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1. INTRODUCTION

In the Fourier analysis, e.g. in the application of Fourier series or the inversion of
Fourier and Laplace transform, as well as in many problems in physics and engineering,
integrals of strongly oscillatory functions are appeared. For example, such integrals can
be: 1◦ The Fourier coefficients

(1.1) Ck(f) =
1

π

∫ π

−π

f(x) coskx dx, Sk(f) =
1

π

∫ π

−π

f(x) sin kx dx,

where k ∈ N; 2◦ Integrals over (0,+∞),

C(f ;ω) =

∫ +∞

0

f(x) cosωx dx, S(f ;ω) =

∫ +∞

0

f(x) sinωx dx,

where ω is a large positive parameter; 3◦ Integrals involving Bessel functions

(1.2) Iν(f ;ω) =

∫ +∞

0

e−x2

Jν(ωx)f(x
2)xν+1 dx, ν > −1,

where ω is a large positive parameter. This type of integrals appears in some problems
of high energy nuclear physics (cf. [1–3]).

For such integrals over finite or infinite limits there are a large number of special ap-
proaches, because the standard methods of numerical integration (for instance, formulas
of Newton-Cotes or Gaussian type) require too much computation work and cannot be
successfully applied.

*This work was supported in part by the LIBIS Computers Company, Niš, and Serbian Scientific
Foundation, grant number 0401F.
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In this paper we give a short account of the most important methods for the evalua-
tion of integrals of oscillatory functions (Sections 2 and 3), and an unified approach for
such a purpose in Section 4.

2. FILON’S RULE, GAUSSIAN FORMULAE AND INTEGRATION

BETWEEN ZEROS

The earliest formulas for numerical integration of rapidly oscillatory function are
based on the picewise approximation by the low degree polynomials of f(x) on the
integration interval. The resulting integrals over subintervals are then integrated exactly.
A such method was obtained by Filon [4].

Consider the Fourier integral on the finite interval

I(f ;ω) =

∫ b

a

f(x)eiωx dx

and divide that interval [a, b] into 2N subintervals of equal length h = (b − a)/(2N),
so that xk = a + kh, k = 0, 1, . . . , 2N . The Filon’s construction of the formula is
based upon a quadratic fit for f(x) on every subinterval [x2k−2, x2k], k = 1, . . . , N (by
interpolation at the mesh points). Thus,

(2.1) f(x) ≈ Pk(x) = Pk(x2k−1 + ht) = φk(t), t ∈ [−1, 1],

where Pk ∈ P2, k = 1, . . . , N , and Pm denotes the set of all algebraic polynomials of
degree at most m. It is easy to get

φk(t) = f2k−1 +
1

2
(f2k − f2k−2)t+

1

2
(f2k − 2f2k−1 + f2k−2)t

2,

where fr ≡ f(xr), r = 0, 1, . . . , 2N . Using (2.1) we have

I(f ;ω) ≈
N
∑

k=1

∫ x2k

x2k−2

f(x)eiωx dx = h

N
∑

k=1

eiωx2k−1

∫ 1

−1

φk(t)e
iθt dt,

where θ = ωh. Since
∫ 1

−1
φk(t)e

iθt dt = Af2k−2 +Bf2k−1 + Cf2k, where

A = C =
1

2

∫ 1

−1

(t2 − t)eiθt dt, B =

∫ 1

−1

(1− t2)eiθt dt,

i.e.,

A =
(θ2 − 2) sin θ + 2θ cos θ

θ3
+ i

θ cos θ − sin θ

θ2
, B =

4

θ3
(sin θ − θ cos θ),

we obtain

I(f ;ω) ≈ h
{

iα
(

eiωaf(a)− eiωbf(b)
)

+ βE2N + γE2N−1

}

,

with α = (θ2 + θ sin θ cos θ− 2 sin2 θ)/θ3, β = 2(θ(1+ cos2 θ)− sin2 θ)/θ3, γ = 4(sin θ−
θ cos θ)/θ3, and

E2N =
N
∑

k=0

′′f(x2k)e
iωx2k , E2N−1 =

N
∑

k=1

f(x2k−1)e
iωx2k−1 ,
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where the double prime indicates that both the first and last terms of the sum are taken
with factor 1/2. The limit θ → 0 leads to the Simpson’s rule. The error estimate was
given by H̊avie [5] and Ehrenmark [6].

Improvements of the previous technique have been done by Flinn [7], Luke [8], Buyst
and Schotsmans [9], Tuck [10], Einarsson [11], Van de Vooren and Van Linde [12], etc.
For example, Flinn [7] used fifth-degree polynomials in order to approximate f(x) taking
values of function and values of its derivative at the points x2k−2, x2k−1, and x2k.
Stetter [13] used the idea of approximating the transformed function by polynomials
in 1/t. Miklosko [14] proposed to use an interpolatory quadrature formula with the
Chebyshev nodes.

The construction of Gaussian formulae for oscillatory weights has also been considered
(cf. Gautschi [15], Piessens [16–18]). Defining nonnegative functions on [−1, 1],

ck(t) =
1

2
(1 + cos kπt), sk(t) =

1

2
(1 + sin kπt), k = 0, 1, . . . ,

the Fourier coefficients (1.1) can be expressed in the form

Ck(f) = 2

∫ 1

−1

f(πt)ck(t) dt−
∫ 1

−1

f(πt) dt

and

Sk(f) = 2

∫ 1

−1

f(πt)sk(t) dt−
∫ 1

−1

f(πt) dt.

Now, the Gaussian formulae can be obtained for the first integrals on the right-hand side
in these equalities. For k = 1(1)12 Gautschi [15] obtained n-point Gaussian formulas
with 12 decimal digits when n = 1(1)8, n = 16, and n = 32. We mention, also, that for
the interval [0,+∞) and the weight functions w1(t) = (1 + cos t)(1 + t)−(2n−1+s) and
w2(t) = (1 + sin t)(1 + t)−(2n−1+s), n = 1(1)10, s = 1.05(0.05)4, the n-point formulas
were constructed by Krilov and Kruglikova [19].

Quadrature formulas for the Fourier and the Bessel transforms

F (x) =

∫ +∞

0

tµf(t)eiωt dt, Hk(x) =

∫ +∞

0

tµf(t)H(k)
ν (ωt) dt, k = 1, 2,

where ω is a real parameter and H
(k)
ν (t), k = 1, 2, are the Hankel functions, were derived

by Wong [20].

Other formulas are based on the integration between the zeros of cosmx or sinmx
(cf. [21–25]). In general, if the zeros of the oscillatory part of the integrand are located
in the points xk, k = 1, 2, . . . , m, on the integration interval [a, b], where a ≤ x1 < x2 <
· · · < xm ≤ b, then we can calculate the integral on each subinterval [xk, xk+1] by an
appropriate rule. A Lobatto rule is good for this purpose (see Davis and Rabinowitz [21,
p. 121]) because of use the end points of the integration subintervals, where the integrand
is zero, so that more accuracy can be obtained without additional computation.

There are also methods based on the Euler and other transformations to sum the
integrals over the trigonometric period (cf. Longman [26], Hurwitz and Zweifel [27]).
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3. METHOD OF BAKHVALOV AND VASIL’EVA

A most significant progress in the development of high precision methods for Fourier
integrals was made by Bakhvalov and Vasil’eva [28]. In their method f(x) was expanded
as a truncated series of Legendre polynomials Pk(x), which could be integrated exactly
term by term using the following closed formula

∫ 1

−1

Pk(x)e
iωx dx = ik

√

2π

ω
Jk+1/2(ω),

where Jν is the Bessel function of the order ν. Thus, if f(x) ≈
n
∑

k=0

ckPk(x), then

∫ 1

−1

f(x)eiωx dx ≈
√

π

2ω

∫ 1

−1

f(x)
n
∑

k=0

(2k + 1)ikJk+1/2(ω)Pk(x) dx.

An approximation by Chebyshev polynomials was considered by Piessens and Poleunis
[29]. An extension of the Bakhvalov and Vasil’eva method to the weighted integral
∫ b

a
w(x)f(x)eiωx dx was given by Patterson [30]. Precisely, he considered the cases

w(x) = (1 − x2)±1/2 on the finite interval (−1, 1), w(x) = xαe−x on (0,+∞), and the

Hermite case w(x) = e−x2

on (−∞,+∞).

In a similar way, Gabutti [2] considered an integral of the form

I0(f ;ω) =

∫ +∞

0

e−x2

J0(ωx)f(x
2)x dx,

which is a special case of (1.2). An asymptotic behaviour of this integral was investigated

by Frenzen and Wong [31]. They showed that I0(f ;ω) decays exponentially like e−γω2

,
γ > 0, when f(z) is an entire function subject to a suitable growth condition.

4. AN UNIFIED APPROACH

Let dλ(x) be a nonnegative measure on R with finite or infinite support, for which
the all moments µν =

∫

R
xν dλ(x) exist for every ν and µ0 > 0. Define the inner product

( · , · ) by
(f, g) =

∫

R

f(x)g(x) dλ(x), ‖f‖2 = (f, f).

Then, there exist the (monic) orthogonal polynomials πk( · ) = πk( · , dλ), k = 0, 1, . . . ,
which satisfy the three-term recurrence relation

πk+1(x) = (x− αk)πk(x)− βkπk−1(x), k = 0, 1, . . . ,

where π0(x) = 1, π−1(x) = 0, and

αk =
(xπk, πk)

(πk, πk)
, βk =

(πk, πk)

(πk−1, πk−1)
.

In some cases (e.g. in the case of classical orthogonal polynomials) we have analytical
expressions for the coefficients αk and βk. In a general case there exist numerical
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procedures for constructing these coefficients (for example, the method of (modified)
moments and the discretized Stieltjes procedure).

The n-point Gaussian quadrature formula

(4.1)

∫

R

g(x)dλ(x) =
n
∑

ν=1

λ(n)
ν g(τ (n)ν ) +Rn(g)

has maximum algebraic degree of exactness 2n − 1, in the sense that Rn(g) = 0 for

all g ∈ P2n−1. In formula (4.1), τν = τ
(n)
ν are the Gauss nodes , and λν = λ

(n)
ν the

Gauss weights or Christoffel numbers . This formula is also known as Gauss-Christoffel
quadrature formula. A nice survey on that was given by Gautschi [32].

The nodes τν are the zeros of the n-th orthogonal polynomial πn( · , dλ), and the
weights λν , which are all positive, can be also expressed in terms of the same orthogonal
polynomials. Precisely, the nodes τν are the eigenvalues of the n-th order Jacobi matrix

Jn(dλ) =

















α0

√
β1 O√

β1 α1

√
β2

√
β2 α2

. . .
. . .

. . .
√

βn−1

O
√

βn−1 αn−1

















,

where αν and βν are the coefficients in three-term recurrence relation for the monic or-
thogonal polynomials πn(·, dλ). The weights λν are given by λν = β0v

2
ν,1, ν = 1, . . . , n,

where β0 =
∫

R
dλ(t) and vν,1 is the first component of the normalized eigenvector vν

corresponding to the eigenvalue τν (cf. Golub and Welsch [33], and Gautschi [34]),

Jn(dλ)vν = τνvν , v
T
ν vν = 1, ν = 1, . . . , n.

There are well-known and efficient algorithms, such as the QR algorithm with shifts, to
compute eigenvalues and eigenvectors of symmetric tridiagonal matrices (cf. the routine
GAUSS in the package ORTHPOL given by Gautschi [35]). There are many methods
for estimating the remainder term Rn(g) in (4.1). Error bounds in the class of analytic
functions were investigated by Gautschi and Varga [36].

Consider now

C(f ;ω, dλ) =

∫

R

f(x)K(ω, x) dλ(x),

where K(ω, x) is an oscillatory kernel and f(x) is the “nonoscillatory” part of the
integrand. In order to calculate this integral we need a polynomial approximation of
the kernel K(ω, x). Let Kn(ω, · ) be the best L2(dλ)-approximation of K(ω, · ) in Pn.
Then, it can be expressed in terms of orthogonal polynomials πk(x),

(4.2) K(ω, x) ≈ Kn(ω, x) =

n
∑

ν=0

aνπν(x).
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Theorem 4.1. Let f,K(ω, · ) ∈ L2(dλ) and let rn(ω; x) = K(ω; x)−Kn(ω, x), where
the approximation Kn(ω; x) is given by (4.2). If

(4.3) bk =
1

‖πk‖2
∫

R

f(x)πk(x) dλ(x), k ≥ 0,

then

C(f ;ω, dλ) =

∫

R

f(x)K(ω, x) dλ(x) =

n
∑

k=0

akbk‖πk‖2 +En,

where |En| ≤ ‖rn‖‖f‖.

Proof. Since En = C(f ;ω, dλ)−
n
∑

k=0

akbk‖πk‖2, we have

En =

∫

R

f(x)K(ω, x) dλ(x)−
n
∑

k=0

ak

∫

R

f(x)πk(x) dλ(x)

=

∫

R

f(x)
(

K(ω, x)−Kn(ω, x)
)

dλ(x) =

∫

R

f(x)rn(x) dλ(x),

i.e., En = (f, rn). Now, Cauchy inequality gives |En| = |(f, rn)| ≤ ‖f‖‖rn‖. �

The coefficients bk are given by (4.3). In order to calculate them exactly (up to
rounding errors), when f ∈ Pn, we use the (n+1)-point Gaussian formula (4.1). Thus,

bk =
1

‖πk‖2
n+1
∑

ν=1

λ(n+1)
ν f(τ (n+1)

ν )πk(τ
(n+1)
ν ), k = 0, 1, . . . , n.

Indeed, here we have that dg(f(x)πk(x)) = dg f(x)+dg πk(x) ≤ n+n = 2n < 2n+1 =
2(n + 1) − 1. Thus, n + 1 is the minimal number of nodes in the Gauss-Christoffel
quadrature formula (4.1) for calculating bk. So, the approximate value of the given
integral can be expressed in the form

(4.4) C(f ;ω, dλ) ≈
n
∑

k=0

ak

n+1
∑

ν=1

λ(n+1)
ν f(τ (n+1)

ν )πk(τ
(n+1)
ν ).

In many cases we know analytically the coefficients ak in an expansion of K(ω; x). Now,
we give some of such examples.

In [37, p. 560] we used that

∫ 1

−1

Cλ
k (x)e

iωx(1− x2)λ−1/2 dx = ik
2πΓ(2λ+ k)

k!Γ(λ)(2ω)λ
Jk+λ(ω), Re λ > −1/2,

where Cλ
k (x) is the Gegenbauer polynomial of degree k. Taking this exact value of the

integral we can find the following expansion of eiωx in terms of Gegenbauer polynomials,

eiωx ∼
( 2

ω

)λ

Γ(λ)
+∞
∑

k=0

ik(k + λ)Jk+λ(ω)C
λ
k (x), x ∈ [−1, 1],
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so that (4.4) becomes

C(f ;ω; dλ) ≈
( 2

ω

)λ

Γ(λ)
n
∑

k=0

ik(k + λ)Jk+λ(ω)
n+1
∑

ν=1

λ(n+1)
ν f(τ (n+1)

ν )Cλ
k (τ

(n+1)
ν ),

where dλ(x) = (1−x2)λ−1/2 dx on (−1, 1), and τ
(n+1)
ν and λ

(n+1)
ν , ν = 1, . . . , n+1, are

nodes and weights of the (n+ 1)-point Gauss-Gegenbauer quadrature formula.

In some special cases we get: (1) For λ = 1/2 – the method of Bakhvalov-Vasil’eva
[28]; (2) For λ = 0 and λ = 1 – the method of Patterson [30].

Taking the expansion

eiωx ∼ e−(ω/2)2
+∞
∑

k=0

ik
(ω/2)k

k!
Hk(x), |x| < +∞,

where Hk is the Hermite polynomial of degree n, we can calculate integrals of the form
∫ +∞

−∞
e−x2

eiωxf(x) dx. In a similar way we can use the expansion

eiωx2 ∼
+∞
∑

k=0

(iω)k

k!22k(1− iω)k+1/2
H2k(x), |x| < +∞.

Consider now the integral Iν(f ;ω) given by (1.2)., which can be reduces to the
following form

Iν(f ;ω) =
1

2

∫ +∞

0

e−tJν(ω
√
t)f(t)tν/2 dt =

1

2

∫ +∞

0

tνe−t
[

t−ν/2Jν(ω
√
t)
]

f(t)tν/2 dt,

where we put the oscillatory kernel in the brackets. Using the monic generalized La-
guerre polynomials L̂ν

n(t), which are orthogonal on (0,+∞) with respect to the weight
tνe−t, we get the expansion

t−ν/2Jν(ω
√
t) ∼

(ω

2

)ν

e−(ω/2)2
+∞
∑

k=0

(−1)k(ω/2)2k

k!Γ(k + ν + 1)
L̂ν
n(t),

so that

Iν(f ;ω) ≈
1

2

(ω

2

)ν

e−(ω/2)2
n
∑

k=0

(−1)kbk

(ω

2

)2k

,

where bk are the coefficients in the expansion of f(t) in terms of L̂ν
n(t). In 1979 Gabutti

[2] investigated in details the case ν = 0. Using a special procedure in D-arithmetic on
an IBM 360/75 computer he illustrated the method taking an example with f(t) = sin t
and ω = 20.

At the end we mention that it is possible to find exactly Iν(f ;ω) when f(t) = eiαt.
Namely,

Iν
(

eiαt;ω
)

=
1

2

(ω

2

)ν 1

(1− iα)ν+1
exp

[

−(ω/2)2

1− iα

]

.
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The imaginary part of this gives the previous example of Gabutti [2].
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