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COMPLEX ORTHOGONAL POLYNOMIALS
WITH THE HERMITE WEIGHT
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Dedicated to the memory of Professor Dragoslav S. Mitrinovié

In this paper we connect complex orthogonal polynomials of the Gegenbauer
type on a semicircle with the orthogonal polynomials of the Hermite type
Xn(z). For the last of them, we give the three-term recurrence relation and
their relationship with the classical Hermite polynomials. Also, we study a zero
distribution of such polynomials and obtain a linear second-order differential

equation for X, (z). Some applications in numerical integration are included.

1. INTRODUCTION

In 1983 during a joint visit to Henri Poincare Institute at Paris, the first
author of this paper announced Professor MITRINOVIC an idea on orthogonal poly-
nomials on the semicircle with a non-Hermitian complex inner product. Since he
liked this idea, he was always interested about progress in that direction. Further-
more, he asked MILOVANOVIC to prepare a survey about that (see [10]) for his
and KECKI¢’s monograph “The Cauchy Method of Residues, Vol. 2 — Theory and
Applications” published by Kluwer in 1993 (and previously in Serbian by Nau¢na
Knjiga, Belgrade 1991). Such polynomials orthogonal on the semicircle

y={seClz=¢" 0<0<n}

have been introduced by GavuTscHl and MiLovaNovi¢ [3—4]. The inner product
is given by

()= [ 1)) dz = / " F(e)g(e) do.
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This inner product is not Hermitian, but the corresponding (monic) orthogonal
polynomials {7} exist uniquely and satisfy a three-term recurrence relation of the
form

Trt1(2) = (7 — o) me(2) — Bremr—1(2), k=0,1,2,...,
m_1(z) = 0, mo(z) =1.

Notice that the inner product possesses the property (zf,g) = (f, zg).

The general case of complex polynomials orthogonal with respect to a complex
weight function was considered by GaUTscHI, LANDAU and MiLovaNovi¢ [2].
Namely, let w : (=1,1) = Ry be a weight function which can be extended to a
function w(z) holomorphic in the half disc Dy = {z € C||z| < 1, Imz > 0}, and

() = [ F@glpul i) s = / " ()9 ol e®) do.

We call a system of complex polynomials {7x} orthogonal on the semicircle if
(T, ™m) =0 for k#m and (7, my) >0 for k=m (k,m € Np),

where we assume that 7 1s monic of degree k. The existence of the orthogonal
polynomials {7 } can be established assuming only that

Re(1,1) = Re/ﬂ w(e?)do # 0.

Some applications of such polynomials, especially with the GEGENBAUER weight,
were given in [9] (see also [8] and [11-14).
In this paper we consider an orthogonality on a growing semicircle YR with

radius A > 1, and especially a limit case when A tends to infinity (Sections 2 and 3).
In Section 4 we discuss applications in numerical integration.

2. COMPLEX POLYNOMIALS ORTHOGONAL
ON A GROWING SEMICIRCLE

Let wy(z) be the GEGENBAUER weight function,
wi(z) = (1= 2222 (A>0),

and Dy the half disc Dy = {z € C||z| <1, Imz > 0}, bounded by the semicircle
v and the interval [—1, 1].

In [2] it was defined an inner product on the semicircle v with respect to the
weight function w(z) which is not Hermitian. Namely,

(fs9)x :Lf(z)g(z)wA(Z)(iz)_ldz.
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But, it was proved that there exists an unique sequence of monic polynomials
{m}(2)} such that is

(), 7)) = Smnl|ma |3 (myn=20,1,...).

m? n
A connection with the monic GEGENBAUER polynomials éfl‘(z) was also found,

m(2) = C(z) =i, C_y (=),

n—1"n

o LA +1/2) 1 T((k4+2)/2T(\+ (k+1)/2)
O /AT P T A+ k T((k+1)/2)T(A +k/2)

The norm of such polynomials is given by

[malli = 70307 -~ 03_1)* >0 (n>1).
TVR)
Introduce now a new variable u by u =
2+v/A. Then the semicircle ~ becomes a new
one (see Fig. 2.1)
-V o VA

'y(\/x):{uEC||u|§\/X, Imu > 0}.
Fig. 2.1
The orthogonality condition becomes

[ R @A) (1= ) S = g
T

We can define a new sequence of polynomials {Xﬁ‘(u)} by
X () = VAn ) (u/VA),

which are orthogonal with respect to the weight

N ui\r—1/2
)= (1-5)

on Y /x)- Thus,
du

en = [ XX @D G = X
TR

Putting P> (t) = VA" CX(t/V/A) (n € Ny), we see that this sequence satisfies

the following three-term recurrence relation

Pa(t) =tPR () = bp Py (1), PA() =0, P(t)=1,
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where

+/ 2\ 2 T(A+1/2)
bé:/ (1——) dt:\/ﬁm

and

P AR+ 2A—1)
T Ak Nk FA 1)

These polynomials are orthogonal on (—v/A,v/A) with respect to @y(t). Then, we
yield

k> 1.

(2.2) X (u) = P (u) — i0n _y Py (u),

where

=60, 0, =0_Vx  (m>1).

n—1

Similarly as in [2-3] we can prove that they satisfy three-term recurrence
relation and a second order differential equation. Their zeros lie in the region
bounded by ) and [—\/X, \/X]

Using CAUCHY’s theorem the inner product (-,-) can be expressed in the
form

+VX
(23) (a0 = w00 +ive. [ ()
sy T

3. COMPLEX POLYNOMIALS ORTHOGONAL
WITH THE HERMITE WEIGHT

It is known (see SzEGO [L7, p. 107]) that is

(3.1) lim PMt) = Hg(t).
A—r 400
where ffk (t), k=0,1,..., are the monic HERMITE polynomials which satisfy

~

Hygr(t) = tHy(t) —bp Hy_1(t), H_1(t)=0, Ho(t)=1,

with by = /7 and by = k/2 (k > 1). Defining 9, = lim 6", we find

A—r 400
_ _ I{(n+2)/2) _
V1 =m, ﬁn_m (n=0,1,...).
Knowing that (cf. [16])
T'(z+a)
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we conclude that lim ¢, = lim /(n+1)/2 = 4occ.

n—4o0 n—+
Now, we can define a sequence of complex polynomials {Xn(z)} by
Xo(z) = lim X (2).
(s) = lim Xo(z)

Using (3.1) and (2.2) we conclude that these polynomials satisfy the following
recurrence relation

Xp(2) = Hp(2) — i0p_1Ha_1(2), X_1(2) =0, Xo(z)=1.
Recently, NoTARIS [15, Lemma 2.1] proved that

+\/X ()\) + oo 2
lim twy (1) dt = He " di
>\—1+oo A Ik ( )wA( ) /—oo Qk( )6
(M)

for any monic polynomial g’ of degree m, whose coefficients depend on a param-

(

eter A, such that )\lim q,,i‘)(t) = gm(t), where ¢, is a monic polynomial of degree
— 00
m. Therefore, from (2.1) and (2.3) we obtain the inner product

+00 —z?

(3.2) (F,9) = 7f(0)g(0) + i v.p. / F(@)g(z)S

— 00

dz.

X

Theorem 3.1 The sequence of polynomials {X,,(z)} is orthogonal with respect the
inner product (3.2), i.e.,

(X, Xn) = G || Xn | (m,n=0,1,...).

REMARK 3.1 The sequence {X,(z)} can be introduced using two functionals (see
P. Maron1 [7]): L for a real polynomial sequence and w for the corresponding
complex polynomial sequence. If L is the HERMITE functional, then the functional

=20+ Ax — c)_lL

generates the sequence {X,(z)}.
Theorem 3.2. The sequence {X,(z)} satisfies the three-term recurrence relation

Xnt1(2) = (7 — tan) Xn(2) — B Xn-1(z), X_1(z) =0, Xo(z)=1,
where
Ozo:ﬁo, 60:79—1a an:ﬁn_ﬁn—la Bn:ﬁz (77,21)

The norm of polynomuals is given by

1\ 2
Xall” = (X, X0} = s -, = D (251)
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EXAMPLE 3.1 A few values of ¥,, and X,,(z) are given by

1
790:\/_;’ XQ(Z):L

T 1
791:\/7_, Xl(z):z—z—ﬂ_,

2 1
¥y = —, Xz(z):zz—i\/—Ez——,

N 2 772

2 1

793:%;, Xg(z):ZB—Z'\/—EZZ 22—|—Z\/—F,
794:%, X4(z):z4—i¥z3—3z2+i¥z+z.

Notice that 9_; = 7.
REMARK 3.2 Introducing

+Vx
(b = 75000 +i v [ p@lar (1= 5

when A — 400, we obtain the inner product whose corresponding orthogonal poly-
nomials are known as the generalized Hermite polynomials.

Since zeros of the monic HERMITE polynomials ffn(z) (n=1,2,...) are real,
simple and satisfy the separation theorem, for the polynomials X, (z) we have:

Theorem 3.3. All zeros of X,,(z) are contained in the rectangle
Ry={z€C| £ <Rez<¢&,, 0<Imz < vp_1/2},

where &, 1s the largest zero of f]n(z)
Proof. At first, we note that X,(z) cannot have any real zero. Indeed, if we
suppose that exists a real ¢ such that X, ({) =0, i.e.,

ﬁn(C) - iﬁn—lﬁn—l(C) = Oa

then it must be ﬁn(C) = f]n_l(C) = 0, because ﬁn(C), f]n_l(C), and 9J,,_ are real.
However, this is a contradiction with the separation theorem.

According to a result of GIrRoUX [5, Corollary 3] (see also [12, p. 269]) all
zeros of X, (z) either lie in the half strip

Sy ={z€C |- <Rez<&, 0<Imz},

or in the conjugate half strip. Since X, (z) = 2™ —i¥,_12" "1 —- .. using the VIETE

rule, we find
> ¢ =iy,
j=1
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from which we conclude that
{3 ¢ =du1>0,
j=1

ie, Im¢; > 0, j = 1,...,n. Like in [2], we can prove that all zeros of X, (%)
are located symmetrically with respect to imaginary axis because of the symmetric
weight. Tt also gives bounds for zeros. If n is odd, then X, (z) has one purely
imaginary zero. O

REMARK 3.3. An interesting result on the zero distribution for polynomials or-
thogonal on the semicircle can be found in [1].

Theorem 3.4. The polynomial X, (z) satisfies the differential equation

(3.3)  P()XJ(2) = 2(2P(2) + i0n—1) X, (2) + 2(nP(2) — 292 _1) X, (2) = 0,

where P(z) = 2id,_12+ 292 | —n.
Proof. We can prove it starting with the function

Q(Z) — e—z2+2i19n_1z’
which satisfies
(Q(z)f]n_l(z))/ =AQ(z)Xn(2), A= const,

by the same procedure asin [2]. A general way for finding such differential equations
was given in [7]. O
Dividing (3.3) by P(z) we obtain the equation

0,1 202 _,
X)) =2 (24 22 ) Xh(z) 42 (n— S22 ) X (2) =
t0 -2 (s+ ) e +2 (- st ) =0
which i1s more similar to the HERMITE equation.

For ¥,_1 = 0, the polynomial X, (z) becomes the polynomial ffn(z) and the
differential equation is the corresponding one.

4. QUADRATURES OF GAUSSIAN TYPE
In this section we construct a Gaussian quadrature formula

(4.1) L(f) =Y oo f(G) + Ralf),  Ra(Panci1) =0,

v=1

for the functional

(4.2) L(f) ==nf(0) +4 V.p./



Complex orthogonal polynomials with the Hermite weight 71

Here P,, denotes the set of all polynomials of degree at most m.
Taking

H (2= Ck),
k=1

we obtain an interpolatory quadrature (4.1) if

1
X5 ()
This formula will be of Gaussian type if and only if the node polynomial X, is

chosen in such a way to be orthogonal to P,_; with respect to the functional L,
i.e., to the inner product (3.2). Thus, X,, must be given as in Theorem 3.1.

(o y—

LXa()/(-=¢)),  v=1...n

It is easy to find the nodes (, and weights ¢, in an analytic form when n = 1
and n = 2. Namely, for n = 1 we have {; = i/\/7 and o1 = 7, and for n = 2 the
parameters are

N

C2=7F 1 + ZT ~ F0.5510448794 + 0.4431134627 2
" 4-n)vr
T 4 — /7

= _—x3 A 1.5707963268 F 0.3451369080 1.

012 9 + 2 2\/8——71' F 1

For f(z) = 1, from (4.1) and (4.2) we obtain that
e =
v=1

Letting )?k(z) = Xk (2)/||Xk]|| denote the normalized orthogonal polynomials
and

> > > T
X(z) = [Xo(z), X1(2), .., Xpo1(2)]
the vector of the first of them, 1t is easily seen that
2Xp(2) = 01 X1 (2) + i Xa(2) + 0 Xpqa(2), k=0,1,...,
and

X () = GX(G),

where
iOzo 790 O
790 iOél 791
Jn = 791 ia2

. 7971—2
O 7971—2 iﬁn—l
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The nodes (,, are therefore the eigenvalues of the Jacobi matrix J, and X(¢,)
the corresponding eigenvalues. By an adaptation of the procedure of GOLUB and
WELSCH [6] as in [4] and [9] and using the EISPACK routine HQR2 and the
LINPACK routines CGECO and CGESL we can compute the parameters of the
Gaussian quadrature (4.1). In Table 4.1 we display these parameters (to 8 decimals
only, to save space) for n = 5, 10, 20 (numbers in parentheses denote decimal
exponents).

TABLE 4.1. Gaussian formula for n = 5, 10, 20

Ln] v | & >
5 1,2 +1.85901878 +0.21826725 ¢ 0.17689235(—1) :|:0.11513438(—1) 7
3,4 +0.80848233 +0.32121144 ¢ 0.53995718 +0.31710987 ¢

5 0.42554818 ¢ 2.02629982

10 1,2 +3.31975547 +0.13515758 ¢ 0.42561000(—5) :|:0.29610519(—5) 7
3,4 +2.40909579 +0.16286583 ¢ 0.82451753(—3) :|:0.66849399(—3) 7
5,6 +1.62845184 +0.19933977 ¢ 0.24576916(—1) :|:0.22489105(—1) 7
7,8 +0.91319867 +0.25497858 ¢ 0.25135294 +0.22500063 2
9,10 +0.27441118 +0.33813279¢ 1.29403770 +0.49500070 ¢

20 | 1,2 | £5.30573927 +0.088616419¢ | 0.83944621(—13) +0.57817620(—13) 1
3,4 | £4.51840887  40.097901493¢ | 0.17095758(—9)  =£0.13031066(—9) i
5,6 | £3.85631387 40.10752170% | 0.43738933(—7)  £0.36658071(—7)i
7,8 | £3.25640496  40.11824584i | 0.32839496(—5)  £0.30258528(—5) i
9,10 | £2.69454220 +0.13075122¢ | 0.10186797(—3)  #£0.10337127(—3) 4
11,12 | £2.15824427  +0.14595677¢ | 0.15724549(—2)  £0.17577769(—2) 1
13,14 | £1.64017858 +0.16537297 ¢ 0.13707030(—) :|:0.16722936( )z
15,16 | +£1.13642167 +0.19184148 ¢ 0.76184193(—1) :|:0.96815143( l)z
17,18 | +0.64866565 +0.23107063 2 0.32528096 +0.35394326 ¢
19,20 | £0.19977194 +0.284227201 1.15394649 +0.47469771 ¢

We notice that o, is real if ¢, is purely imaginary; and that is 0,41 = o, if
Cl/-l—l = _Czr

An interesting application of Gaussian formulae (4.1) could be to CaucHY
principal value integrals.

Let z — f(z) be a holomorphic function in Im z > 0. Then we have

V.p./-l—Oo @e‘ﬁ dt ~ z{ﬂ'f(O) — VZ:UVf(Q,)}.

— 00

In particular, if f(z) is real for real z, then

o [0

ExXAMPLE 4.1. We apply (4.3) to CAUCHY principal value integral

+ oo
I = V.p./ ¢
oo t

(4.3) e dt v Im Y0, f(G).
v=1

e=t" dt = 1.9319289830 08213 7495702 . .. .
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TABLE 4.2. Gaussian approximation of CAUCHY
principal value integral I and relative errors

n | Approximation Rel. error
2 | 1.917996 7.21(—3)
3 | 1.9314077 2.70(—4)
4 | 1.9319141 7.70(—6)
5 1.931928639 1.78(=7)
6 1.9319289763 3.47(-9)
7 1.931928982895 5.84(—11)
8 1.931928983006 54 8.65(—13)
9 1.931928983008192 1.13(—14)
10 1.931928983008214 1.15(—16)

The obtained results for n = 2(1)10, with relative errors, are given in Table
4.2. In each entry the first digit in error is underlined.
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