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Abstract. An application of integral Schoenberg splines in free-form curve mod-

elling is studied. First, we introduce the λ-family of integral spline operators which,

for λ = 0 reduce to the Schoenberg variation diminishing spline operator, or on inte-

gral spline operator introduced by M. W. Müller, for λ = 1. This approach permits

introducing a parametric B-spline curve model that depends on a real number λ as

a shape parameter. Namely, λ directly influences the shape of the corresponding

B-spline curve. The properties of the λ-family are investigated.
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1. Introduction

The variation diminishing splines are known to be an important class of splines
introduced and mainly investigated by Schoenberg, Greville and Marsden (see, e.g.,
[9] and [7]), primarily as a tool of approximation theory. This kind of splines
possess the properties that make them attractive for Computer Aided Geometric
Design purposes [1]. Namely, variation diminishing splines can be used to produce
a nice curve/surface model called B-spline curve/surface model. In this paper we
deal with a curve models. The similar investigations for surfaces are in working.

In this section we recall the variation diminishing spline operator and the B-
spline curve model. Also we list the properties relevant for CAGD and the way
of application in geometric modelling. Then, in the next section, we define the
curve model so as to be generated by integral Schoenberg spline operator [8], and
investigate its properties. In Section 3 we use the integral spline model to introduce
a shape parameter into B-spline curve. Changing this parameter changes the form
of the curve as to help designer in choosing the final shape of the curve he works
with.

Let us now recall the variation diminishing splines and the corresponding B-spline
curve model. Following [9], we associate with the vector of knots t = (ti)

m
i=−k, m =

n + k, n, k ∈ N so that

0 = t−k = · · · = t0 < t1 < · · · < tn < tn+1 = · · · = tm+1 = 1 ,
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the sequence of normalized B-splines of degree k,

Bk
i (t) = Bk

i (t; ti−k, . . . , ti+1), i = 0, . . . , m

given by

Bk
i (t) = (ti+1 − ti−k)[ti−k, . . . , ti+1](· − t)k

+, i = 0, . . . , m.

Then, the variation diminishing spline operator Sm is defined by

(1) (Smf)(t) =

m
∑

i=0

f(ξk
i )Bk

i (t), 0 ≤ t ≤ 1,

where f : [0, 1] → R is any bounded function and Ξ = (ξk
i )m

i=0 is the sequence
of nodes from [0, 1]. As the consequence of proposed property that Sm preserves
affine function, Greville established ([9, supplement]) that the nodes and knots are
connected through the relation

(2) ξk
i =

1

k
(ti−k+1 + · · · + ti), i = 0, . . . , m.

In this case, the following identities take place

(3)

m
∑

i=0

Bk
i (t) = 1,

(4)
m

∑

i=0

ξk
i Bk

i (t) = t.

Note that from (2) immediately follows

(5) 0 = ξk
0 < ξk

1 < · · · < ξk
m = 1; ξk

i+1 − ξk
i =

1

k
(ti+1 − ti−k+1).

The variation diminishing splines are explored in CAGD in order to construct
free-form curves and surfaces. The curve/surface is said to have free–form if it is
possible to alter its shape by changing one or a few simple parameters with a priori

knowledge how this changing will affect the shape of the curve/surface.

It is usual that the curve is defined by the set of so called control points

P0,P1, . . . ,Pm – the vertices of the control polygon P = (P0, . . . ,Pm)T . Gen-
erally speaking, Pi ∈ R

d, although in practical applications d rarely exceeds 3. If
replace f(ξk

i ) in (1) by Pi ∈ P, we get the B-spline curve model

(6) (SmP)(t) =
m

∑

i=0

PiB
k
i (t), 0 ≤ t ≤ 1,
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as a parametrically defined vector-valued curve. We say that the curve model (6)
is generated by the variation diminishing spline operator Sm.

The B-spline curves obey several important properties making them very attrac-
tive for geometric modelling. Let us list these properties.

1◦ Affine invariance. B-splines bm = (Bk
0 , . . . , Bk

m)T can be regarded as a
partition of unit (the equation (3)). This ensures that the curve SmP is invariant
under scaling and rotation.

2◦ Convex hull property. Each B-spline is a nonnegative function

(7) Bk
i (t) ≥ 0, i = 0, . . . , m,

which, together with (3) makes any point of B-spline curve (SmP)(t) to be a convex
combination of its control points. Consequently, the whole curve lies inside the
convex hull of the control polygon.

3◦ End-points interpolation. For the set of knots t as specified, the B-splines
satisfy

Bk
i (0) = δi0, Bk

i (1) = δi1 (δij − Kronecker’s delta),

which yields

(SmP)(0) = P0, (SmP)(1) = Pn,

i.e., the B-spline curve begins in P0 and terminates in Pm.

4◦ Symmetry. Suppose the set of knots t is symmetric with respect to the point
t = 1/2, i.e.,

(9) ti + tn−i+1 = 1, i = 1, . . . , n.

Then (see [6]),

(10) Bk
i (t) = Bk

m−i(1 − t), 0 ≤ t ≤ 1.

If denote P′ = (Pm, . . . ,P0)
T , we see that

(SmP)(t) = (SmP′)(1 − t), 0 ≤ t ≤ 1,

i.e., the reversal numeration of control points does not change the curve.

5◦ Reproduction of points and lines. Due to the condition (3), SmP exactly
reproduces control points; if Pi = P0, i = 1, . . . , m, then SmP ≡ P0. Further, if
the control polygon is collinear, i.e., Pi = ξk

i a + b, (a,b are constant vectors), we
have (SmP)(t) = at + b, 0 ≤ t ≤ 1, where we used (3) and (4),which means that
SmP reproduces straight line, the property highly desirable in CAGD.

6◦ Oscillation diminution. The B-spline curve (6) crosses an arbitrary plane from
R

d no more often then does the control polygon. So, SmP diminish the oscillation
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of the control polygon. This is the consequence of variation diminishing property
of the operator Sm

v

{

m
∑

i=0

ciB
k
i (t)

}

≤ S−{c},

where S−{c} is an usual notation for the number of strict sign changes in the
sequence c and v{f} is a variation of function f . If we consider any plane ax+b = 0,
a (constant vector), x ∈ R

d, b ∈ R, we have

v{a(SmP) + b} = v

{

m
∑

i=0

(aPi + b)Bk
i

}

≤ S−{(aPi + b)m
i=0}.

7◦ Uniqueness. Every B-spline curve is uniquely determined by its control poly-
gon and no two polygons produce the same curve, i.e., SmP = SmP′ ⇔ P = P′.
This property is the consequence of bm being a basis in the space of splines with
given knots.

8◦ Local control. The minimal support property of B-splines

(11) Bk
i (t) = 0, t 6∈ [ti−k, ti+1],

permits to derive the B-spline curve {(SmP)(t), 0 ≤ t ≤ 1} as a collection of B-
spline segments {(SmP)(t), ti ≤ t ≤ ti+1} so as each of them is affected only by
the vertices Pi, . . . ,Pi+k.

9◦ Stable numerical algorithm. For calculation of B-splines one’s use de Boor-Cox
algorithm [2]

B0
i =

{

1, ti ≤ t < ti+1,

0, otherwise,

Bk
i (t) =

t − ti−k

ti−1 − ti−k

Bk−1
i (t) +

ti − t

ti − ti−k+1
Bk−1

i+1 (t).

This recursion algorithm allows to compute B-spline curve (SmP)(t) at an arbitrary
point ti ≤ t < ti+1 in the stable and rapid way (see [2])

(12)

P0
i (t) = Pi, i = 0, . . . , m,

Pr
i (t) =

ti−1 − t

ti−1 − ti−k−r+1
Pr−1

i−1 (t) +
t − ti−k

ti−r − ti−k

Pr−1
i (t), i = 0, . . . , m − r,

end thus (SmP)(t) = Pm
0 (t). This algorithm is known as de Boor algorithm [3].

10◦ Smoothness. The B-spline curve is smooth enough. If ν knots coincide, e.g.,
ti = . . . = ti+p+1 the curve has k − ν − 1 continuous derivatives at ti ([2], [3]).
Smoothnes is an important property of a free-form curve. Only smooth curve can
pretend to be aesthetically pleasant.
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11◦ Tensor product surfaces. The B-spline curve can be used to form a surface
as a mosaic of rectangular patches. This technique is known as a tensor product of
curves. Also, the B-spline surface can be built up by the triangular patches [3].

We shall end this section with a matrix form of (6) which we need in the next
section

(SmP)(t) = bT
m(t)P, 0 ≤ t ≤ 1.

2. Integral variation diminishing splines and related curve model

For fixed k, the spline Smf , given by (1), converges towards f for any contin-
uous f . In [8], Müller has extended Schoenberg’s approximation method, so to be
applicable on any function f ∈ Lp[0, 1], 1 ≤ p ≤ ∞, by replacing f(ξk

i ) in (1) with

its integral mean over the interval Ii = (ξk+1
i , ξk+1

i+1 )

(13) µif =
1

∆k+1
i

∫ ξk+1

i+1

ξk+1

i

f(u) du, i = 0, . . . , m,

where ∆k+1
i = ξk+1

i+1 − ξk+1
i . It is easy to see that ξk

i ∈ Ii. Namely, by (2) we have

ξk+1
i =

ti−k + . . . + ti
k + 1

, i = 0, . . . , m + 1,

so that

(14) δr
i = ξk+1

i+1 − ξk
i =

ti+1 − ξk
i

k + 1
, δl

i = ξk
i − ξk+1

i =
ξk
i − ti−k

k + 1
,

which, due to the set of obvious inequalities ti−k < ξk
i < ti+1, i = 0, . . . , m, yields

ξk+1
i < ξk

i < ξk+1
i+1 , i = 0, . . . , m.

This means that the node ξk
i divide the interval Ii into two subintervals, the lengths

of which are δl
i (left) and δr

i (right).

In this manner we get the Schoenberg integral spline operator [8]

(15) (Tmf)(t) =
m

∑

i=0

µif Bk
i (t), 0 ≤ t ≤ 1,

which is defined for every f ∈ Lp[0, 1]. Since the operator Tm has the same basis
function as Sm, it shares a great deal of good properties with Sm.

We saw in the preceding section that the operator Sm generates the curve model
SmP for a given control polygon P. Can we use the operator Tm, given by (15), to
produce any curve model? What properties will it have?
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To construct the curve model TmP generated by Tm we use the following tech-
nique. First, we note that the value of the parameter t ∈ [0, 1] corresponding to the
control point Pi is t = ξk

i ([3]). So, the vector-valued parametric equation of the
control polygon P0P1 . . .Pm, with Pi = (xi

1, . . . , xi
d)

T ∈ R
d, is r(t) = Φ(t), where

Φ(t) = (ϕ1(t), . . . , ϕd(t))
T , 0 ≤ t ≤ 1,

and ϕj(t) is a piecewise-linear interpolant at the points (ξk
ν , xν

j )m
ν=0 and j = 1, . . . , d.

Now, it is obvious that

(SmΦ)(t) = (SmP)(t), 0 ≤ t ≤ 1,

i.e.,

(16) Smϕj = (SmP)j , j = 1, . . . , d,

where (a)j denotes the j-th coordinate of a vector a. The model TmP is proposed
to satisfy the condition analogous to (16), i.e.,

(17) (TmP)j = Tmϕj , j = 1, . . . , d.

The direct calculation gives

(18) µiϕj =

∫ ξ
k+1

i+1

ξk+1

i

ϕj(u) du

ξk+1
i+1 − ξk+1

i

=











β0x
0
j + γ0x

1
j ,

αix
i−1
j + βix

i
j + γix

i+1
j , i = 1, . . . , m − 1,

αmxm−1
j + βmxm

j ,

where

(19)



















α0 = 0, αi =
(δl

i
)2

2∆k

i−1
∆k+1

i

, i = 1, . . . , m;

γi =
(δr

i
)2

2∆k

i
∆k+1

i

, i = 0, . . . , m − 1, γm = 0;

βi = 1 − αi − γi, i = 0, . . . , m,

where ∆k
i = ξk

i+1 − ξk
i and δl, δr are given by (14). Therefore, (17) and (18) yields

(TmP)j =
∑m

i=0 Bk
i (·)(MP)j , or simply

(20) (TmP)(t) = bT
m(t)(MP), 0 ≤ t ≤ 1,

where M is an (m+1)×(m+1) three-diagonal transformation matrix that depends
on the knot vector t,

(21) M = M(t) =

















β0 γ0 O

α1 β1 γ1

α2 β2

. . .

. . .
. . . γm−1

O αm βm

















,
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and with the entries given by (19). In this manner, the curve model TmP can
be regarded as the B-spline curve model SmQ produced by the new control poly-
gon Q that gives rise by transforming P. This transformation furnishes via the
transformation matrix M , i.e., in the global way

(22) Q = MP,

so that TmP = SmQ. We shall say that TmP is an integral mean modification of
the source free-form curve model SmP.

In the papers [4] and [5] Goldman studied the properties of the curve model that
obtains from some beginning model by the global transformation of type (22). Our
terminology and notations intend to follow these references. The following Lemma
describes main properties of the matrix M given by (21).

Lemma 1 (Markov chain property). For an arbitrary knot vector t, the transfor-

mation matrix M(t) = (Mij), i, j = 0, . . . , m, satisfies

(23) Mij ≥ 0, i, j = 0, . . . , m,

and

(24)
∑

j

Mij = 1, j = 0, . . . , m.

Proof. Due to monotonicity of nodes (5), we have ∆k
i > 0, ∆k+1

i > 0 for all i, so

according to (17), αi ≥ 0, γi ≥ 0, i = 0, . . . , m. Further, note that ∆k+1
i = δl

i + δr
i

and δl
i ≤ ∆k

i−1, δr
i ≤ ∆k

i , as the consequence of ξk
i ∈ Ii. This gives,

(δl
i)

2 ≤ ∆k+1
i ∆k

i−1, (δr
i )2 ≤ ∆k+1

i ∆k
i ,

and, consequently,

∆k
i−1

[

∆k+1
i ∆k

i − (δr
i )2

]

+ ∆k
i

[

∆k+1
i ∆k

i−1 − (δl
i)

2
]

≥ 0.

Dividing both sides of the last inequality by ∆k+1
i ∆k

i−1∆
k
i > 0, yields βi ≥ 0. So,

(23) is valid. From (19) we have
∑

j Mij = αj + βj + γj = 1, j = 0, . . . , m. ¤

The square matrix with properties (23) and (24) is a Markov chain. For more
details concerning the role of Markov chain transforms in the curve modelling see
[4] and [5].

Lemma 2. Let the vector of knots t is symmetric with respect to the point t = 1/2,
i.e.,

(25) ti + tn−i+1 = 1, i = 1, . . . , n.

Then the matrix M = M(t) is central symmetric, namely

(26) Mm−i,m−j = Mij , i, j = 0, . . . , m.
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Proof. Since [Mij ] is three-diagonal it is enough to prove that

(27) αi = γm−i, βi = βm−i, i = 0, . . . , m.

First, note that the symmetry of knot vector t, described by (25), implies the
symmetry of nodes. Namely,

ξk
i =

ti−k+1 + . . . + ti
k

=
1 − tn+k−i − . . . − tn+1−i

k

=
k − tn+k−i − . . . − t(n+k)−k−i+1

k
,

or, if we use m = n + k,

ξk
i = 1 −

tm−i−k+1 + . . . + tm−i

k
= 1 − ξk

m−i,

for i = 0, . . . , m. In the similar manner we get ξk+1
i = 1 − ξk+1

m+1−i, i = 0, . . . , m.
Now, we have

δl
i = ξk

i − ξk+1
i = ξk+1

m−i+1 − ξk
m−i = δr

m−i, i = 0, . . . , m,

∆k+1
i = ξk+1

i+1 − ξk+1
i = ξk+1

m−i+1 − ξk+1
m−1 = ∆k+1

m−i, i = 1, . . . , m,

and

∆k
i−1 = ξk

i − ξk
i−1 = ∆k

m−i, i = 1, . . . , m,

which yield

αi =
(δl

i)
2

2∆k
i−1∆

k+1
i

=
(δr

m−i)
2

2∆k
m−i∆

k+1
m−i

= γm−i, i = 1, . . . , m,

and, if we use the fact that α0 = γm, we obtain the first equality in (27). The second
one is the simple consequence of the relation βi = 1− αi − γi and the equality just
proved. ¤

Lemma 3. The transformation matrix M(t) is a Decartes matrix for any knot

vector t.

Proof. Recall that [Mij ] is a Decartes matrix if

i) for any ν the minors M
(

j0 ... jν

k0 ... kν

)

are of the same sign;

ii) for each j0 . . . jν (k0 . . . kν) there exists k0 . . . kν (j0 . . . jν) so that

M

(

j0 . . . jν

k0 . . . kν

)

6= 0,
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where for j0 < j1 < . . . < jν , k0 < k1 < . . . < kν ,

M

(

j0 . . . jν

k0 . . . kν

)

=

∣

∣

∣

∣

∣

∣

∣

Mj0k0
. . . Mj0kν

...
Mjνk0

. . . Mjνkν

∣

∣

∣

∣

∣

∣

∣

.

Since M(t) is a three-diagonal matrix with nonnegative entries, it is enough to
prove that it has a dominant diagonal, i.e., that

(28) βi > αi + γi, i = 0, . . . , m.

In virtue of βi = 1 − αi − γi, (28) becomes

(29) αi + γi <
1

2
, i = 0, . . . , m.

To prove (29), let us note that δl
i < ∆k

i−1 and δr
i < ∆k

i are valid and imply

(δl
i)

2

∆k
i−1

< δl
i and

(δr
i )2

∆k
i

< δr
i ,

wherefrom we get (δl
i)

2/∆k
i−1 + (δr

i )2/∆k
i < δl

i + δr
i . Taking into account that

δl
i + δr

i = ∆k+1
i , we have

(δl
i)

2

∆k
i−1∆

k+1
i

+
(δr

i )2

∆k
i ∆k+1

i

< 1,

which is equivalent to (29) for i = 1, . . . , m − 1. For i = 0 and i = m ones get

γ0 =
(δr

0)
2

2∆k
0∆k+1

0

=
(δr

0)
2

2∆k
0δr

0

=
δr
0

2∆k
0

=
1

2
·
ξk+1
1 − ξk

0

ξk
1 − ξk

0

<
1

2
,

αm =
(δl

m)2

2∆k
m−1∆

k+1
m

=
(δl

m)2

2∆k
m−1δ

l
m

=
δl
m

2∆k
m−1

=
1

2
·

ξk
m − ξk+1

m

ξk
m − ξk

m−1

<
1

2
,

Therefore (29) is valid for i = 0, . . . , m, i.e., (28) holds.

By positivity of αi, βi and γi (Lemma 1) we have all 1×1 minors of M(t) positive.
Also, each 2 × 2 “diagonal” minor

∣

∣

∣

∣

βi γi

αi+1 βi+1

∣

∣

∣

∣

, i = 1, . . . , m − 1,

is positive. This is the consequence of (28). Namely, from (28) we get βi > γi and
βi+1 > αi+1 and βiβi+1 > αi+1γi, i = 1, . . . , m − 1. Positivity of subdeterminant
of higher order is provided by the diagonal dominance property (28). ¤



10 G. V. MILOVANOVIĆ AND LJ. M. KOCIĆ

Corollary 1. det M(t) > 0, for any t.

Now, we are ready to prove the following result:

Theorem 1. The curve model TmP given by (20) has the following properties:

(1) it is invariant under affine transformations of the coordinate system,

(2) TmP ⊂ convex hull (P),
(3) it is symmetric,

(4) TmP is variation diminishing,

(5) TmP = TmR ⇔ P = R.

Proof. Use the Lemmata 1–3 and compare Table IV in [4].

Remark 1. Note that TmP does not interpolate end points P0 and Pm Indeed, we
have

(TmP)(0) = β0P0 + γ0P1 = (1 − γ0)P0 + γ0P1,

(TmP)(1) = αmPm−1 + βmPm = αmPm−1 + (1 − αm)Pm.

Thus, TmP interpolates P0 and Pm if and only if P0 = P1 and Pm−1 = Pm. This
technique is known as the doubling of end vertices and is commonly used (see [1]).

Remark 2. The model TmP reproduces straight line but in general it does not pre-
serve the disposition of the control points along this line. Reproducing of straight lines is
the consequence of variation diminishing property.

Remark 3. The calculation of the point (TmP)(t) for any t is not much complicated
then calculation of the basic model (see property 9◦). First, we evaluate Q by (20) and
then apply de Boor algorithm (12).

3. λ-family of curves

Except for changing of control polygon P we can alter the shape of the curve
SmP, and therefore the curve TmP, by changing the knot vector t. The main dis-
advantage of doing that through changing P is the local character of this action [4].
On the other hand, changing the curve shape via changing the knot vector can not
be controlled intuitively [1]. The most convenient method is to introduce a param-
eter (or more parameters) into the curve model so that it influences the form of the
curve in a predictable and easy way. Further, the parameter being involved must
not disturb all good properties of the beginning curve, and finally, the computa-
tion of the altered curve should not be too much complicated then calculation of
the source model. Such models already exist. For example, various splines under
tension, Polya curves, β-splines (see [1]) and so on.

Here, we use the natural and easy way to introduce the parameter into the
integral Schoenberg operator Tm, given by (15). Namely, we can make the integral
mean (13) dependent on the length of the interval of integration. In this sense we
define

(30) µλ
i f =

1

ηi − ζi

∫ ηi

ζi

f(u) du, i = 0, . . . , m,
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where ζi = (1−λ)ξk
i +λξk+1

i , ηi = (1−λ)ξk
i +λξk+1

i+1 , and λ ∈ (0, 1] is a parameter.
If we accept the usual convention that for any integrable function

(31) lim
ǫ→0+

∫ a+ǫ

a−ǫ

f(u) du = f(a),

we can define a λ-family of integral Schoenberg splines

(32) (Tλ
mf)(t) =

m
∑

i=0

µλ
i f Bk

i (t), 0 ≤ t ≤ 1,

with the parameter λ runs over [0, 1]. Then, by (32) we have µ0
i f = f(ξk

i ) and
µ1

i f = µif , where µif is given by (13). In such manner, we have

T 0
mf = Smf, T 1

mf = Tmf.

The transformation matrix now depends on λ if t is fixed. Some calculation will
give

(33) M(λ) = M(t, λ) =

















βλ
0 γλ

0 O

αλ
1 βλ

1 γλ
1

αλ
2 βλ

2

. . .

. . .
. . . γλ

m−1

O αλ
m βλ

m

















,

where

(34) αλ
i = λαi, γλ

i = λγi, βλ
i = 1 − λ(αi + γi), i = 0, . . . , m,

where αi and γi are given by (19). The related family of curve models is given by

(35) (Tλ
mP)(t) = bT

m(t)(M(λ)P), 0 ≤ t ≤ 1, 0 ≤ λ ≤ 1.

It is clear that
T0

mP = SmP, T1
mP = TmP,

i.e., for extreme values of λ we get B-spline curve or its integral modification.

The modified control polygon will depend on λ, i.e.,

(36) Qλ = M(λ)P.

The transformation matrix, being a λ-matrix of first degree, permits the following
decomposition

(37) M(λ) = (1 − λ)I + λM(1), 0 ≤ λ ≤ 1,
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as the consequence of the obvious relation βλ
i = 1 − λ + λβi, i = 0, . . . , m, where

βi is given by (19). Note that M(0) = I, an identity matrix. From (36) and (37),
we get

Qλ = (1 − λ)P + λM(1)P,

or, if we recall that Q1 = Q = M(1)P and P = M(0)P = Q0 we have

(38) Qλ = (1 − λ)Q0 + λQ1, λ ∈ [0, 1].

The equation (38) can be interpreted geometrically. Let us restrict ourselves on
i-th coordinate of the vector Q. From (22) we have Qi = αiPi−1 + βiPi + γiPi+1,
with αi, βi, γi ≥ 0 and αi + βi + γi = 1. Thus, αi, βi and γi are the barycentric
coordinates of the point Q1

i with respect to the triangle Pi−1PiPi+1. According to
(38), the point Qλ

i divides the segment Q0
i Q

1
i in the ratio λ : (1 − λ) (see Fig. 1).

Fig. 1

Therefore, {Qλ}λ∈[0,1] is an one-parameter family of control polygons producing a
family of B-spline curves. Each curve can be considered as a blend of two extreme
curves in the family, the B-spline curve and its integral modification

(39) Tλ
mP = bm(t)[(1 − λ)P + λQ1] = (1 − λ)(SmP) + λ(TmP).

The following theorem describes the properties of the model Tλ
mP.

Theorem 2. For all λ ∈ [0, 1] and any knot vector t, Tλ
mP preserves all properties

of the curve model TmP from Theorem 1.

Proof. The affine invariance and the convex hull property follow from the fact
that M(t, λ) is a Markov chain for all λ ∈ [0, 1] and t. This is the consequence of
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(37) and the fact that I = [δij ] and M(t, 1) = M = [Mij ] given by (21) are Markov
chains (Lemma 1). Namely, if we put M(t, λ) = [Mλ

ij ], we shall have

∑

j

Mλ
ij = (1 − λ)

∑

j

δij + λ
∑

j

Mij = (1 − λ) + λ = 1,

and

δij ≥ 0, Mij ≥ 0 ⇒ Mλ
ij = (1 − λ)δij + λMij ≥ 0.

The symmetric property follows from Lemma 2 and the fact that δm−i,m−j = δij

wherefrom, for every λ, t

Mλ
m−i,m−j = (1 − λ)δm−i,m−j + λMm−i,m−j = (1 − λ)δij + λMij = Mλ

ij .

To prove the variation diminishing property, note that Lemma 3 asserts that
M(t) is a Decartes matrix for any t. The key relation that justifies this assertion
is the diagonal dominance (28). From (33) and (37) we have βλ

i = 1 − λ + λβi >
(1−λ)+λ(αi+γi) and so, for any λ ∈ [0, 1], we get βλ

i > λ(αi+γi) = αλ
i +γλ

i . Thus,
the matrix M(t, λ) is a three-diagonal with a dominant diagonal for all λ ∈ [0, 1] and
any knot vector t. According to [4], Tλ

mP diminishes the variation of the control
polygon P. This also means that transformed control polygon Qλ oscillates less
than P for any λ ∈ (0, 1].

From the same argument the uniqueness property follows: detM(t, λ) 6= 0, im-
plies that

Tλ
mP = Tλ

mR ⇔ P = R,

for any λ ∈ [0, 1] and t. ¤

We call the collection of curves {Tλ
mP}λ∈[0,1] a pencil of B-spline curves defined

by the control polygon P and denote by π(P).

Remark 4. From (39) follows that Qλ = (1−λ)P+λQ (where Q = Q1). This means

that the curve Tλ
mP interpolates the points

Q
λ
0 = (1 − λ)P0 + λQ0, Q

λ
m = (1 − λ)Pm + λQm,

or

Q
λ
0 = (1 − λγ0)P0 + λγ0P1, Q

λ
m = λαmPm−1 + (1 − λαm)Pm,

so, by doubling endpoints of the beginning control polygon P, we provide interpolation of
endpoints P0 and Pm by any curve from the pencil π(P).

Remark 5. The curve Tλ
mP reproduces straight line for any λ ∈ [0, 1] but not the

arrangement of the points on it (see Remark 2).

Remark 6. The evaluation of the point (Tλ
mP)(t) for some fixed t, λ and t, furnishes

in the same way as (T1
mP)(t). First, we calculate Qλ = M(λ)P and then use the recursion

algorithm (12).
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Instead of calculating Qλ we can calculate the new set of basis functions

dλ
m = (Dm,λ

0 , . . . , Dm,λ
m )T ,

which is determined by

Tλ
mP = bT

m(M(λ)P) = (bT
mM(λ))P

= (MT (λ)bm)T P = (dλ
m)T P,

so
dλ

m = MT (λ)bm,

i.e.,

Dm,λ
0 (t) = βλ

0 Bk
0 (t) + αλ

1Bk
1 (t),

Dm,λ
i (t) = γλ

i−1B
k
i−1 + βλ

i Bk
i (t) + αλ

i+1B
k
i+1(t), i = 1, . . . , m − 1,

Dm,λ
m (t) = γλ

m−1B
k
m−1(t) + βλ

mBk
m(t).

Finally, we want to mention an important feature of the curve pencil π(P), the
existence of fixed points.

We call the point F fixed point of the pencil π(P) if all curves from π(P) pass
through F . We saw in the Remark 4 that the end points P0 and Pm might be the
fixed points if P0 = P1 and Pm−1 = Pm. The following theorem takes place:

Theorem 3. Suppose that two curves Tλ1 and Tλ2 , λ1 < λ2 from π(P) intersect

each other at the point F = Tλ1(tF ) = Tλ2(tF ). Than, every curve Tλ ∈ π(P)
passes through F.

Proof. First, we need the representation of Tλ via Tλ1 and Tλ2 . From (39) we
get

Tλ1 = (1 − λ1)T
0 + λ1T

1, Tλ2 = (1 − λ2)T
0 + λ2T

1

and
Tλ = (1 − λ)T0 + λT1.

Elimination of T0 and T1 from the above equation yields

Tλ =
λ2 − λ

λ2 − λ1
Tλ1 +

λ − λ1

λ2 − λ1
Tλ2 ,

or

Tλ =

(

λ2

λ2 − λ1
Tλ1 −

λ1

λ2 − λ1
Tλ2

)

+
λ

λ2 − λ1

(

Tλ2 − Tλ1
)

.

Calculation of the last expression for t = tF gives

Tλ(tF ) =
λ2

λ2 − λ1
F −

λ1

λ2 − λ1
F = F. ¤
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Remark 7. Note that we can not change the position of the point Tλ(tF ) despite of
changing λ. That is why we call F a fixed point.

Let the pencil π(P) have q ≥ 1 fixed points, F1, . . . ,Fq. Knowing the number
and location of these points may be very helpful to designer. The curve model Tλ

mP

interpolates these points. Also, note that relation (39) implies that if all control
points lie in the plane, the curve Tλ lies in the plane region bordered by the line
segments P0Q

1
0, PmQ1

m and two extreme members of the pencil π(P), T0 and T1.

4. Examples

In the following examples we use integral modification of B-spline model with
the cubic B-splines.

Example 1. Figure 2a shows a family of control polygons Qλ = M(λ)P. The begin-

ning polygon P is plotted by heavy line, and modified polygons Qλ, for λ = 0(0.1)0.4, are

dotted. The corresponding family of curves {Tλ
mP} is displayed in Fig. 2b.

Fig. 2a
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Fig. 2b

Example 2. The pencil of curves with tripled endpoints is given in Fig. 3a, while
Fig. 3b shows the pencil with simple endpoints. In both cases we can notice a fixed point
in the middle.

Fig. 3a Fig. 3b
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Example 3. We can apply the described method also for closed curves. A few examples
are displayed in Fig. 4. We can remark an interesting behavior of the shape of curves
involved. Namely, for λ outside of [0, 1] some unstability is appeared.

Fig. 4
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Example 4. Figure 5 shows outlines of two plant leafs (ceasalpina japonica). The left
one is modelled as a composite cubic B-spline curve (17 segments are used). The shape
parameter is zero for all segments. The better form is achieved (Fig. 5, right), when we
adjust these parameters on some segments.

Fig. 5

Example 5. The same effect of the shape parameter selecting for the outline of a
Raphael’s female head is given in Fig. 6.
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Fig. 6
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