the measure dyu(z). Since E C L =0, Uly U ... ULy,

using a result of Fejér (see [15] and [22]), we can state:

Theorem 4.1. All the zeros of the polynomial wx(z), N € N, orthogonal with respect
to (1.4) lie in the convex hull of the rays L = €1 U ly U ... U lyy.

Furthermore, an improvement of Fejér’s result holds (see [15]):

Theorem 4.2. If Co(supp(dp)) is not a line segment, then all the zeros of the poly-
nomial wy(z) lie in the interior of Co(supp(du)) C Co(L).

In order to illustrate the previous results, we consider again the example from

Subsection 3.2 with three non-symmetric rays defined by z; = 3, 2, = 4€3™/7, 23 =
2e2™/3. As we can see in Figure 3.1, the zeros of m19(2) are in the convex hull of the

rays. Notice also that some of zeros lie on the rays, and others not.

More precise results on zero distribution of polynomials 7y (z) can be obtained in
some special (symmetric) cases. Such kind of investigation in details will be given later.
Now, we consider two cases on the symmetric rays in the complex plane.

In the first example we put M = 3 equidistant distributed rays z, = e27(~1/3
s = 1,2,3. Taking the Legendre weight on the each rays (as = s = 0, s = 1,2,3)
we get a complete symmetric case. In that case, all the zeros are on the rays and

symmetrically distributed. The case N = 16 is presented in Figure 4.1 (left). We note

that five zeros are located on the each of the rays and one zero is at origin.
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1 1 I
0.5t ] 0.5t
*
0 OFf %—% * * H—¥e
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-1 -1 I
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

Fi1a. 4.1: Zero distribution for M = 3, N = 16 (left) and M =8, N = 20 (right)

In the second example we take M = 8 rays symmetrically distributed in the complex
plane, such that z, = e, where 0, = (s — 1)7/4, s = 1,2,...,8. On the other side,

we take different Jacobi weights on the rays, with parameters given in Table 4.1.

TABLE 4.1: The parameters s and s in the Jacobi weights on the rays ¢

s |1 2 3 | 4 5 6 7 8
a, | =3/4 | =1/2 | =1/4| 0 | 1/4 |1/2| 3/4 | 1
By | =172 1/2 | —1/2|1/2|-1/2 |1/2|-1/2 |1/2

The zeros of the corresponding polynomials 7 (z) orthogonal on these rays with
respect to the given Jacobi weights are displayed in Figure 4.1 (right). As we can see
there exists a non-symmetricity in the zero distribution, which is influenced by different

Jacobi weights.

5. Complete Symmetric Cases

This section is devoted to orthogonal polynomials on the equidistant distributed

rays in the complex plane, with equal lengths and the same weights on the rays. Thus,
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we consider the cases when a; =, 0, = 27(s — 1)/M, and
lws(2)] = |ws(zes)| = w(x) (2 = xe,s € L)

for each s =1,2,..., M. Then, the inner product (1.2) reduces to

(5.1) (f,9) = /07" (Z f(xes)g(xss)> w(z) dz.

In particular, two cases are interesting: r = 1 and r = +oc.

The first consideration of such orthogonality was given in [11], with an even number
of rays (M = 2m). We investigated the existence and uniqueness of the (monic)
o0

polynomials {7y(2)} 4>, orthogonal with respect to the inner product (5.1). Similar

considerations when M is an arbitrary number of rays were investigated in [13, 14].

Since ¢ = 1 for each s = 1,2,..., M, according to Lemma 3.1 we see that for
p = M the required condition in this lemma is always satisfied, so that the monic
polynomials {7y (2)} 4>, satisfy the recurrence relation (3.6) (see Theorem 3.2). Fur-
thermore, if M is an even number, for example M = 2m, then there exists a smaller

integer p which satisfies Lemma 3.1: p = M/2 = m.

5.1. Recurrence relation

At first we give some auxiliary results. We note that the single moments uff,s),

which are appeared in (2.1), not depend on s in this case, so that ,ugf) = 1, and

M
Hp,g = Hpq (Z 5’8"1). The last sum can be found in an explicit form.
s=1

Lemma 5.1. For p € N let n = [p/M] and v =p — Mn. Then
w m M, if v=0
T
s=1 s=1

0, if 1<v<M-—1.

Lemma 5.2. The polynomials mn(z), N = 0,1,..., orthogonal with respect to the
inner product (5.1) satisfy

mn(zes) = eNrn(2), s=1,2,..., M.
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Lemma 5.3. For 0 <v <N < M — 1, we have (2¥,7,) = 0.
Lemma 5.4. For N =0,1,...,M — 1 we have my(z) = 2V.

The proofs of these results are very easy and can be found in [11, 13]. Now, we

give the main result:

Theorem 5.5. The monic polynomials {mn(2)} >, satisfy the recurrence relation

(5.2) mnem(2) = (M —an)mn(2) — Bymn-m(z), N >0,

with
an(z) =2, N=0,1,...,M—1,

where the recursion coefficients are given by

(63  an=C™) v gy =

(7N, TN)

and By =0 for N < M.

(7, TN)

(7TN—Ma 7TN—M)

(N > M)

Proof. According to (2™ f,g) = (f,2Mg) and Theorem 3.2, the monic polynomials

{7n(2)} 5>, satisfy the recurrence relation (3.6), with recursion coefficients Oz§-N> =

(2Pmn,m;)/(mj, ;) for N —p < j < N+ p—1, where p= M. Since

(ZMWN,WJ-) = /Or (Z(xgs)MﬂN(ajss)ﬂj(ajes)> w(a:) dx

s=1

_ / (Zx I m>w(x)dx
= (égf‘ﬂ AerﬂN(x)Wj(x)W(x) dz,

using Lemma 5.1, we conclude that (M my, 7;) is different from zero only for N—j =0

and N —j = M. Thus,

TN+ (2) = ZMWN(Z) - Oz%v)ﬂN(z) - a%VjMerfM(z)‘
Since
(N) (zMﬂ-Naﬂ-N—M) _ (WN,ZMTI'N_M)

TN-M,TN-M (7TN—Ma7TN—M),
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we get the recursion coefficients in (5.2) as ay = a%v) and By = a%VJM. O

Using (5.2), it is very easy to get the corresponding recurrence relation for or-

thonormal polynomials 7%, (2) (= 7y (2)/||7n||)

(5:4) May(2) = VBy iy (2) + antiy(2) + V/Brar T (2).

Let N = Mk + v, where k = [N/M] and v € {0,1,...,M — 1}. Taking the
recurrence relation (5.4) for k = 0,1,...,n—1 and for a fixed v, we obtain the following

matrix relation

MM — Mg

n,V

7(11,\{) + V Bum v 7T;;MJH/(Z) €n,

ie.,
(55) (ZMIn - JysV’M))qu) =V /BTLM+V 71—:;MJH/('Z) €n,
where q%%) = [m5(2) Ty (2) - Wz‘nfl)MJrV(z)]T, I,, is the identity matrix of the

order n, and JM) s the symmetric tridiagonal Jacobi matrix determined by

Qy, BM-H/ O
/8M+V 05y Y vV 52M+u

v,M) __
Jys ) = vV 52M+u QoM +v

B(n—l)M—i—u

O 5(n—1)M+u A(p—1)M+v

According to (5.5) one can obtain the following determinant representation of the monic

orthogonal polynomials
TN (2) = Tpprgn(2) = 27 det(2M 1, — JWD),
For fixed v € {0,1,..., M — 1} and M we define a sequence of real polynomials
{(p™(#)}2° such that
(5.6) pUM (1) = det(tI, — JM)),

Regarding to the previous determinant representation of the monic orthogonal poly-

nomials 7y (z) we have

(57) '/TN(Z) = 7TMn+V(Z) = ZVP%V’M)(ZM)a
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where N = Mn + v and n = [N/M].

Putting (5.7), with N = Mn + v, in (5.2) we obtain:

Theorem 5.6. The monic polynomials py”™" (t) (v € {0,1,..., M — 1}) satisfy the

three-term recurrence relation

pgzy-i—]\f) (t) = (t - O‘Mn-l-l/)png’M) (t) - BMn-l-Vpgjj\l@ (t)v n = 07 1? R

pM)y = 0, p{"M) =1,

with recurrence coefficients as in (5.3).

5.2. Orthogonality of polynomials p{"*" (¢)

The following orthogonality holds:

Theorem 5.7. Let {WN(Z)}X,OZOO be a sequence of orthogonal polynomials with respect
to the inner product defined on M rays in the complex plane by (5.1) and let pyM (1)
be polynomials determined by (5.6). For any v € {0,1,...,M — 1}, the sequence of
polynomials {py({/’M) (t)}:i% is orthogonal on (0,7™) with respect to the weight function
t = Qm(t) defined by

(5.8) Quar(t) = tE=MEDM (1M

Proof. Let N = Mn + v, n = [N/M], and K = Mk + v, k = [K/M]. Consider the

inner product
M

(s 7) = /0 ' (Z WN(xes)WK(xss)> () dz,

s=1

which can be reduced to

(tn, TK) = /07‘ (Zeéva(x)gsKer(x)> w(z) dx
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using Lemmas 5.1 and 5.2, as well as (5.7). Changing variable 2 = t in the last

integral, we conclude that

M

(v, i) = (Tatus Tatis) = / PO (O (t) dt =0, n#k,
0
where €, 5/(t) is given by (5.8). O
As we can see, the question of the existence of the polynomials 7y (z) is reduced to
the existence of polynomials p%V’M) (t), orthogonal on (0, 7™) with respect to the weight

function Q, 5/ (t), for every v =0,1,..., M — 1.

5.3. The case M =2m

Let the number of the rays be even, M = 2m. Then, as we mentioned on the
beginning of this section, the inner product (5.1) has the property (2™ f, g) = (f, 2™g)
(p = m in Lemma 3.1). Starting from Theorem 3.2 we can prove the following result

(see [11]):

Theorem 5.8. Let M = 2m and the inner product (-, -) be given by (5.1). The
corresponding monic orthogonal polynomials {my(2)} 4>, satisfy the recurrence relation

(5.9) Tnem(2) = 2™an(2) —bnTy_m(2), N >m,

mn(z) = 2N, N=0,1,....2m -1

)
where
(TN 2™ TN —m) |7 ]?

(5.10) by = -

(’/Tmea’/Tme) ||7-‘—N7m||2 .

There is a connection between this relation and (5.2). Namely, using (5.9) one can

get the recurrence relation (5.2), where

an = by + byim, By = bnbn_m,.

We consider now a simple case when M = 4, r = 1, and w(z) = 1. The inner

product (5.1) then becomes

(1) = [ [@05T0) + flia)ali) + F(-a)aT=2) + f(ialg(—ie) | da
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Using the moments determinants (see Section 2), we can calculate directly the coeffi-

cient by, given by (5.10),

16n° e
Bnrw 3@+t v=OL

(5.11) bansy =
(4n + 2v — 3)?
(8n+2v —3)(8n + 2v + 1)

if v=23.
Now, applying the recurrence relation (5.9), i.e.,

7TN+2(Z) = Z27TN(Z) _bNﬂ—N72(Z)7 N:2737"'7
3

mo(2) = 1, m(2) = 2, m(2) = 2%, m3(2) = 2%,

with (5.11), we obtain the corresponding sequence of orthogonal polynomials:

234_15_36527738104

5.4. Differential equation
Using (5.7) we can prove (see [13]):

Theorem 5.9. If the polynomial p%V’M)(t) (v € {0,1,...,M — 1}), defined by (5.6),

satisfies a differential equation of the form
"M (t)y" + oM 1)y + M, n)y =0,

then the polynomial Ty, (2) satisfies the following linear differential equation of the
second order

AV (AY" 4 BUM ()Y 4 ¢WM) (5, N)Y =0,
where
ABM () = M) (M) 2,
BUM(z) = [M“M (MM — (M + 20 — 1)a®M) (2M)] 2,

CUM(z,N) = M*cM (M (N —v)/M) 22M — Mo (M) M
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5.5. Zeros

Theorem 5.10. Let N = Mn +v, n = [N/M], v € {0,1,...,M — 1} and let the
inner product be given by (5.1). Then, all zeros of the polynomial wy(2) are simple
and located symmetrically on the radial rays 5, s = 0,1,..., M — 1, with the possible

exception of a multiple zero of order v at the origin z = 0.

The proof is based on (5.7). Let T,ﬁ"’y), k=1,...,n, denote the zeros of p{"™ (t)

in an increasing order, n"") < 7" < ... < 7™ It is clear that cach zero 7.
generates M zeros
Z]E:’I;LS,I/) _ M Tlgn,V)eiQW(s—l)/M, g = 1, 2, ., M,
of the polynomial 7y (z). Thus, on every ray we have
(n,v) (n,v) (n,v) =1.2 M
|21 | <z | <o <], s=1,2,..., M.

As an example see Figure 4.1 (left).

6. Analogue of Some Classical Polynomials

In this section we consider two cases of polynomials orthogonal on the radial
rays with respect to the inner product (5.1), which are connected with some classical
orthogonal polynomials. Namely, for polynomials p%V’M) (t) in the representation (5.7)
we take the Jacobi and the generalized Laguerre polynomials. In such a way we obtain

two classes of polynomials named as the M -generalized Gegenbauer polynomials and

the M -generalized Hermite polynomials.

6.1. The M-generalized Gegenbauer polynomials

Let 7 = 1 and the weight function = — w(x) in (5.1) be given by

1
(6.1) w(z) = (1 — ™)™, a>-—1,v> I
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Then for any v € {0,1,...,M — 1}, according to Theorem 5.7, the sequence of
polynomials {p%"™ (¢ )} is orthogonal on (0,1) with respect to the weight func-
tion ¢ = Q0 (t) = (1 — )7 FE=M+D/M (the Jacobi weight transformed to (0,1)).

Thus, we have the following result:

Theorem 6.1. The monic polynomials {mx(2)}3>2, orthogonal with respect to the in-

ner product (5.1), with the weight function (6.1), can be expressed in the form
(6.2) Ty (z) = 27"V PeB) (2 1) N = Mn+v, n=[N/M|,

wherev € {0,1,...,M—1}, B, =v+Q2v—M+1)/M, and plep) (x) denotes the monic
Jacobi polynomial orthogonal on (—1,1) with respect to the weight  + (1—z)*(1+xz)".

For M = 2 the weight (6.1) reduces to the generalized Gegenbauer weight w(x) =
(1 — 2%)@|z]*", taking the integral in the inner product over (—1,1). It is a reason to

call the polynomials 7y (z) as the M-generalized Gegenbauer polynomials.

Starting from the Jacobi differential equation and Theorem 5.9 we get (see [12]):

Theorem 6.2. Let N = Mn+v, n=[N/M], ve {0,1,...,M — 1}. The polynomial
wn(z) orthogonal with respect to the inner product (5.1), with r = 1 and the weight
function (6.1), satisfy a second order linear homogeneous differential equation of the

form

(6.3) (1—2M)22Y" + C(2)2Y" + (AZM — B)Y =0,

where A= N[N +M(a+~)+1], B=v[v+ M(y—1)+1], and
C(z)=M(y—1)+2— (M(a+7)+2)2"

If we take M = 2m the polynomials 7y (z) satisfy the recurrence relation (5.9),

with recursion coefficients (see [11])

n(n+a) .
2n+a+pB,)2n+a+ B, +1) if 0<v<m-—1,
A P e
n v)\1 a v .
@ntath)@ntath F1) Lmsvsim-l
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6.2. The M-generalized Hermite polynomials

We take now r = +o00 and
(6.5) w(z) = 2™ exp(—a™), v > —1/M.
In the same way as before, we can state the following result:

Theorem 6.3. The monic polynomials {7y (2)} 1>, orthogonal with respect to the in-

ner product (5.1), with the weight function (6.5) on (0,4+00), can be expressed in the

form

mn(z) = 2/ L) (ZM), N = Mn+v, n=[N/M],

where v € {0,1,..., M -1}, o, =v+ (2v— M +1)/M, and IAJ%S)(t) denotes the monic

generalized Laguerre polynomial orthogonal with respect to t — t5¢~* on (0, +00).

In the case M = 2, the corresponding weight is the generalized Hermite weight on
(=00, +00), i.e., w(x) = |z|*" exp(—z?). As in the previous subsection we can get the
corresponding differential equation, as well as the recurrence relation when M is an

even number (see [10, 11, 12]).

7. Remarks on Some Applications

At first we mention a physical problem connected to a non-linear diffusion equa-
tion. The equations for the dispersion of a buoyant contaminant can be approximated

by the Erdogan-Chatwin equation
(7.1) Byc = ay{ [DO + (ayc)QDQ] ayc},

where Dy is the dispersion coefficient appropriate for neutrally-buoyant contaminants,
and the Dy term represents the increased rate of dispersion associated with the buoyan-
cy-driven currents (cf. [16]). The same equation was derived also by other authors for

other physical contexts.
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Smith [16] obtained analytic expressions for the similarity solutions of the equation

(7.1) in the limit of strong non-linearity (Do = 0), i.e.,
D = D20, (0,0)°].

both for a concentration jump and for a finite discharge. He also investigated the
asymptotic stability of these solutions. It is interesting that the stability analysis for

the finite discharge involves a family of orthogonal polynomials Yy(2), such that
(7.2) (1 —2"Yy —62°Y + N(N +5)2°Yy = 0.

The degree N is restricted to the values 0,1,4,5,8,9,..., so that the first few (monic)

polynomials are:

1 5 14 21 18 3
73) 1 Y L A B TR B . SR APV
(73) L2 307 T Tt Tt T 19t T1g”

It is easy to see that these polynomials are a special case of polynomials orthogonal
on the radial rays in the complex plane. Namely, if we take four symmetric rays
(M = 4), the inner product (5.1), and the weight function (6.1), with a = vy = 1/2,
ie., w(z) = (1 —2*)Y222 using Theorem 6.1 or (6.4), for m = 2, we get the following

sequence of orthogonal polynomials:

1 14 21
3 4——, z5—iz, 26—12'2, 27—§z3, 28——z4+—, cee
3 11 13

As we can see, this polynomial sequence contains the sequence (7.3), i.e., the polyno-
mials Yy (2) are just our polynomials 7y (z) for the particular values a = v = 1/2.
Notice that our sequence of polynomials is complete. Also, we see that our differential

equation (6.3), in this special case, becomes
(1—2YY" - 62°Y' + [N(N +5)2 —v(v— 1)z 3Y =0,

where N = 4n + v, v € {0,1,2,3}. Evidently, for N =4n and N =4n+1 (n € Ny),
this equation reduces to equation (7.2) derived by Smith [16]. Some similar differential

equations with polynomial solutions were also obtained by Smith [18].
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As a second example we give an electrostatic interpretation of the zeros of polyno-
mials 7y (z) on the symmetric radial rays in the complex plane. The first electrostatic
interpretation of the zeros of Jacobi polynomials was given by Stieltjes in 1885 (see
[19, 20] for details). Stieltjes considered an electrostatic problem with particles of
charge p and ¢ (p,q > 0) fixed at = 1 and x = —1, respectively, and n unit charges
confined to the interval [—1, 1] at points z1, z, . .., Z,. Assuming a logarithmic poten-
tial, he proved that the electrostatic equilibrium arises when z; are zeros of the Jacobi
polynomial P{*~"*7"(z). In that case, the Hamiltonian

n

H(zy,x9,...,2,) = — Z(log(l — xx)? + log(1 + xk)") — Z log |z), — ;]

k=1 1<k<j<n

becomes a minimum. This minimum is indeed the unique global minimum (see Szeg6
(21, p. 140]). Obviously, H(z1,s,...,x,) can be interpreted as the energy of the

previous electrostatic system.

In the last time it was appeared several papers in this direction. Forrester and
Rogers [3] gave an interpretation of zeros of the classical polynomials as the equilibrium
positions of two-dimensional electrostatic problems. Also, Hendriksen and Rossum [6]
considered an electrostatic interpretation of zeros of classical orthogonal polynomials,
including Bessel polynomials, as well as some polynomials introduced by Smith [16],
[18]. We mention also the papers of Grunbaum [5], Dimitrov and Van Assche [2], and
Ismail [8, 9]. Recently, the electrostatic interpretation of the zeros was also exploited
to obtain interpolation points suitable for approximation of smooth functions defined

on a simplex (see Hesthaven [7]).

We consider now a symmetric electrostatic problem with M positive point charges
all of strength ¢ which are placed at the fixed points

(7.4) 6= exp(W) (s=1,2,. .. M)

and a charge of strength p (> —(M —1)/2) at the origin z = 0. Also we have N positive
free unit charges, positioned at z;, 23, ..., zy. Assuming a logarithmic potential, it is

interesting to find these points in electrostatic equilibrium.



GRADIMIR V. MILOVANOVIC

Asin [12] we are interested only in solutions with the rotational symmetry. Putting
N

wn(z) = [[ (z—2,) and N = Mn+v, n = [N/M], we can get the following differential
k=1

equation for this polynomial,
(1= 2M) 7 (2) +2 [p— (Mg + p)2"] 2y (2)

+{N[N—1+2(Mg+p)] 2" —v(v+2p—1)} m,(2) = 0.
Comparing this equation with (6.3) (Theorem 6.2) we obtain:

Theorem 7.1. An electrostatic system of M positive point charges all of strength q,
which are placed at the fized points & given by (7.4), and a charge of strength p (>
—(M —1)/2) at the origin z = 0, as well as N positive free unit charges, positioned
at z1, Ze, ..., Zn, 1S in electrostatic equilibrium if these points z, are zeros of the
polynomial T (2z) orthogonal with respect to the inner product (5.1), with the weight
function w(z) = (1 — 2M)20=1xM+2(=1) " This polynomial can be expressed in terms of

the monic Jacobi polynomials
WN(Z) — 27nzup752q71,(2p+21/71)/M)(QZM - 1),

where N = Mn +v, n =[N/M].
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