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ERROR BOUNDS FOR GAUSS-TURÁN QUADRATURE

FORMULAE OF ANALYTIC FUNCTIONS

GRADIMIR V. MILOVANOVIĆ AND MIODRAG M. SPALEVIĆ

This paper is dedicated to Professor Walter Gautschi on the occasion of his 75th birthday

Abstract. We study the kernels of the remainder term Rn,s(f) of Gauss-
Turán quadrature formulas

∫ 1

−1
f(t)w(t) dt =

n
∑

ν=1

2s
∑

i=0

Ai,νf (i)(τν) + Rn,s(f) (n ∈ N; s ∈ N0)

for classes of analytic functions on elliptical contours with foci at ±1, when
the weight w is one of the special Jacobi weights w(α,β)(t) = (1 − t)α(1 + t)β

(α = β = −1/2; α = β = 1/2 + s; α = −1/2, β = 1/2 + s; α = 1/2 + s,
β = −1/2). We investigate the location on the contour where the modulus of
the kernel attains its maximum value. Some numerical examples are included.

1. Introduction

Quadrature formulae with multiple nodes appeared more than 100 years after the
famous Gaussian quadratures. Starting from the Hermite interpolation formula and
taking any system of n distinct nodes {τ1, . . . , τn} with arbitrary multiplicities mν

(ν = 1, . . . , n), Chakalov [2] in 1948 obtained such a general quadrature, which is
exact for all algebraic polynomials of degree at most m1+· · ·+mn−1. Taking all the
multiplicities to be equal, Turán [44] was the first who introduced the corresponding
quadrature formula of Gaussian type.

Let w be an integrable weight function on the interval (−1, 1). In this paper we
consider the Gauss-Turán quadrature formula with multiple nodes,

(1.1)

∫ 1

−1

f(t)w(t) dt =

n
∑

ν=1

2s
∑

i=0

Ai,νf (i)(τν) + Rn,s(f),

where Ai,ν = A
(n,s)
i,ν , τν = τ

(n,s)
ν (i = 0, 1, . . . , 2s; ν = 1, . . . , n), which is exact for

all algebraic polynomials of degree at most 2(s + 1)n − 1. The nodes τν in (1.1)
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must be the zeros of the (monic) polynomial πn,s(t) which minimizes the integral

Φ(a0, a1, . . . , an−1) =

∫

R

πn(t)2s+2w(t) dt,

where

πn(t) = tn + an−1t
n−1 + · · · + a1t + a0.

In order to minimize Φ we must have the following orthogonality conditions

(1.2)

∫

R

πn(t)2s+1tkw(t) dt = 0, k = 0, 1, . . . , n − 1.

Polynomials πn = πn,s which satisfy this type of orthogonality (1.2) (so called
“power orthogonality”) are known as s-orthogonal (or s-self associated) polynomials
with respect to the measure dλ(t) = w(t) dt. For s = 0 this reduces to the standard
case of orthogonal polynomials. Several classes of s-orthogonal polynomials, as
well as their generalizations known as σ-orthogonal polynomials, were investigated
mainly by Italian mathematicians, e.g., Ossicini [26, 27], Ghizzetti and Ossicini
[12, 13], Ossicini and Rosati [29, 30, 31], Gori Nicolò-Amati [15] (see the survey
paper [22] for details and references).

A generalization of the Gauss-Turán quadrature formula (1.1) to rules having
nodes with arbitrary multiplicities was derived independently by Chakalov [3, 4]
and Popoviciu [36]. Important theoretical progress on this subject was made by
Stancu [41, 42] (see also [43]).

Methods for constructing the nodes τν and/or coefficients Ai,ν in the Gauss-
Turán quadratures, as well as in the generalized Chakalov-Popoviciu-Stancu for-
mulas, can be found in [8, 14, 21, 23, 24, 25, 39, 40, 43, 45].

The remainder term in formulas with multiple nodes was studied by Chakalov
[3], Ionescu [19], Ossicini [27], Pavel [32, 33, 34], and Milovanović and Spalević
[25]. The case of holomorphic functions f in the Gauss-Turán quadrature (1.1) was
considered by Ossicini and Rosati [29].

In this paper we consider the remainder term Rn,s(f) of Gauss-Turán quadrature
formulas for classes of analytic functions on elliptical contours, when the weight
function w in (1.1) is one of the special Jacobi weights w(α,β)(t) = (1− t)α(1 + t)β ,
with parameters

α = β = −1

2
; α = β =

1

2
+ s; α = −1

2
, β =

1

2
+ s; α =

1

2
+ s, β = −1

2
,

where s ∈ N0. The reason for these choices is explained near the end of Section 2.
The paper is organized as follows. The remainder term of Gauss-Turán formulas

for analytic functions and some properties of the kernels in the contour representa-
tions of the remainder terms are given in Section 2. The cases of elliptic contours
with foci at the points ±1, when w is any one of the four Jacobi weight functions,
are studied in Section 3. More precisely, the location on the contour where the
modulus of the kernel attains its maximum value is investigated. Some numerical
examples are included.

2. The remainder term in Gauss-Turán quadrature formulae

Let Γ be a simple closed curve in the complex plane surrounding the interval
[−1, 1] and D be its interior. If the integrand f is analytic in D and continuous on D,
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then the remainder term Rn,s(f) in (1.1) admits the contour integral representation
(cf. [29])

(2.1) Rn,s(f) =
1

2πi

∮

Γ

Kn,s(z)f(z) dz.

The kernel is given by

(2.2) Kn,s(z) =
̺n,s(z)

[πn,s(z)]2s+1
, z /∈ [−1, 1],

where

(2.3) ̺n,s(z) =

∫ 1

−1

w(t)
[πn,s(t)]

2s+1

z − t
dt, n ∈ N,

and πn,s(t) is the monic s-orthogonal polynomial with respect to the measure
dλ(t) = w(t) dt on (−1, 1). For s = 0, the formulas (2.1) and (2.2) reduce to
the corresponding formulas for Gaussian quadratures.

An alternative representation for Kn,s(z) is

Kn,s(z) = Rn,s

( 1

z − ·
)

=

∫ 1

−1

w(t)

z − t
dt −

n
∑

ν=1

2s
∑

i=0

i!Ai,ν

(z − τν)i+1
.

Put N = (s + 1)n and

t2N =

n
∏

ν=1

(t − τν)2s+2 + q(t) = πn,s(t)
2s+2 + q(t) (q ∈ P2N−1),

where Pm denotes the set of all algebraic polynomials of degree at most m. Ex-
panding the integrand of (2.3) in descending powers of z, and using (1.2) and

Rn,s(t
2N ) = Rn,s(π

2s+2
n,s ) =

∫ 1

−1

πn,s(t)
2 dµ(t) = ‖πn,s‖2

dµ,

where dµ(t) = πn,s(t)
2sw(t) dt, we conclude that

Kn,s(z) =
Rn,s(t

2N )

z2N+1
+ · · · =

‖πn,s‖2
dµ

z2N+1

(

1 +
C1

z
+

C2

z2
+ · · ·

)

,

where C1, C2, . . . are constants.
The integral representation (2.1) leads to the error estimate

(2.4) |Rn,s(f)| ≤ ℓ(Γ)

2π

(

max
z∈Γ

|Kn,s(z)|
)

(

max
z∈Γ

|f(z)|
)

,

where ℓ(Γ) is the length of the contour Γ. We thus have to study the magnitude of
|Kn,s(z)| on Γ.

It seems that the first unified approach described above was taken by Donald-
son and Elliott [5]. They applied it to several kinds of interpolatory and non-
interpolatory quadrature rules. Error bounds for Gaussian quadratures of analytic
functions were studied by Gautschi and Varga [10] (see also [11]). In particular,
they investigated some cases with special Jacobi weights with parameters ±1/2
(Chebyshev weights). The cases of Gaussian rules with Bernstein-Szegő weight
functions and with some symmetric weights including especially the Gegenbauer
weight were studied by Peherstorfer [35] and Schira [38], respectively. Some of
the results have been extended to Gauss-Radau and Gauss-Lobatto formulas (cf.
Gautschi [6], Gautschi and Li [7], Schira [37], Hunter and Nikolov [18]).



4 G. V. MILOVANOVIĆ AND M. M. SPALEVIĆ

In the sequel we give some properties of the kernel (2.2).

Lemma 2.1. Let the kernel Kn,s(z) be given by (2.2) and (2.3). Then, for each

z ∈ C \ [−1, 1],

(2.5) |Kn,s(z)| = |Kn,s(z)|
Moreover, if the weight function in (1.1) is even, i.e., w(−t) = w(t), then

(2.6) |Kn,s(−z)| = |Kn,s(z)|.
Proof. According to (2.2) it is clear that

Kn,s(z) =
̺n,s(z)

[πn,s(z)]2s+1
= Kn,s(z),

implying (2.5).
If w is an even function, i.e., w(−t) = w(t), we have πn,s(−z) = (−1)nπn,s(z)

and

̺n,s(z) =

∫ 1

−1

w(t)
[πn,s(t)]

2s+1

z − t
dt =

∫ 1

−1

w(−t)
[πn,s(−t)]2s+1

z + t
dt,

i.e.,

̺n,s(z) = (−1)n(2s+1)

∫ 1

−1

w(t)
[πn,s(t)]

2s+1

z + t
dt = −(−1)n(2s+1)̺n,s(−z),

so that

Kn,s(−z) =
̺n,s(−z)

[πn,s(−z)]2s+1
=

−(−1)n(2s+1)̺n,s(z)

(−1)n(2s+1)[πn,s(z)]2s+1
= −Kn,s(z) = −Kn,s(z).

Thus, in this case we get (2.6). ¤

A particularly interesting case is the Chebyshev measure

dλ1(t) = (1 − t2)−1/2dt.

In 1930, S. Bernstein [1] showed that the monic Chebyshev polynomial T̂n(t) =
Tn(t)/2n−1 minimizes all integrals of the form

∫ 1

−1

|πn(t)|k+1

√
1 − t2

dt (k ≥ 0).

This means that the Chebyshev polynomials Tn are s-orthogonal on (−1, 1) for each
s ≥ 0. Ossicini and Rosati [29] found three other measures dλk(t) (k = 2, 3, 4) for
which the s-orthogonal polynomials can be identified as Chebyshev polynomials of
the second, third, and fourth kind: Un, Vn, and Wn, which are defined by

Un(cos θ) =
sin(n + 1)θ

sin θ
, Vn(cos θ) =

cos(n + 1
2 )θ

cos 1
2θ

, Wn(cos θ) =
sin(n + 1

2 )θ

sin 1
2θ

,

respectively (cf. Gautschi and Notaris [9]). However, these measures depend on s,

dλ2(t) = (1 − t2)1/2+sdt, dλ3(t) =
(1 + t)1/2+s

(1 − t)1/2
dt, dλ4(t) =

(1 − t)1/2+s

(1 + t)1/2
dt.

It is easy to see that Wn(−t) = (−1)nVn(t), so that in the investigation it is
sufficient to study only first three Jacobi measures dλk(t), k = 1, 2, 3.

Recently, Ossicini, Martinelli, and Rosati [28] have proved the convergence as
n → +∞ (alternatively, as s → +∞), of the Gauss-Turán quadrature formula
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(1.1) for the cases dλ1(t) and dλ2(t), on the basis of results from [29], by taking
f to be a holomorphic function on int Γ, where the contour Γ is an ellipse with
foci at ±1 and sum of semiaxes ̺ > 1. Using estimates obtained for Rn,s(f),
they proved the convergence and rate of convergence of the quadrature formulae,
Rn,s(f) = O

(

ρ−n(2s+1)
)

, n → +∞.

3. The maximum modulus of the kernel on confocal ellipses

In this section we take as the contour Γ an ellipse with foci at the points ±1 and
sum of semiaxes ̺ > 1,

(3.1) E̺ =
{

z ∈ C : z =
1

2

(

̺eiθ + ̺−1e−iθ
)

, 0 ≤ θ < 2π
}

.

When ̺ → 1, then the ellipse shrinks to the interval [−1, 1], while with increasing
̺ it becomes more and more circle-like.

Since the ellipse E̺ has length ℓ(E̺) = 4ε−1E(ε), where ε is the eccentricity of
E̺, i.e., ε = 2/(̺ + ̺−1), and

E(ε) =

∫ π/2

0

√

1 − ε2 sin2 θ dθ

is the complete elliptic integral of the second kind, the estimate (2.4) reduces to

(3.2) |Rn,s(f)| ≤ 2E(ε)

πε

(

max
z∈E̺

|Kn,s(z)|
)

‖f‖̺, ε =
2

̺ + ̺−1
,

where ‖f‖̺ = max
z∈E̺

|f(z)|. As we can see, the bound on the right in (3.2) is a

function of ̺, so that it can be optimized with respect to ̺ > 1.
In this section we study the magnitude of |Kn,s(z)| on the contour E̺. More

precisely, for the measures dλk (k = 1, 2, 3) defined at the end of the previous
section, we investigate the locations on the confocal ellipses where the modulus of
the corresponding kernels attain their maximum values.

Because of (2.5), i.e., symmetry with respect to the real axis, the consideration
of |Kn,s(z)|, when

z =
1

2

(

̺eiθ + ̺−1e−iθ
)

∈ E̺,

may be restricted to the interval 0 ≤ θ ≤ π. Moreover, if the weight function is
even, as in the cases of dλ1(t) and dλ2(t) (symmetry with respect to both coordinate
axes), the consideration may be restricted to the first quarter of E̺, i.e., to the
interval 0 ≤ θ ≤ π/2 (see (2.6)).

In the sequel we give explicit representations of the kernels K
(ν)
n,s on the ellipse

E̺ for the measures dλν(t), ν = 1, 2, 3, and discuss the maximum points on this

ellipse in order to get the exact value of max
z∈E̺

|K(ν)
n,s(z)| or some estimate.

3.1. The measure dλ1(t) = (1 − t2)−1/2dt. According to (2.3), in this case we
have

̺n,s(z) =

∫ 1

−1

(1 − t2)−1/2 [21−nTn(t)]2s+1

z − t
dt, n ∈ N, z /∈ [−1, 1],



6 G. V. MILOVANOVIĆ AND M. M. SPALEVIĆ

where Tn(t) is the Chebyshev polynomial of the first kind of degree n. By substi-
tuting t = cos θ we obtain

̺n,s(z) = 2(1−n)(2s+1)

∫ π

0

[cos nθ]2s+1

z − cos θ
dθ

=
2(1−n)(2s+1)

22s

∫ π

0

1

z − cos θ

s
∑

k=0

(

2s + 1

k

)

cos(2s + 1 − 2k)nθ dθ,

where for the transformation of [cosnθ]2s+1 we used a formula from [29, p. 232].
Now, the kernel (2.2) has the form

K(1)
n,s(z) =

2−2s

s
∑

k=0

(

2s + 1

k

)
∫ π

0

1

z − cos θ
cos(2s + 1 − 2k)nθ dθ

[Tn(z)]2s+1
.

Furthermore, using [17, Eq. 3.613.1], one finds (see also [10, p. 1176])

(3.3)

∫ π

0

cos mθ

z − cos θ
dθ =

π√
z2 − 1

(

z −
√

z2 − 1
)m

, m ∈ N0,

and we obtain

K(1)
n,s(z) =

2−2s π√
z2 − 1

s
∑

k=0

(

2s + 1

k

)

(

z −
√

z2 − 1
)(2s+1−2k)n

[Tn(z)]2s+1
.

It is well-known that

(3.4) Tn(z) =
1

2

[(

z +
√

z2 − 1
)n

+
(

z −
√

z2 − 1
)n]

, z ∈ C.

Putting z = 1
2 (u + u−1), we get

K(1)
n,s(z) =

4π

(u − u−1)un[un + u−n]2s+1

s
∑

k=0

(

2s + 1

k

)

1

u2(s−k)n
,

i.e.,

K(1)
n,s(z) =

4πZ
(1)
n,s(u)

(u − u−1)un[un + u−n]2s+1
,

where

(3.5) Z(1)
n,s(u) =

s
∑

k=0

(

2s + 1

s + k + 1

)

u−2nk.

Introducing

(3.6) aj = aj(̺) =
1

2
(̺j + ̺−j), j ∈ N, ̺ > 1,

we have

|u − u−1|2 = 2(a2 − cos 2θ) and |un + u−n|2 = 2(a2n + cos 2nθ),

when u = ̺eiθ, so that

(3.7) |K(1)
n,s(z)| =

21−sπ

̺n
· |Z(1)

n,s(̺eiθ)|
(a2 − cos 2θ)1/2(a2n + cos 2nθ)s+1/2

, z ∈ E̺,



ERROR BOUNDS FOR GAUSS-TURÁN QUADRATURE FORMULAE 7
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Figure 1. The functions θ 7→ |K(1)
10,1(z)| and θ 7→ |K(1)

50,1(z)| (z =
1
2 (u + u−1), u = ̺eiθ) for Chebyshev weight of the first kind and
̺ = 1.01 (top) and ̺ = 1.05 (bottom)

where Z
(1)
n,s(u) is given by (3.5) and the ellipse E̺ by (3.1). Note that the case s = 0,

for which Z
(1)
n,0(u) = 1, was analyzed in [10, Eq. (5.4)].
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10,s(z)|, z = 1

2 (u+u−1), u = ̺eiθ,

for s = 1 (dashed line), s = 2 (dot-dashed line), s = 3 (solid line),
when ̺ = 1.05, ̺ = 1.08 (top), and ̺ = 1.10, ̺ = 1.12 (bottom)
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Table 1. Maximum value of |K(1)
n,s(z)|, z ∈ E̺, and the bound

(3.8) for n = 10, 50, 100, s = 1, 2, 3, and ̺ = 1.01, 1.05, and 1.1

̺ = 1.01 ̺ = 1.05 ̺ = 1.1
s n max bound max bound max bound
1 10 9.996(3) 2.734(4) 5.996(1) 1.155(2) 3.689(0) 5.500(0)

50 2.779(2) 5.345(2) 2.189(−2) 2.256(−2) 1.040(−6) 1.040(−6)
100 2.974(1) 4.368(1) 1.291(−6) 1.291(−6) 5.476(−15) 5.476(−15)

2 10 7.583(5) 2.661(6) 1.821(2) 3.993(2) 2.406(0) 3.857(0)
50 8.106(2) 1.769(3) 5.471(−4) 5.814(−4) 2.514(−10) 2.516(−10)

100 1.734(1) 2.733(1) 2.489(−10) 2.490(−10) 9.611(−23) 9.611(−23)
3 10 6.369(7) 2.605(8) 5.980(2) 1.417(3) 1.688(0) 2.812(0)

50 2.554(3) 6.013(3) 1.438(−5) 1.573(−5) 6.385(−14) 6.391(−14)
100 1.087(1) 1.780(1) 5.037(−14) 5.040(−14) 1.771(−30) 1.771(−30)

An analysis of (3.7) shows that the point of the maximum of |K(1)
n,s(z)| for a given

̺ depends on n. The graphics θ 7→ |K(1)
n,1(z)| (z = (u+u−1)/2, u = ̺eiθ) for n = 10

and n = 50 are displayed in Fig. 1, when ̺ = 1.01 and ̺ = 1.05. The cases for
s = 1, 2, 3, when n = 10 and ̺ = 1.05, 1.08, 1.10, and 1.12, are presented in Fig. 2.

Using the inequality (see [10, Proof of Thm. 5.1])

(a2 − cos 2θ)(a2n + cos 2nθ) ≥ (a2 − 1)(a2n + 1), 0 ≤ θ ≤ π/2,

a simple estimate of (3.7) can be given in the form

|K(1)
n,s(z)| ≤ 4πZ

(1)
n,s(̺)

̺n(̺n − ̺−n)2s(̺ − ̺−1)(̺n + ̺−n)
(3.8)

= K(1)
n,s

(1

2
(̺ + ̺−1)

)

(

̺n + ̺−n

̺n − ̺−n

)2s

,

where Z
(1)
n,s(u) is defined by (3.5). By the crude inequality Z

(1)
n,s(̺) < Z

(1)
n,s(1) = 22s

(̺ > 1), the inequality (3.8) can be simplified to

(3.9) |K(1)
n,s(z)| ≤ 4π

̺n(̺n + ̺−n)(̺ − ̺−1)

(

2

̺n − ̺−n

)2s

.

Numerical values of the actual maximum of |K(1)
n,s(z)|, when z ∈ E̺, and the

corresponding bounds (3.8) for some selected values of n, s, and ̺ are presented in
Table 1. (Numbers in parenthesis indicate decimal exponents.)

Based on the previous calculation we can state the following conjecture:

Conjecture 3.1. For each fixed ̺ > 1 and s ∈ N0 there exists n0 = n0(̺, s) ∈ N

such that

max
z∈E̺

|K(1)
n,s(z)| = K(1)

n,s

(1

2
(̺ + ̺−1)

)

for each n ≥ n0.

Using (3.9), the estimate (3.2) becomes

(3.10) |Rn,s(f)| ≤ M

̺n(̺n + ̺−n)

(

2

̺n − ̺−n

)2s

,
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where M = 4E(ε)‖f‖̺(̺ + ̺−1)/(̺ − ̺−1).
On the basis of (3.10) we conclude that the corresponding Gauss-Turán quadra-

ture formulae converge if s is a fixed integer and n → +∞, since

lim
n→+∞

Rn,s(f) = 0.

Moreover, we conclude that Rn,s(f) = O(̺−2n(s+1)), when n → +∞.
Assuming that 2/(̺n − ̺−n) < 1, we see that also Rn,s(f) → 0, when s → +∞

and n is fixed. This condition is satisfied if ̺2n − 2̺n − 1 > 0, i.e., if ̺n > 1 +
√

2.
The same conclusion was obtained in [28, Eq. (5.5)].

Remark 3.2. Recently, Gori and Micchelli [16] have introduced for each n a class
of weight functions defined on [−1, 1] for which explicit Gauss-Turán quadrature
formulas can be found for all s. Indeed, these classes of weight functions have the
peculiarity that the corresponding s-orthogonal polynomials, of the same degree,
are independent of s. This class includes certain generalized Jacobi weight functions
wn,µ(t) = |Un−1(t)/n|2µ+1(1 − t2)µ, where Un−1(cos θ) = sinnθ/ sin θ (Chebyshev
polynomial of the second kind) and µ > −1. In this case, the Chebyshev polyno-
mials Tn appear as s-orthogonal polynomials. Since

|Un−1(cos θ)| =

∣

∣

∣

∣

sin nθ

sin θ

∣

∣

∣

∣

≤ n,

i.e., |Un−1(t)/n|2µ+1(1−t2)µ+1/2 ≤ 1, by arguing, for example, in an analogous way
as in [28] we can obtain in this case that lim

s→+∞
Rn,s(f) = 0, under the previous

condition ̺n > 1 +
√

2, where n is a fixed positive integer.

3.2. The measure dλ2(t) = (1 − t2)s+1/2dt, s ∈ N0. In this case we have

̺n,s(z) =

∫ 1

−1

(1 − t2)1/2+s [2−nUn(t)]2s+1

z − t
dt, n ∈ N, z /∈ [−1, 1],

where Un(t) is the Chebyshev polynomial of the second kind for the weight function

w(x) =
√

1 − t2, for which

Un(cos θ) =
sin(n + 1)θ

sin θ
.

By substituting t = cos θ we obtain

̺n,s(z) = 2−n(2s+1)

∫ π

0

sin θ

z − cos θ
[sin(n + 1)θ]2s+1 dθ

=
2−n(2s+1)

22s

∫ π

0

sin θ

z − cos θ

s
∑

k=0

(−1)s+k

(

2s + 1

k

)

sin(2s + 1 − 2k)(n + 1)θ dθ,

where for the transformation of [sin(n+1)θ]2s+1 we used a formula from [29, p. 232].
By using the well-known representation

Un(z) =
1

2
√

z2 − 1

[

(z +
√

z2 − 1)n+1 − (z −
√

z2 − 1)n+1
]

,

the substitution z = 1
2 (u + u−1) and the formula (see [17, Eq. 9.613.3])

∫ π

0

sin(m + 1)θ sin θ

z − cos θ
dθ =

π

um+1
, m ∈ N0,



10 G. V. MILOVANOVIĆ AND M. M. SPALEVIĆ

yield

K(2)
n,s(z) =

π

22sun+1

[

u − u−1

un+1 − u−(n+1)

]2s+1 s
∑

k=0

(−1)s+k

(

2s + 1

k

)

1

u2(s−k)(n+1)
.

The sum on the right-hand side we denote by Z
(2)
n,s(u) and rewrite it in the

following form

(3.11) Z(2)
n,s(u) =

s
∑

k=0

(−1)k

(

2s + 1

s + k + 1

)

u−2(n+1)k,

so that

|K(2)
n,s(z)| =

π

4s̺n+1

(

a2 − cos 2θ

a2n+2 − cos(2n + 2)θ

)s+1/2

|Z(2)
n,s(̺eiθ)|,

i.e.,

(3.12) |K(2)
n,s(z)| =

π

4s̺n+1
· (a2 − cos 2θ)s+1/2

(a2n+2 − cos(2n + 2)θ)s
· |Z(2)

n,s(̺eiθ)|
(a2n+2 − cos(2n + 2)θ)1/2

,

where

z =
1

2
(̺eiθ + ̺−1e−iθ) ∈ E̺

and aj is defined by (3.6).
Now, we consider the last factor in (3.12) when n is odd.

Lemma 3.3. Let aj and Z
(2)
n,s(u) be defined by (3.6) and (3.11), respectively. If n

is odd, then

|Z(2)
n,s(̺eiθ)|

(a2n+2 − cos(2n + 2)θ)1/2
≤ Z

(2)
n,s(i̺)

(a2n+2 − 1)1/2
, 0 ≤ θ ≤ π/2 ,

with equality for θ = π/2.

Proof. First we note that

(3.13) Z(2)
n,s(u) =

s
∑

k=0

· · · =

[(s−1)/2]
∑

ν=0

(

2ν+1
∑

k=2ν

· · ·
)

+ ζn,s(u),

where

ζn,s(u) : =

{

0 if s is odd,

u−2(n+1)s if s is even,

as well as |ζn,s(̺eiθ)| = ζn,s(i̺). Putting

Sν(u) : =

2ν+1
∑

k=2ν

· · · =

(

2s + 1

s + 2ν + 1

)

u−4ν(n+1) −
(

2s + 1

s + 2ν + 2

)

u−(4ν+2)(n+1)

=

(

2s + 1

s + 2ν + 1

)

u−4ν(n+1)
(

1 − αu−2(n+1)
)

,

where

(3.14) α =
s − 2ν

s + 2ν + 2
and 0 ≤ α < 1,



ERROR BOUNDS FOR GAUSS-TURÁN QUADRATURE FORMULAE 11

we see that

|Sν(̺eiθ)| =

(

2s + 1

s + 2ν + 1

)

̺−4ν(n+1)
√

1 − 2α̺−2(n+1) cos(2n + 2)θ + α2̺−4(n+1) .

Now, we consider the quotient

Fν(̺, θ, n) : =
Sν(̺eiθ)

(a2n+2 − cos(2n + 2)θ)1/2
,

when n is odd, and for 0 ≤ θ ≤ π/2 we wish to prove the inequality |Fν(̺, θ, n)| ≤
Fν(̺, π/2, n), i.e.,

(3.15)
|Sν(̺eiθ)|

(a2n+2 − cos(2n + 2)θ)1/2
≤ Sν(i̺)

(a2n+2 − 1)1/2
, 0 ≤ θ ≤ π/2.

Using the previous facts, inequality (3.15) reduces to

(a2n+2 − 1)(1 − 2q cos(2n + 2)θ + q2) ≤ (a2n+2 − cos(2n + 2)θ)(1 − q)2,

i.e.,
−(1 − cos(2n + 2)θ)(1 − 2qa2n+2 + q2) ≤ 0,

where q = α̺−2(n+1). Using (3.6), we find

1 − 2qa2n+2 + q2 = (1 − α)(1 − α̺−4(n+1)),

so that the previous inequality becomes

(3.16) −(1 − cos(2n + 2)θ)(1 − α)(1 − α̺−4(n+1)) ≤ 0.

Since 1 − cos(2n + 2)θ ≥ 0, ̺ > 1, and 0 ≤ α < 1 (see (3.14)) we conclude that
inequality (3.16) is true. This also proves inequality (3.15).

According to (3.13) and (3.15) we have

|Z(2)
n,s(̺eiθ)|

(a2n+2 − cos(2n + 2)θ)1/2
≤

[(s−1)/2]
∑

ν=0

|Fν(̺, θ, n)| + |ζn,s(̺eiθ)|
(a2n+2 − cos(2n + 2)θ)1/2

≤
[(s−1)/2]

∑

ν=0

Sν(i̺)

(a2n+2 − 1)1/2
+

ζn,s(i̺)

(a2n+2 − 1)1/2

=
Z

(2)
n,s(i̺)

(a2n+2 − 1)1/2
,

with equality holding for θ = π/2. ¤

Theorem 3.4. If dλ(t) = (1 − t2)s+1/2dt on (−1, 1), s ∈ N0, and n is odd, then

(3.17) max
z∈E̺

|K(2)
n,s(z)| =

∣

∣

∣
K(2)

n,s

( i

2

(

̺ − ̺−1
)

)∣

∣

∣
,

i.e., the maximum of |K(2)
n,s(z)| (n odd) on E̺ is attained on the imaginary axis.

Proof. For the second factor in (3.12), it is obvious that

(a2 − cos 2θ)s+1/2

(a2n+2 − cos(2n + 2)θ)s
≤ (a2 + 1)s+1/2

(a2n+2 − 1)s
, for all θ, all n,

with equality holding when θ = π/2 and n is odd. Now, this inequality and
Lemma 3.3 give the desired result. ¤
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When n is even in Theorem 3.4, computation shows that the maximum of

|K(2)
n,s(z)| on the ellipse E̺ is attained slightly off the imaginary axis. The graphics

θ 7→ |K(2)
n,s(z)| (z = (u + u−1)/2, u = ̺eiθ) for n = 10 and s = 1, 2, 3 are displayed

in Fig. 3, when ̺ = 1.05, 1.08, 1.10, and 1.12.
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Figure 3. The function θ 7→ |K(2)
10,s(z)|, z = 1

2 (u+u−1), u = ̺eiθ,

for s = 1 (dashed line), s = 2 (dot-dashed line), s = 3 (solid line),
when ̺ = 1.05, ̺ = 1.08 (top), and ̺ = 1.10, ̺ = 1.12 (bottom)

As in the case of the measure dλ1(t) we can get here a simple crude bound of
the remainder,

(3.18) |Rn,s(f)| ≤ M

̺n+1

(

̺ + ̺−1

̺n+1 − ̺−(n+1)

)2s+1

, M = E(ε)‖f‖̺(̺ + ̺−1),

which holds for each n ∈ N.
According to (3.18) we may conclude that the corresponding Gauss-Turán quad-

rature formulae converge if s is a fixed integer and n → +∞. Moreover, Rn,s(f) =

O(̺−2n(s+1)), when n → +∞.
Assuming that (̺+̺−1)/(̺n+1−̺−n−1) < 1, we see that also Rn,s(f) → 0, when

s → +∞ and n is fixed. This condition is satisfied if ̺2n+2 − (1 + ̺2)̺n − 1 > 0,
i.e.,

̺n >
1 + ̺2 +

√

1 + 6̺2 + ̺4

2̺2
.

3.3. The measure dλ3(t) = (1 − t)−1/2(1 + t)1/2+s, s ∈ N0. In this case it was
shown (see [29, 12]) that the monic s-orthogonal polynomials are the monic Jacobi
orthogonal polynomials with parameters α = −1/2, β = 1/2, i.e.,

πn,s(t) = 2−nVn(t) = 2−n
cos

(2n + 1)θ

2

cos
θ

2

, t = cos θ.
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Therefore, by (2.3), where w(t) = (1− t)−1/2(1+ t)1/2+s, substituting t = cos θ, we
have

̺n,s(z) = 2s+1 · 2−n(2s+1)

∫ π

0

cos
θ

2

[

cos
(2n + 1)θ

2

]2s+1

z − cos θ
dθ, n ∈ N, z /∈ [−1, 1].

Using the representation (see [29])

Vn(z) =
T2n+1

(
√

1
2 (1 + z)

)

√

1
2 (1 + z)

,

we obtain

K(3)
n,s(z) =

2s+1

∫ π

0

cos
θ

2
z − cos θ

[

cos
(2n + 1)θ

2

]2s+1

dθ







Tn+1

(
√

1
2 (1 + z)

)

√

1
2 (1 + z)







2s+1 .

The numerator of the last fraction has the form

2s+1

∫ π

0

cos
θ

2
z − cos θ

[

cos
(2n + 1)θ

2

]2s+1

dθ

= 2s+1

∫ π

0

cos
θ

2
z − cos θ

· 1

22s

s
∑

k=0

(

2s + 1

k

)

cos
(2s + 1 − 2k)(2n + 1)θ

2
dθ

=
1

2s

s
∑

k=0

(

2s + 1

k

)
∫ π

0

2 cos
θ

2
z − cos θ

cos
(2m + 1)θ

2
dθ

=
1

2s

s
∑

k=0

(

2s + 1

k

)
∫ π

0

[

cos(m + 1)θ

z − cos θ
+

cos mθ

z − cos θ

]

dθ

=
π

2s
√

z2 − 1

s
∑

k=0

(

2s + 1

k

)

[

(

z −
√

z2 − 1
)m+1

+
(

z −
√

z2 − 1
)m

]

=
2π

2s(u − u−1)

s
∑

k=0

(

2s + 1

k

)

u + 1

um+1
,

where (3.3) has been used and we have put m = (2n + 1)(s − k) + n and z =
1
2 (u + u−1).

On the other hand, according to (3.4) and the fact that
√

1

2
(z + 1) =

u + 1

2
√

u
, z =

1

2
(u + u−1),
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we get

T2n+1

(
√

1
2 (1 + z)

)

√

1
2 (z + 1)

=
un+1 + u−n

u + 1
.

Therefore,

K(3)
n,s(z) =

21−sπ(u + 1)

un+1(u − u−1)

(

u + 1

un+1 + u−n

)2s+1 s
∑

k=0

(

2s + 1

s + k + 1

)

u−(2n+1)k.

Using (3.6) and putting

(3.19) Z(3)
n,s(u) =

s
∑

k=0

(

2s + 1

s + k + 1

)

u−(2n+1)k,

we obtain

(3.20) |K(3)
n,s(z)| =

21−sπ

̺n+1/2
· (a1 + cos θ)s+1|Z(3)

n,s(̺eiθ)|
(a2 − cos 2θ)1/2(a2n+1 + cos(2n + 1)θ)s+1/2

,

when

z =
1

2
(̺eiθ + ̺−1e−iθ) ∈ E̺.

An analysis of (3.20) shows that the point of the maximum of |K(3)
n,s(z)| for a

given ̺ depends on n as in the case of the measure dλ1(t). If there exists a sequence
of the local maxima, numerical experiments show that it decreases when θ runs over
[0, π]. Because of that and better clarity in the following figures, the graphics of

the function θ 7→ |K(3)
n,s(z)| (z = (u + u−1)/2, u = ̺eiθ) for some selected n, s, and

̺, are presented only for θ ∈ [0, π/2]. The case n = 10, s = 1, is given in Fig. 4 for
̺ = 1.01, 1.05, 1.1, and 1.15. The graphics for s = 1, 2, 3, when n = 10 and ̺ = 1.1
and 1.15, are presented in Fig. 5.

On the basis of numerical experiments a similar conjecture for |K(3)
n,s(z)| on the

ellipse E̺ as Conjecture 3.1 can be stated.

A useful estimate of (3.20) can be given by using the fact that |Z(3)
n,s(̺eiθ)| ≤

Z
(3)
n,s(̺) < Z

(3)
n,s(1) = 22s and the inequality (see [10, p. 1179])

a1 + cos θ

(a1 − cos θ)(a2n+1 + cos(2n + 1)θ)
≤ a1 + 1

(a1 − 1)(a2n+1 + 1)
, 0 ≤ θ ≤ π,

which is equivalent to

a1 + cos θ
√

(a2 − cos 2θ)(a2n+1 + cos(2n + 1)θ)
≤ a1 + 1

√

(a2 − 1)(a2n+1 + 1)
, 0 ≤ θ ≤ π,

because of a2 = 2a2
1 − 1 and a1 − cos θ = 1

2 (a2 − cos 2θ)/(a1 + cos θ). In this way,
we get

|K(3)
n,s(z)| ≤ 2π

̺n+1/2
· a1 + 1
√

(a2 − 1)(a2n+1 + 1)

(

2(a1 + cos θ)

a2n+1 + cos(2n + 1)θ

)s

,

i.e.,

(3.21) |K(3)
n,s(z)| ≤ 2π(̺ + 1)

̺n(̺ − 1)(̺n+1 + ̺−n)

(√
2 (̺1/2 + ̺−1/2)

̺n+1/2 − ̺−n−1/2

)2s

,
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Figure 4. The function θ 7→ |K(3)
10,1(z)| (z = 1

2 (u+u−1), u = ̺eiθ)

for ̺ = 1.01, ̺ = 1.05 (top) and ̺ = 1.1, ̺ = 1.15 (bottom)
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Figure 5. The function θ 7→ |K(3)
10,s(z)|, z = 1

2 (u+u−1), u = ̺eiθ,

for s = 1 (dashed line), s = 2 (dot-dashed line), s = 3 (solid line),
when ̺ = 1.1 (left) and ̺ = 1.15 (right)

and then, the estimate of the corresponding remainder (3.2) becomes

|Rn,s(f)| ≤ M

̺n(̺n+1 + ̺−n)

( √
2 (̺ + 1)

̺n+1 − ̺−n

)2s

, M = 2E(ε)‖f‖̺(̺ + ̺−1)
̺ + 1

̺ − 1
.

It is clear that Rn,s(f) = O(̺−2n(s+1)) when n → +∞. Assuming that

√
2

̺ + 1

̺n+1 − ̺−n
< 1,

which is equivalent to

̺n >
1 + ̺ +

√

1 + 4̺ + ̺2

̺
√

2
,

we conclude that Rn,s(f) → 0 when s → +∞ and n is fixed.
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Rend. Mat. (6) 8 (1975), 1–15.

14. G. H. Golub and J. Kautsky, Calculation of Gauss quadratures with multiple free and fixed

knots, Numer. Math. 41 (1983), 147–163.
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