# ON MOORE-PENROSE INVERSE OF BLOCK MATRICES AND FULL-RANK FACTORIZATION 

G. V. Milovanović and P. S. Stanimirović<br>Dedicated to Professor Petar Madić on the occasion of his 75 th birthday<br>Communicated by Mileva Prvanović


#### Abstract

We develop a few methods for computing the Moore-Penrose inverse, based on full-rank factorizations which arise from different block decompositions of rectangular matrices. In this way, the paper is a continuation of the previous works given by Noble [5] and Tewarson [10]. We compare the obtained results with the known block representations of the Moore-Penrose inverse. Moreover, efficient block representations of the weighted Moore-Penrose inverse are introduced using the same principles.


## 1. Introduction

Let $\mathbb{C}^{m \times n}$ be the set of $m \times n$ complex matrices, and $\mathbb{C}_{r}^{m \times n}=\left\{X \in \mathbb{C}^{m \times n}\right.$ : $\operatorname{rank}(X)=r\}$. With $A^{\left.\right|_{r}}$ and $A_{\left.\right|_{r}}$ we denote the submatrix of $A$ which contains the first $r$ columns of $A$ and the first $r$ rows of $A$, respectively. Similarly, $A^{r \mid}$ and $A_{r \mid}$ denote the last $r$ columns and the last $r$ rows of $A$, respectively. Finally, $A_{r \mid}^{r \mid}$ denotes the submatrix of $A$ generated by the first $r$ columns and the last $r$ rows of $A$. The identity matrix of the order $k$ is denoted by $I_{k}$, and $\mathbb{O}$ denotes the zero matrix of a convenient size.

Penrose [6], [7] has shown the existence and uniqueness of a solution $X \in$ $\mathbb{C}^{n \times m}$ of the following four equations:
(1) $A X A=A$,
(2) $X A X=X$,
(3) $(A X)^{*}=A X$,
(4) $(X A)^{*}=X A$,
for any $A \in \mathbb{C}^{m \times n}$. For a sequence $\mathcal{S}$ of elements from the set $\{1,2,3,4\}$, the set of matrices which satisfy the equations represented in $\mathcal{S}$ is denoted by $A\{\mathcal{S}\}$. A matrix from $A\{\mathcal{S}\}$ is called an $\mathcal{S}$-inverse of $A$ and denoted by $A^{(\mathcal{S})}$.

[^0]We use the following useful expansion for the Moore-Penrose generalized inverse $A^{\dagger}$ of $A$, based on the full-rank factorization $A=P Q$ of $A[\mathbf{1}],[\mathbf{2}]$ :

$$
A^{\dagger}=Q^{\dagger} P^{\dagger}=Q^{*}\left(Q Q^{*}\right)^{-1}\left(P^{*} P\right)^{-1} P^{*}=Q^{*}\left(P^{*} A Q^{*}\right)^{-1} P^{*}
$$

The weighted Moore-Penrose inverse is investigated in [3] and [8]. The main results of these papers are:

Proposition 1.1. [8] Let given positive-definite matrices $M \in \mathbb{C}^{m \times m}$ and $N \in \mathbb{C}^{n \times n}$. For any matrix $A \in \mathbb{C}^{m \times n}$ there exists the unique solution $X=$ $A_{M \circ, \mathrm{O} N}^{\dagger} \in A\{1,2\}$ satisfying
$(M A X)^{*}=M A X$
(6) $\quad(X A N)^{*}=X A N$.

Similarly, we use the following notations:
$A_{M \circ, N \circ}^{\dagger}$ denotes the unique solution of the equations (1), (2), and

$$
\begin{equation*}
(M A X)^{*}=M A X \tag{7}
\end{equation*}
$$

(8) $\quad(N X A)^{*}=N X A$;
$A_{\circ M, N \circ}^{\dagger}$ is the unique solution of the equations (1), (2) and
(9) $\quad(A X M)^{*}=A X M$,

$$
\begin{equation*}
(N X A)^{*}=N X A \tag{10}
\end{equation*}
$$

$A_{\circ M, \circ N}^{\dagger}$ denotes the unique solution of the equations (1), (2) and

$$
\begin{equation*}
(A X M)^{*}=A X M \tag{11}
\end{equation*}
$$

$$
\begin{equation*}
(X A N)^{*}=X A N \tag{12}
\end{equation*}
$$

Proposition 1.2 [8] The equation (5) is equivalent to $\left(A X M^{-1}\right)^{*}=A X M^{-1}$, and (6) can be expressed in the form $\left(N^{-1} X A\right)^{*}=N^{-1} X A$.

Proposition 1.3 [8] If $A=P Q$ is a full rank factorization of $A$, then:

$$
\begin{aligned}
A_{M \circ, \circ N}^{\dagger} & =(Q N)^{*}\left(Q(Q N)^{*}\right)^{-1}\left((M P)^{*} P\right)^{-1}(M P)^{*} \\
& =N Q^{*}\left(P^{*} M A N Q^{*}\right)^{-1} P^{*} M
\end{aligned}
$$

Using these notations, the following fact can be easily verified.
Proposition 1.4 (a) $\quad A_{M \circ, \circ N}^{\dagger}=A_{\circ M^{-1}, \circ N}^{\dagger}=A_{M \circ, N^{-1} \circ}^{\dagger}=A_{\circ M^{-1}, N^{-1} \circ}^{\dagger}$,
(b) $A_{M \circ, N \circ}^{\dagger}=\left(Q N^{-1}\right)^{*}\left(Q\left(Q N^{-1}\right)^{*}\right)^{-1}\left((M P)^{*} P\right)^{-1}(M P)^{*}=A_{M \circ, \circ N^{-1}}$,
(c) $\quad A_{\circ M, N \circ}^{\dagger}=\left(Q N^{-1}\right)^{*}\left(Q\left(Q N^{-1}\right)^{*}\right)^{-1}\left(\left(M^{-1} P\right)^{*} P\right)^{-1}\left(M^{-1} P\right)^{*}=A_{M^{-1} \mathrm{\circ}, \mathrm{\circ} N^{-1}}$,

$$
\begin{equation*}
A_{\circ M, \mathrm{oN}}^{\dagger}=(Q N)^{*}\left(Q(Q N)^{*}\right)^{-1}\left(\left(M^{-1} P\right)^{*} P\right)^{-1}\left(M^{-1} P\right)^{*} . \tag{d}
\end{equation*}
$$

From the part (a) of Proposition 1.4 and Proposition 1.2, it is easy to conclude that each of the indices, used in notation of the weighted Moore-Penrose inverse, can be written in one of the following form:

$$
\circ M, \circ N \quad M \circ, \circ N \quad \circ M, N \circ \quad M \circ, N \circ
$$

For the sake of clarity, we use the notation $\varphi(M, N)$ for an arbitrary of these indices. Following Proposition 1.3 and Proposition1.4, we conclude the following:

1. $\varphi(M, N)=\circ M, \circ N \Rightarrow A_{\varphi(M, N)}^{\dagger}=(Q N)^{*}\left(Q(Q N)^{*}\right)^{-1}\left(\left(M^{-1} P\right)^{*} P\right)^{-1}\left(M^{-1} P\right)^{*}$;
2. $\varphi(M, N)=M \circ, \circ N \Rightarrow A_{\varphi(M, N)}^{\dagger}=(Q N)^{*}\left(Q(Q N)^{*}\right)^{-1}\left((M P)^{*} P\right)^{-1}(M P)^{*}$;
3. $\varphi(M, N)=\circ M, N \circ \Rightarrow A_{\varphi(M, N)}^{\dagger}=\left(Q N^{-1}\right)^{*}\left(Q\left(Q N^{-1}\right)^{*}\right)^{-1}\left(\left(M^{-1} P\right)^{*} P\right)^{-1}\left(M^{-1} P\right)^{*}$;
4. $\varphi(M, N)=M \circ, N \circ \Rightarrow A_{\varphi(M, N)}^{\dagger}=\left(Q N^{-1}\right)^{*}\left(Q\left(Q N^{-1}\right)^{*}\right)^{-1}\left((M P)^{*} P\right)^{-1}(M P)^{*}$.

The cases $1-4$ can be written in the following way:

$$
A_{\varphi(M, N)}^{\dagger}=\left(Q N^{[-1]}\right)^{*}\left(Q\left(Q N^{[-1]}\right)^{*}\right)^{-1}\left(\left(M^{[-1]} P\right)^{*} P\right)^{-1}\left(M^{[-1]} P\right)^{*}
$$

where $M^{[-1]}$ stands for one of the matrices $M$ or $M^{-1}$, and $N^{[-1]}$ denotes $N$ or $N^{-1}$, in view of one of the rules $1-4$.

We restate the main block decompositions [4], [11-13]. For a given matrix $A \in \mathbb{C}_{r}^{m \times n}$ there exist the regular matrices $R, G$, the permutation matrices $E, F$ and the unitary matrices $U, V$, such that:

$$
\begin{aligned}
& \left(T_{1}\right) \quad R A G=\left[\begin{array}{cc}
I_{r} & \mathbb{O} \\
\mathbb{O} & \mathbb{O}
\end{array}\right]=N_{1} ; \quad\left(T_{2}\right) \quad R A G=\left[\begin{array}{cc}
B & \mathbb{O} \\
\mathbb{O} & \mathbb{O}
\end{array}\right]=N_{2} ; \\
& \left(T_{3}\right) \quad R A F=\left[\begin{array}{cc}
I_{r} & K \\
\mathbb{O} & \mathbb{O}
\end{array}\right]=N_{3} ; \quad\left(T_{4}\right) \quad E A G=\left[\begin{array}{cc}
I_{r} & \mathbb{O} \\
K & \mathbb{O}
\end{array}\right]=N_{4} ; \\
& \left(T_{5}\right) \quad U A G=\left[\begin{array}{ll}
I_{r} & \mathbb{O} \\
\mathbb{O} & \mathbb{O}
\end{array}\right]=N_{1} ; \quad\left(T_{6}\right) \quad R A V=\left[\begin{array}{cc}
I_{r} & \mathbb{O} \\
\mathbb{O} & \mathbb{O}
\end{array}\right]=N_{1} ; \\
& \left(T_{7}\right) \quad U A V=\left[\begin{array}{ll}
B & \mathbb{O} \\
\mathbb{O} & \mathbb{O}
\end{array}\right]=N_{2} ; \quad\left(T_{8}\right) \quad U A F=\left[\begin{array}{cc}
B & K \\
\mathbb{O} & \mathbb{O}
\end{array}\right]=N_{5} ; \\
& \left(T_{9}\right) \quad E A V=\left[\begin{array}{cc}
B & \mathbb{O} \\
K & \mathbb{O}
\end{array}\right]=N_{6} ; \\
& \left(T_{10 a}\right) \quad E A F=\left[\begin{array}{cc}
A_{11} & A_{11} T \\
S A_{11} & S A_{11} T
\end{array}\right]=N_{7} ;
\end{aligned}
$$

where the multipliers $S, T$ satisfy $T=A_{11}^{-1} A_{12}, \quad S=A_{21} A_{11}^{-1}$;

$$
\left(T_{10 b}\right) \quad E A F=\left[\begin{array}{cc}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]=\left[\begin{array}{cc}
A_{11} & A_{12} \\
A_{21} & A_{21} A_{11}^{-1} A_{12}
\end{array}\right]=N_{7}
$$

( $T_{11}$ ) Transformation of similarity for square matrices:

$$
R A R^{-1}=R A F F^{*} R^{-1}=\left[\begin{array}{cc}
I_{r} & K \\
\mathbb{O} & \mathbb{O}
\end{array}\right] F^{*} R^{-1}=\left[\begin{array}{cc}
T_{1} & T_{2} \\
\mathbb{O} & \mathbb{O}
\end{array}\right]
$$

For the sake of completeness and comparison with our results, we describe known block representations of the Moore-Penrose inverse.

In the begining, we restate the block representations of the Moore-Penrose inverse from [11], [13]. For $A \in \mathbb{C}_{r}^{m \times n}$, let

$$
R=\left[\begin{array}{l}
R_{1} \\
R_{2}
\end{array}\right], \quad G=\left[\begin{array}{ll}
G_{1}, & G_{2}
\end{array}\right], \quad U=\left[\begin{array}{l}
U_{1} \\
U_{2}
\end{array}\right], \quad V=\left[\begin{array}{ll}
V_{1}, & V_{2}
\end{array}\right]
$$

where $R_{1}, U_{1}$ are the first $r$ rows of $R$ and $U$, respectively, and $G_{1}, V_{1}$ denote the first $r$ columns of $G$ and $V$, respectively. Then the Moore-Penrose inverse can be represented in the following way, where the block representations $\left(M_{i}\right)$ correspond to the block decompositions $\left(T_{i}\right), i \in\{1, \ldots, 9\}$.

$$
\begin{aligned}
\left(M_{1}\right) A^{\dagger} & =G\left[\begin{array}{cc}
I_{r} & -R_{1} R_{2}^{\dagger} \\
-G_{2}^{\dagger} G_{1} & G_{2}^{\dagger} G_{1} R_{1} R_{2}^{\dagger}
\end{array}\right] R=G\left[\begin{array}{c}
I_{r} \\
-G_{2}^{\dagger} G_{1}
\end{array}\right]\left[\begin{array}{ll}
I_{r}, & \left.-R_{1} R_{2}^{\dagger}\right] R \\
& =\left(G_{1}-G_{2} G_{2}^{\dagger} G_{1}\right)\left(R_{1}-R_{1} R_{2}^{\dagger} R_{2}\right), \\
\left(M_{2}\right) \quad A^{\dagger} & =G\left[\begin{array}{cc}
B^{-1} & -B^{-1} R_{1} R_{2}^{\dagger} \\
-G_{2}^{\dagger} G_{1} B^{-1} & G_{2}^{\dagger} G_{1} B^{-1} R_{1} R_{2}^{\dagger}
\end{array}\right] R \\
& =G\left[\begin{array}{cc}
I_{r} \\
-G_{2}^{\dagger} G_{1}
\end{array}\right] B^{-1}\left[I_{r},\right. \\
\hline & \left.-R_{1} R_{2}^{\dagger}\right] R \\
& =\left(G_{1}-G_{2} G_{2}^{\dagger} G_{1}\right) B^{-1}\left(R_{1}-R_{1} R_{2}^{\dagger} R_{2}\right), \\
\left(M_{3}\right) \quad A^{\dagger} & =F\left[\begin{array}{cc}
\left(I_{r}+K K^{*}\right)^{-1} & -\left(I_{r}+K K^{*}\right)^{-1} R_{1} R_{2}^{\dagger} \\
K^{*}\left(I_{r}+K K^{*}\right)^{-1} & -K^{*}\left(I_{r}+K K^{*}\right)^{-1} R_{1} R_{2}^{\dagger}
\end{array}\right] R \\
& =F\left[\begin{array}{cc}
I_{r} \\
K^{*}
\end{array}\right]\left(I_{r}+K K^{*}\right)^{-1}\left[I_{r},\right. \\
\left.-R_{1} R_{2}^{\dagger}\right] R, \\
\left(M_{4}\right) \quad A^{\dagger} & =G\left[\begin{array}{cc}
\left(I_{r}+K^{*} K\right)^{-1} & \left(I_{r}+K^{*} K\right)^{-1} K^{*} \\
-G_{2}^{\dagger} G_{1}\left(I_{r}+K^{*} K\right)^{-1} & -G_{2}^{\dagger} G_{1}\left(I_{r}+K^{*} K\right)^{-1} K^{*}
\end{array}\right] R \\
& =G\left[\begin{array}{c}
I_{r} \\
-G_{2}^{\dagger} G_{1}
\end{array}\right]\left(I_{r}+K^{*} K\right)^{-1}\left[I_{r}, \quad K^{*}\right] E,
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left(M_{5}\right) \quad A^{\dagger}=G\left[\begin{array}{cc}
I_{r} & \mathbb{O} \\
-G_{2}^{\dagger} G_{1} & \mathbb{O}
\end{array}\right] U=G\left[\begin{array}{c}
I_{r} \\
-G_{2}^{\dagger} G_{1}
\end{array}\right]\left[\begin{array}{ll}
I_{r}, & \mathbb{O}] U
\end{array}\right. \\
& =\left(G_{1}-G_{2} G_{2}^{\dagger} G_{1}\right) U_{1} \text {, } \\
& \left(M_{6}\right) \quad A^{\dagger}=V\left[\begin{array}{cc}
I_{r} & -R_{1} R_{2}^{\dagger} \\
\mathbb{O} & \mathbb{O}
\end{array}\right] R=V\left[\begin{array}{c}
I_{r} \\
\mathbb{O}
\end{array}\right]\left[\begin{array}{ll}
I_{r}, & \left.-R_{1} R_{2}^{\dagger}\right] R
\end{array}\right. \\
& =V_{1}\left(R_{1}-R_{1} R_{2}^{\dagger} R_{2}\right), \\
& \left(\begin{array}{l}
\left.M_{7}\right)
\end{array} A^{\dagger}=V\left[\begin{array}{cc}
B^{-1} & \mathbb{O} \\
\mathbb{O} & \mathbb{O}
\end{array}\right] U=V\left[\begin{array}{c}
I_{r} \\
\mathbb{O}
\end{array}\right]\left[\begin{array}{ll}
B^{-1}, & \mathbb{O}] U=V_{1} B^{-1} U_{1}, ~
\end{array}\right.\right. \\
& \left(M_{8}\right) \quad A^{\dagger}=F\left[\begin{array}{ll}
B^{*}\left(B B^{*}+K K^{*}\right)^{-1} & \mathbb{O} \\
K^{*}\left(B B^{*}+K K^{*}\right)^{-1} & \mathbb{O}
\end{array}\right] U \\
& =F\left[\begin{array}{l}
B^{*} \\
K^{*}
\end{array}\right]\left(B B^{*}+K K^{*}\right)^{-1}\left[\begin{array}{ll}
I_{r}, & \mathbb{O}] U,
\end{array}\right. \\
& \left(\begin{array}{l}
\left.M_{9}\right)
\end{array} A^{\dagger}=V\left[\begin{array}{cc}
\left(B^{*} B+K^{*} K\right)^{-1} B^{*} & \left(B^{*} B+K^{*} K\right)^{-1} K^{*} \\
\mathbb{O} & \mathbb{O}
\end{array}\right] E\right. \\
& =V\left[\begin{array}{c}
I_{r} \\
\mathbb{O}
\end{array}\right]\left(B^{*} B+K^{*} K\right)^{-1}\left[B^{*}, \quad K^{*}\right] E .
\end{aligned}
$$

These results are obtained by solving the equations (1)-(4).
Block decomposition $\left(T_{10 a}\right)$ is investigated in [5], [13], but in two different ways. In [13], the Moore-Penrose inverse is represented by solving the corresponding set of matrix equations. The results in [5] are obtained using a full-rank factorization, implied by the block decomposition $\left(T_{10 a}\right)$. The corresponding representation of the Moore-Penrose inverse is:

$$
\begin{aligned}
\left(M_{10 a}\right) \quad A^{\dagger} & =\left[\begin{array}{c}
I_{r} \\
T^{*}
\end{array}\right]\left(A_{11}^{*}\left[\begin{array}{ll}
I_{r}, & S^{*}
\end{array}\right] E A F\left[\begin{array}{c}
I_{r} \\
T^{*}
\end{array}\right]\right)^{-1} A_{11}^{*}\left[\begin{array}{ll}
I_{r}, & S^{*}
\end{array}\right] \\
& =F\left[\begin{array}{c}
I_{r} \\
T^{*}
\end{array}\right]\left(I_{r}+T T^{*}\right)^{-1} A_{11}^{-1}\left(I_{r}+S^{*} S\right)^{-1}\left[\begin{array}{ll}
I_{r}, & S^{*}
\end{array}\right]
\end{aligned}
$$

The following block representation of the Moore-Penrose inverse was obtained in $[\mathbf{1 0}]$ and $[\mathbf{1 3}]$ for the block decomposition $\left(T_{10 b}\right)$ :

$$
\begin{aligned}
\left(M_{10 b}\right) \quad A^{\dagger} & =\left[\begin{array}{c}
I_{r} \\
\left(A_{11}^{-1} A_{12}\right)^{*}
\end{array}\right]\left(I_{r}+A_{11}^{-1} A_{12}\left(A_{11}^{-1} A_{12}\right)^{*}\right)^{-1} \\
& \times A_{11}^{-1}\left(I_{r}+\left(A_{21} A_{11}^{-1}\right)^{*} A_{21} A_{11}^{-1}\right)^{-1}\left[I_{r}, \quad\left(A_{21} A_{11}^{-1}\right)^{*}\right]
\end{aligned}
$$

Also, in [14] is given the following block representation of the Moore-Penrose inverse, based on the formula $A^{\dagger}=A^{*} T A^{*}, \quad T \in A^{*} A A^{*}\{1\}$ : If $A \in \mathbb{C}_{r}^{m \times n}$ has the form $A=\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right], A_{11} \in \mathbb{C}_{r}^{r \times r}$, then

$$
\begin{aligned}
\left(M_{10 b}^{\prime}\right) \quad A^{\dagger} & =\left[\begin{array}{ll}
A_{11}, & A_{12}
\end{array}\right]^{*} K_{11}^{*}\left[\begin{array}{l}
A_{11} \\
A_{21}
\end{array}\right]^{*} \\
& \text { where } K_{11}=\left(\left[\begin{array}{ll}
A_{11}, & A_{12}
\end{array}\right] A^{*}\left[\begin{array}{l}
A_{11} \\
A_{21}
\end{array}\right]\right)^{-1}
\end{aligned}
$$

Block decomposition $\left(T_{11}\right)$ is investigated in [9], but only for square matrices and the group inverse.

The main idea of this paper is to continue the papers [5] and [10]. In other words, we use the following algorithm: from the presented block decompositions of matrices find the corresponding full-rank factorizatons $A=P Q$, and then apply described general representations for $A^{\dagger}$ and $A_{\varphi(M, N)}^{\dagger}$. Main advantages of the introduced block representations are their simply derivation, computation and possibility of natural generalization.

## 2. The Moore-Penrose inverse.

In the following theorem we derive a few representations of the Moore-Penrose inverse, using described block decompositions and full-rank factorizations.

Theorem 2.1 The Moore-Penrose inverse of a given matrix $A \in \mathbb{C}_{r}^{m \times n}$ can be represented as follows, where each block representation $\left(G_{i}\right)$ is derived from the block decomposition $\left(T_{i}\right), i \in\{1, \ldots, 9,10 a, 10 b, 11\}$ :
$\left(G_{1}\right) \quad A^{\dagger}=\left(G^{-1}{ }_{\mid r}\right)^{*}\left(\left(R^{-1^{\mid r}}\right)^{*} A\left(G^{-1}{ }_{\mid r}\right)^{*}\right)^{-1}\left(R^{-1^{\mid r}}\right)^{*}$

$$
=\left(G^{-1}{ }_{\mid r}\right)^{*}\left(\left(R R^{*}\right)^{-1}{ }_{\mid r}^{r}\left(G^{*} G\right)^{-1} \underset{\mid r}{r}\right)^{-1}\left(R^{-1^{\mid r}}\right)^{*}
$$

$$
\begin{equation*}
A^{\dagger}=\left(G_{\mid r}^{-1}\right)^{*}\left(\left(R^{-1^{\mid r}} B\right)^{*} A\left(G_{\mid r}^{-1}\right)^{*}\right)^{-1}\left(R^{-1^{\mid r}} B\right)^{*} \tag{2}
\end{equation*}
$$

$$
=\left(G^{-1}{ }_{\mid r}\right)^{*}\left(B^{*}\left(R R^{*}\right)^{-1}{ }_{\mid r}^{r} B\left(G^{*} G\right)^{-1 \mid r}{ }_{\mid r}\right)^{-1} B^{*}\left(R^{-1^{\mid r}}\right)^{*}
$$

$\left(G_{3}\right) \quad A^{\dagger}=F\left[\begin{array}{c}I_{r} \\ K^{*}\end{array}\right]\left(\left(R^{-1^{\mid n}}\right)^{*} A F\left[\begin{array}{c}I_{r} \\ K^{*}\end{array}\right]\right)^{-1}\left(R^{-1^{\mid n}}\right)^{*}$

$$
=\left(F^{\mid r}+F^{n-r \mid} K^{*}\right)\left(\left(R R^{*}\right)^{-1}{ }_{\mid r}^{\mid r}\left(I_{r}+K K^{*}\right)\right)^{-1}\left(R^{-1^{\mid r}}\right)^{*}
$$

$$
A^{\dagger}=\left(G_{\mid r}^{-1}\right)^{*}\left(\left[\begin{array}{ll}
I_{r}, & K^{*} \tag{4}
\end{array}\right] E A\left(G_{\mid r}^{-1}\right)^{*}\right)^{-1}\left[I_{r}, \quad K^{*}\right] E
$$

$$
=\left(G^{-1}{ }_{\mid r}\right)^{*}\left(\left(I_{r}+K^{*} K\right)\left(G^{*} G\right)^{-1}|r| r\right)^{-1}\left(E_{\mid r}+K^{*} E_{n-r \mid}\right)
$$

$\left(G_{5}\right) \quad A^{\dagger}=\left(G^{-1}{ }_{\mid r}\right)^{*}\left(U_{\mid r} A\left(G^{-1}{ }_{\mid r}\right)^{*}\right)^{-1} U_{\mid r}=\left(G^{-1}{ }_{\mid r}\right)^{*}\left(\left(G^{*} G\right)^{-1}{ }_{\mid r}^{\mid r}\right)^{-1} U_{\mid r}$,
$\left(G_{6}\right) \quad A^{\dagger}=V^{\mid r}\left(\left(R^{-1^{\mid r}}\right)^{*} A V^{\mid r}\right)^{-1}\left(R^{-1^{\mid r}}\right)^{*}=V^{\mid r}\left(\left(R R^{*}\right)^{-1 \mid r} \mid r\right)^{-1}\left(R^{-1^{\mid r}}\right)^{*}$,
(G7) $A^{\dagger}=V^{\mid r}\left(B^{*} U_{\mid r} A V^{\mid r}\right)^{-1} B^{*} U_{\mid r}=V^{\mid r} B^{-1} U_{\mid r}$,
(G $\left.G_{8}\right) \quad A^{\dagger}=F\left[\begin{array}{l}B^{*} \\ K^{*}\end{array}\right]\left(U_{\mid r} A F\left[\begin{array}{l}B^{*} \\ K^{*}\end{array}\right]\right)^{-1} U_{\mid r}=F\left[\begin{array}{l}B^{*} \\ K^{*}\end{array}\right]\left(B B^{*}+K K^{*}\right)^{-1} U_{\mid r}$,
( $G_{9}$ ) $\quad A^{\dagger}=V^{\mid r}\left(\left[\begin{array}{ll}B^{*}, & K^{*}\end{array}\right] E A V^{\mid r}\right)^{-1}\left[B^{*}, \quad K^{*}\right] E$ $=V^{\mid r}\left(B^{*} B+K^{*} K\right)^{-1}\left[B^{*}, \quad K^{*}\right] E$,
$\left(G_{10 a}\right) A^{\dagger}=F\left[\begin{array}{c}I_{r} \\ T^{*}\end{array}\right]\left(A_{11}^{*}\left[\begin{array}{ll}I_{r}, & S^{*}\end{array}\right] E A F\left[\begin{array}{c}I_{r} \\ T^{*}\end{array}\right]\right)^{-1} A_{11}^{*}\left[\begin{array}{ll}I_{r}, & S^{*}\end{array}\right] E$

$$
=\left(F^{\mid r}+F^{n-r \mid} T^{*}\right)\left(\left(I_{r}+S^{*} S\right) A_{11}\left(I_{r}+T T^{*}\right)\right)^{-1}\left(E_{\mid r}+S^{*} E_{n-r \mid}\right),
$$

$\left(G_{10 b}\right) A^{\dagger}=F\left[\begin{array}{l}A_{11}^{*} \\ A_{12}^{*}\end{array}\right]\left(\left(A_{11}^{*}\right)^{-1}\left[A_{11}^{*}, \quad A_{21}^{*}\right] \operatorname{EAF}\left[\begin{array}{l}A_{11}^{*} \\ A_{12}^{*}\end{array}\right]\right)^{-1}\left(A_{11}^{*}\right)^{-1}\left[A_{11}^{*}, \quad A_{21}^{*}\right] E$

$$
=F\left[\begin{array}{l}
A_{11}^{*} \\
A_{12}^{*}
\end{array}\right]\left(A_{11} A_{11}^{*}+A_{12} A_{12}^{*}\right)^{-1} A_{11}\left(A_{11}^{*} A_{11}+A_{21}^{*} A_{21}\right)^{-1}\left[A_{11}^{*}, \quad A_{21}^{*}\right] E,
$$

$\left(G_{11}\right) A^{\dagger}=R^{*}\left[\begin{array}{c}I_{r} \\ \left(T_{1}^{-1} T_{2}\right)^{*}\end{array}\right]\left(\left(R^{-1^{\mid r}} T_{1}\right)^{*} A R^{*}\left[\begin{array}{c}I_{r} \\ \left(T_{1}^{-1} T_{2}\right)^{*}\end{array}\right]\right)^{-1}\left(R^{-1^{\mid r}} T_{1}\right)^{*}$

$$
=R^{*}\left[\begin{array}{c}
I_{r} \\
\left(T_{1}^{-1} T_{2}\right)^{*}
\end{array}\right]\left(T_{1}^{*}\left(R R^{*}\right)^{-1}{ }_{\mid r}^{\mid r}\left[T_{1}, \quad T_{2}\right] R R^{*}\left[\begin{array}{c}
I_{r} \\
\left(T_{1}^{-1} T_{2}\right)^{*}
\end{array}\right]\right)^{-1}\left(R^{-1^{\mid r}} T_{1}\right)^{*} .
$$

Proof. $\left(G_{1}\right) \quad$ Starting from $\left(T_{1}\right)$, we obtain

$$
A=R^{-1}\left[\begin{array}{cc}
I_{r} & \mathbb{O} \\
\mathbb{O} & \mathbb{O}
\end{array}\right] G^{-1}=R^{-1}\left[\begin{array}{l}
I_{r} \\
\mathbb{O}
\end{array}\right]\left[\begin{array}{ll}
I_{r}, & \mathbb{O}] G^{-1},, ~
\end{array}\right.
$$

which implies

$$
P=R^{-1}\left[\begin{array}{c}
I_{r} \\
\mathbb{O}
\end{array}\right]=R^{-1^{\mid r}}, \quad Q=\left[\begin{array}{ll}
I_{r}, & \mathbb{O}
\end{array}\right] G^{-1}=G^{-1}{ }_{\mid r} .
$$

Now, we get

$$
\begin{aligned}
A^{\dagger} & =Q^{*}\left(P^{*} A Q^{*}\right)^{-1} P^{*}=\left(G^{-1}{ }_{\mid r}\right)^{*}\left(\left(R^{-1^{\mid r}}\right)^{*} A\left(G^{-1}{ }_{\mid r}\right)^{*}\right)^{-1}\left(R^{-1^{\mid r}}\right)^{*} \\
& =\left(G^{-1}{ }_{\mid r}\right)^{*}\left(\left(R^{*}\right)^{-1}{ }_{\mid r} R^{-1^{\mid r}} G^{-1}{ }_{\mid r}\left(G^{*}\right)^{-1^{\mid r}}\right)^{-1}\left(R^{-1^{\mid r}}\right)^{*} \\
& =\left(G^{-1}{ }_{\mid r}\right)^{*}\left(\left(R R^{*}\right)^{-1}{ }_{\mid r}^{r}\left(G^{*} G\right)^{-1}{ }_{\mid r}^{\mid r}\right)^{-1}\left(R^{-1^{\mid r}}\right)^{*} .
\end{aligned}
$$

The other block representations of the Moore-Penrose inverse can be developed in a similar way.
$\left(G_{5}\right)$ The block decomposition $\left(T_{5}\right)$ implies

$$
P=U^{*}\left[\begin{array}{c}
I_{r} \\
\mathbb{O}
\end{array}\right]=U^{*^{\mid r}}, \quad Q=\left[\begin{array}{ll}
I_{r}, & \mathbb{O}
\end{array}\right] G^{-1}=G_{\mid r}^{-1},
$$

which means

$$
\begin{aligned}
A^{\dagger} & =\left(G^{-1}{ }_{\mid r}\right)^{*}\left(U_{\mid r} A\left(G^{-1}{ }_{\mid r}\right)^{*}\right)^{-1} U_{\mid r} \\
& =\left(G^{-1}{ }_{\mid r}\right)^{*}\left(U_{\mid r} U^{*^{\mid r}} G^{-1}{ }_{\mid r}\left(G^{*}\right)^{-1^{\mid r}}\right)^{-1} U_{\mid r}=\left(G^{-1}{ }_{\mid r}\right)^{*}\left(\left(G^{*} G\right)^{-1}{ }_{\mid r}^{\mid r}\right)^{-1} U_{\mid r}
\end{aligned}
$$

$\left(G_{7}\right) \quad$ It is easy to see that $\left(T_{7}\right)$ implies

$$
P=U^{*}\left[\begin{array}{l}
B \\
\mathbb{O}
\end{array}\right]=U^{*^{\mid r}} B, \quad Q=\left[\begin{array}{ll}
I_{r}, & \mathbb{O}]
\end{array}\right] V^{*}=V_{\mid r}^{*}
$$

Now,
$A^{\dagger}=V^{\mid r}\left(B^{*} U_{\mid r} U^{* \mid r} B V^{*}{ }_{\mid r} V^{\mid r}\right)^{-1} B^{*} U_{\mid r}=V^{\mid r}\left(B^{*} B\right)^{-1} B^{*} U_{\mid r}=V^{\mid r} B^{-1} U_{\mid r}$.
$\left(G_{10 a}\right)$ From $\left(T_{10 a}\right)$ we obtain

$$
A=E^{*}\left[\begin{array}{cc}
A_{11} & A_{11} T \\
S A_{11} & S A_{11} T
\end{array}\right] F^{*}=E^{*}\left[\begin{array}{c}
I_{r} \\
S
\end{array}\right] A_{11}\left[\begin{array}{ll}
I_{r}, & T] F^{*},
\end{array}\right.
$$

which implies, for example, the following full rank factorization of $A$ :

$$
P=E^{*}\left[\begin{array}{c}
I_{r} \\
S
\end{array}\right] A_{11}, \quad Q=\left[\begin{array}{ll}
I_{r}, & T
\end{array}\right] F^{*}
$$

Consequently, the Moore-Penrose inverse of $A$ is

$$
A^{\dagger}=F\left[\begin{array}{l}
I_{r}, \\
T^{*}
\end{array}\right]\left(A_{11}^{*}\left[\begin{array}{ll}
I_{r}, & S^{*}
\end{array}\right] E A F\left[\begin{array}{l}
I_{r}, \\
T^{*}
\end{array}\right]\right)^{-1} A_{11}^{*}\left[\begin{array}{ll}
I_{r}, & S^{*}
\end{array}\right] E .
$$

This part of the proof can be completed using

$$
E A F=\left[\begin{array}{c}
I_{r} \\
S
\end{array}\right] A_{11}\left[\begin{array}{ll}
I_{r}, & T
\end{array}\right]
$$

and

$$
F\left[\begin{array}{c}
I_{r} \\
T^{*}
\end{array}\right]=F^{\mid r}+F^{n-r \mid} T^{*}, \quad\left[I_{r}, \quad S^{*}\right] E=E_{\mid r}+S^{*} E_{n-r \mid}
$$

$\left(G_{10 b}\right)$ Follows from

$$
P=E^{*}\left[\begin{array}{l}
A_{11} \\
A_{21}
\end{array}\right] A_{11}^{-1}, \quad Q=\left[\begin{array}{ll}
A_{11}, & A_{12}
\end{array}\right] F^{*}
$$

Remark 2.1. (i) A convenient method for finding the matrices $S, T$ and $A_{11}^{-1}$, required in $\left(T_{10 a}\right)$, was introduced in [5], and it was based on the following extended Gauss-Jordan transformation:

$$
\left[\begin{array}{lll}
A_{11} & A_{12} & I \\
A_{21} & A_{22} & \mathbb{O}
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
I & T & A_{11}^{-1} \\
\mathbb{O} & \mathbb{O} & -S
\end{array}\right]
$$

(ii) In [10] it was used the following full-rank factorization of the matrix $A$, represented in the form $A=\left[\begin{array}{cc}A_{11} & A_{12} \\ A_{21} & A_{21} A_{11}^{-1} A_{12}\end{array}\right]$ :

$$
P=\left[\begin{array}{l}
A_{11} \\
A_{21}
\end{array}\right], \quad Q=\left[\begin{array}{ll}
I_{r}, & A_{11}^{-1} A_{12}
\end{array}\right]
$$

## 3. The weighted Moore-Penrose inverse.

Using the general representation of the weighted Moore-Penropse inverse presented in Proposition 1.3: $A_{M \circ, \mathrm{o} N}^{\dagger}=N Q^{*}\left(P^{*} M A N Q^{*}\right)^{-1} P^{*} M$, and the algorithm of Theorem 2.1, we obtain the following block representation of the weighted MoorePenrose inverse $A_{M \circ, \circ N}^{\dagger}$.

ThEOREM 3.1 The weighted Moore-Penrose inverse $A_{M \circ, \circ N}^{\dagger}$ of $A \in \mathbb{C}_{r}^{m \times n}$ possesses the following block representations $\left(Z_{i}\right)$, which correspond to the block decompositions $\left(T_{i}\right), i \in\{1, \ldots, 9,10 a, 10 b, 11\}$ :
$\left(Z_{1}\right) \quad N\left(G^{-1}{ }_{\mid r}\right)^{*}\left(\left(R^{-1^{\mid r}}\right)^{*} \operatorname{MAN}\left(G^{-1}{ }_{\mid r}\right)^{*}\right)^{-1}\left(R^{-1^{\mid r}}\right)^{*} M$,
$\left(Z_{2}\right) \quad N\left(G^{-1}{ }_{\mid r}\right)^{*}\left(\left(R^{-1^{\mid r}} B\right)^{*} M A N\left(G^{-1}{ }_{\mid r}\right)^{*}\right)^{-1}\left(R^{-1^{\mid r}} B\right)^{*} M$,
$\left(Z_{3}\right) \quad N F\left[\begin{array}{c}I_{r} \\ K^{*}\end{array}\right]\left(\left(R^{-1^{\mid r}}\right)^{*} M A N F\left[\begin{array}{c}I_{r} \\ K^{*}\end{array}\right]\right)^{-1}\left(R^{-1^{\mid r}}\right)^{*} M$,
$\left(Z_{4}\right) \quad N\left(G^{-1}{ }_{\mid r}\right)^{*}\left(\left[I_{r}, \quad K^{*}\right] \operatorname{EMAN}\left(G^{-1}{ }_{\mid r}\right)^{*}\right)^{-1}\left[I_{r}, \quad K^{*}\right] E M$,
$\left(Z_{5}\right) \quad N\left(G^{-1}{ }_{\mid r}\right)^{*}\left(U_{\mid r} M A N\left(G^{-1}{ }_{\mid r}\right)^{*}\right)^{-1} U_{\mid r} M$,
$\left(Z_{6}\right) \quad N V^{\mid r}\left(\left(R^{1^{\mid r}}\right)^{*} M A N V^{\mid r}\right)^{-1}\left(R^{-1^{\mid r}}\right)^{*} M$,
$\left(Z_{7}\right) \quad N V^{\mid r}\left(B^{*} U_{\mid r} M A N V^{\mid r}\right)^{-1} B^{*} U_{\mid r} M$,
$\left(Z_{8}\right) \quad N F\left[\begin{array}{l}B^{*} \\ K^{*}\end{array}\right]\left(U_{\mid r} M A N F\left[\begin{array}{l}B^{*} \\ K^{*}\end{array}\right]\right)^{-1} U_{\mid r} M$,
$\left(Z_{9}\right) \quad N V^{\mid r}\left(\left[B^{*}, \quad K^{*}\right] E M A N V^{\mid r}\right)^{-1}\left[B^{*}, \quad K^{*}\right] E M$,
$\left(Z_{10 a}\right) N F\left[\begin{array}{l}I_{r} \\ T^{*}\end{array}\right]\left(A_{11}^{*}\left[\begin{array}{ll}I_{r}, & \left.\left.S^{*}\right] \text { EMANF }\left[\begin{array}{c}I_{r} \\ T^{*}\end{array}\right]\right)^{-1} A_{11}^{*}\left[\begin{array}{ll}I_{r}, & S^{*}\end{array}\right] E M, ~\end{array}\right.\right.$

$\left(\begin{array}{l}\left.Z_{11}\right)\end{array} \quad N R^{*}\left[\begin{array}{c}I_{r} \\ \left(T_{1}^{-1} T_{2}\right)^{*}\end{array}\right]\left(\left(R^{-1^{\mid r}} T_{1}\right)^{*} M A N R^{*}\left[\begin{array}{c}I_{r} \\ \left(T_{1}^{-1} T_{2}\right)^{*}\end{array}\right]\right)^{-1}\left(R^{-1^{\mid r}} T_{1}\right)^{*} M\right.$.
The following representations can be obtained from the main properties of the weighted Moore-Penrose inverse and Theorem 3.1.

Corollary 3.1. The weighted Moore-Penrose inverse $A_{\varphi(M, N)}^{\dagger}$ of $A \in \mathbb{C}_{r}^{m \times n}$ can be represented as follows:
$\left(W_{1}\right) N^{[-1]}\left(G^{-1}{ }_{\mid r}\right)^{*}\left(\left(R^{-1^{\mid r}}\right)^{*} M^{[-1]} A N^{[-1]}\left(G^{-1}{ }_{\mid r}\right)^{*}\right)^{-1}\left(R^{-1^{\mid r}}\right)^{*} M^{[-1]}$,
$\left(W_{2}\right) N^{[-1]}\left(G^{-1}{ }_{\mid r}\right)^{*}\left(\left(R^{-1^{\mid r}} B\right)^{*} M^{[-1]} A N^{[-1]}\left(G^{-1}{ }_{\mid r}\right)^{*}\right)^{-1}\left(R^{-1^{\mid r}} B\right)^{*} M^{[-1]}$,
( $\left.W_{3}\right) N^{[-1]} F\left[\begin{array}{c}I_{r} \\ K^{*}\end{array}\right]\left(\left(R^{-1^{\mid r}}\right)^{*} M^{[-1]} A N^{[-1]} F\left[\begin{array}{c}I_{r} \\ K^{*}\end{array}\right]\right)^{-1}\left(R^{-1^{\mid r}}\right)^{*} M^{[-1]}$,
$\left(W_{4}\right) N^{[-1]}\left(G^{-1}{ }_{\mid r}\right)^{*}\left(\left[I_{r}, \quad K^{*}\right] E M^{[-1]} A N^{[-1]}\left(G^{-1}{ }_{\mid r}\right)^{*}\right)^{-1}\left[I_{r}, \quad K^{*}\right] E M^{[-1]}$,
$\left(W_{5}\right) N^{[-1]}\left(G^{-1}{ }_{\mid r}\right)^{*}\left(U_{\mid r} M^{[-1]} A N^{[-1]}\left(G^{-1}{ }_{\mid r}\right)^{*}\right)^{-1} U_{\mid r} M^{[-1]}$,
( $W_{6}$ ) $N^{[-1]} V^{\mid r}\left(\left(R^{-1^{\mid r}}\right)^{*} M^{[-1]} A N^{[-1]} V^{\mid r}\right)^{-1}\left(R^{-1^{\mid r}}\right)^{*} M^{[-1]}$,
( $W_{7}$ ) $N^{[-1]} V^{\mid r}\left(B^{*} U_{\mid r} M^{[-1]} A N^{[-1]} V^{\mid r}\right)^{-1} B^{*} U_{\mid r} M^{[-1]}$,
$\left(W_{8}\right) N^{[-1]} F\left[\begin{array}{l}B^{*} \\ K^{*}\end{array}\right]\left(U_{\mid r} M^{[-1]} A N^{[-1]} F\left[\begin{array}{l}B^{*} \\ K^{*}\end{array}\right]\right)^{-1} U_{\mid r} M^{[-1]}$,
$\left(W_{9}\right) N^{[-1]} V^{\mid r}\left(\left[B^{*}, \quad K^{*}\right] E M^{[-1]} A N^{[-1]} V^{\mid r}\right)^{-1}\left[B^{*}, \quad K^{*}\right] E M^{[-1]}$,
$\left(W_{10 a}\right) N^{[-1]} F\left[\begin{array}{l}I_{r} \\ T^{*}\end{array}\right]\left(A_{11}^{*}\left[I_{r}, S^{*}\right] E M^{[-1]} A N^{[-1]} F\left[\begin{array}{c}I_{r} \\ T^{*}\end{array}\right]\right)^{-1} A_{11}^{*}\left[I_{r}, \quad S^{*}\right] E M^{[-1]}$,
$\left(W_{10 b}\right) N^{[-1]} F\left[\begin{array}{c}A_{11}^{*} \\ A_{12}^{*}\end{array}\right]\left(\left(A_{11}^{*}\right)^{-1}\left[A_{11}^{*}, \quad A_{21}^{*}\right] E M^{[-1]} A N^{[-1]} F\left[\begin{array}{c}A_{11}^{*} \\ A_{12}^{*}\end{array}\right]\right)^{-1}$

$$
\times\left(A_{11}^{*}\right)^{-1}\left[A_{11}^{*}, \quad A_{21}^{*}\right] E M^{[-1]}
$$

$\left(W_{11}\right) N^{[-1]} R^{*}\left[\begin{array}{c}I_{r} \\ \left(T_{1}^{-1} T_{2}\right)^{*}\end{array}\right]\left(\left(R^{-1^{\mid r}} T_{1}\right)^{*} M^{[-1]} A N^{[-1]} R^{*}\left[\begin{array}{c}I_{r} \\ \left(T_{1}^{-1} T_{2}\right)^{*}\end{array}\right)^{-1}\left(R^{-1 \mid r} T_{1}\right)^{*} M^{[-1]}\right.$.

## 4. Examples.

Example 4.1. Consider $A=\left[\begin{array}{rrrr}-1 & 0 & 1 & 2 \\ -1 & 1 & 0 & -1 \\ 0 & -1 & 1 & 3 \\ 0 & 1 & -1 & -3 \\ 1 & -1 & 0 & 1 \\ 1 & 0 & -1 & -2\end{array}\right]$. Using the Gauss-Jordan transformation, we get the following reduced row-echelon form of the matrix $A$ :

$$
R A F=R_{A}=\left[\begin{array}{ll}
I_{r} & K \\
\mathbb{O} & \mathbb{O}
\end{array}\right]=\left[\begin{array}{rrrr}
1 & 0 & -1 & -2 \\
0 & 1 & -1 & -3 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

The matrix $R_{A}$ is obtained using the permutation matrix $F=I_{4}$, and the following regular matrix:

$$
R=\left[\begin{array}{rrrrrr}
-1 & 0 & 0 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 & 0 & 0 \\
-1 & 1 & 1 & 0 & 0 & 0 \\
1 & -1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Using the method $\left(G_{3}\right)$ we obtain

$$
R^{-1^{\mid r}}=\left[\begin{array}{rr}
-1 & 0 \\
-1 & 1 \\
0 & -1 \\
0 & 1 \\
1 & -1 \\
1 & 0
\end{array}\right], \quad F\left[\begin{array}{c}
I_{r} \\
K^{*}
\end{array}\right]=\left[\begin{array}{rr}
1 & 0 \\
0 & 1 \\
-1 & -1 \\
-2 & -3
\end{array}\right]
$$

and the following Moore-Penrose inverse of $A$ :

$$
A^{\dagger}=\left[\begin{array}{rrrrrr}
-\frac{5}{34} & -\frac{3}{17} & \frac{1}{34} & -\frac{1}{34} & \frac{3}{17} & \frac{5}{34} \\
\frac{4}{51} & \frac{13}{102} & -\frac{5}{102} & \frac{5}{102} & -\frac{13}{102} & -\frac{4}{51} \\
\frac{7}{102} & \frac{5}{102} & \frac{1}{51} & -\frac{1}{51} & -\frac{5}{102} & -\frac{7}{102} \\
\frac{1}{17} & -\frac{1}{34} & \frac{3}{34} & -\frac{3}{34} & \frac{1}{34} & -\frac{1}{17}
\end{array}\right] .
$$

Example 4.2. For the matrix $A$ used in Example 3.1 we obtain (see [5])

$$
A_{11}^{-1}=\left[\begin{array}{ll}
-1 & 0 \\
-1 & 1
\end{array}\right], \quad S=\left[\begin{array}{rr}
1 & -1 \\
-1 & 1 \\
0 & -1 \\
-1 & 0
\end{array}\right], \quad T=\left[\begin{array}{ll}
-1 & -2 \\
-1 & -3
\end{array}\right]
$$

Using $\left(G_{10 a}\right)$ we obtain the same Moore-Penrose inverse of $A$.
Example 4.3. For the matrix $A=\left[\begin{array}{rrrr}4 & -1 & 1 & 2 \\ -2 & 2 & 0 & -1 \\ 6 & -3 & 1 & 3 \\ -10 & 4 & -2 & -5\end{array}\right]$ we obtain

$$
R=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
-1 & 1 & 1 & 0 \\
2 & -1 & 0 & 1
\end{array}\right], \quad T_{1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad T_{2}=\left[\begin{array}{cc}
-1 & -2 \\
-1 & -3
\end{array}\right], \quad F=I_{4}
$$

Then, one can verify the following:

$$
\left(R^{-1^{\mid r}} T_{1}\right)^{*}=\left[\begin{array}{rrrr}
-1 & -1 & 0 & 1 \\
0 & 1 & -1 & 1
\end{array}\right], \quad R^{*}\left[\begin{array}{c}
I_{r} \\
\left(T_{1}^{-1} T_{2}\right)^{*}
\end{array}\right]=\left[\begin{array}{rr}
-4 & -6 \\
1 & 3 \\
-1 & -1 \\
-2 & -3
\end{array}\right] .
$$

Finally, using $\left(G_{11}\right)$, we get

$$
A^{\dagger}=\left[\begin{array}{cccc}
\frac{8}{81} & \frac{10}{81} & -\frac{2}{81} & -\frac{2}{27} \\
\frac{47}{162} & \frac{79}{162} & -\frac{16}{81} & -\frac{5}{54} \\
\frac{7}{54} & \frac{11}{54} & -\frac{2}{27} & -\frac{1}{18} \\
\frac{4}{81} & \frac{5}{81} & -\frac{1}{81} & -\frac{1}{27}
\end{array}\right]
$$

Example 4.4. Consider $A=\left[\begin{array}{rrrr}1 & -5 & 1 & 4 \\ -2 & 7 & 0 & 1 \\ 0 & -3 & 2 & 9\end{array}\right]$ and positive definite matrices

$$
M=\left[\begin{array}{rrr}
5 & -1 & 3 \\
-1 & 2 & -2 \\
3 & -2 & 3
\end{array}\right], \quad N=\left[\begin{array}{rrrr}
4 & 0 & -1 & 0 \\
0 & 3 & 2 & 1 \\
-1 & 2 & 5 & -2 \\
0 & 1 & -2 & 6
\end{array}\right] .
$$

Block decomposition ( $T_{1}$ ) can be obtained by applying transformation ( $T_{3}$ ) two times:

$$
R_{1} A F_{1}=\left[\begin{array}{cc}
I_{r} & K \\
\mathbb{O} & \mathbb{O}
\end{array}\right]=N_{3}, \quad R_{2} N_{3}^{T} F_{2}=\left[\begin{array}{cc}
I_{r} & \mathbb{O} \\
\mathbb{O} & \mathbb{O}
\end{array}\right]=N_{1} .
$$

Then, the regular matrices $R, G$ can be computed as follows:

$$
N_{1}=N_{1}^{T}=F_{2}^{T} N_{3} R_{2}^{T}=F_{2}^{T} R_{1} A F_{1} R_{2}^{T} \Rightarrow R=F_{2}^{T} R_{1}, \quad G=F_{1} R_{2}^{T}
$$

For given matrix the following can be obtained:

$$
\begin{gathered}
N_{3}=\left[\begin{array}{rrrr}
1 & 0 & -\frac{7}{3} & -11 \\
0 & 1 & -\frac{2}{3} & -3 \\
0 & 0 & 0 & 0
\end{array}\right], \quad R_{1}=\left[\begin{array}{rrr}
-\frac{7}{3} & -\frac{5}{3} & 0 \\
-\frac{2}{3} & -\frac{1}{3} & 0 \\
-2 & -1 & 1
\end{array}\right], \quad F_{1}=I_{4} \\
N_{1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad R_{2}=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
\frac{7}{3} & \frac{2}{3} & 1 & 0 \\
11 & 3 & 0 & 1
\end{array}\right], \quad F_{2}=I_{3}
\end{gathered}
$$

From $R=R_{1}, G=R_{2}^{T}$, we get

$$
R^{-1^{\mid 2}}=\left[\begin{array}{rr}
1 & -5 \\
-2 & 7 \\
0 & -3
\end{array}\right], \quad G^{-1}{ }_{\mid 2}=\left[\begin{array}{rrrr}
1 & 0 & -\frac{7}{3} & -11 \\
0 & 1 & -\frac{2}{3} & -3
\end{array}\right]
$$

Using formula $\left(Z_{1}\right)$, we obtain the following representation for the weighted MoorePenrose inverse of $A$ :

$$
A_{M \circ, \circ N}^{\dagger}=\left[\begin{array}{rcc}
-\frac{8841}{207506} & -\frac{13865}{207506} & -\frac{13865}{207506} \\
\frac{23355}{207506} & \frac{38035}{207506} & -\frac{14947}{207506} \\
\frac{2149}{103753} & \frac{11585}{103753} & -\frac{7035}{103753} \\
\frac{42301}{207506} & \frac{25265}{207506} & \frac{3465}{207506}
\end{array}\right]
$$

Example 4.5. Similarly, block decomposition $\left(T_{1}\right)$ of the matrix $A$, considered in Example 4.1 can be obtained by transformation $\left(T_{3}\right)$ two times, by means of the following matrices:

$$
\begin{aligned}
R_{1} & =\left[\begin{array}{rrrrrr}
-1 & 0 & 0 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 & 0 & 0 \\
-1 & 1 & 1 & 0 & 0 & 0 \\
1 & -1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 1
\end{array}\right], \quad F_{1}=I_{4} \\
R_{2} & =\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
2 & 3 & 0 & 1
\end{array}\right], \quad F_{2}=I_{6} .
\end{aligned}
$$

From $R=R_{1}, G=R_{2}^{T}$, we get

$$
R^{-1^{12}}=\left[\begin{array}{rr}
-1 & 0 \\
-1 & 1 \\
0 & -1 \\
0 & 1 \\
1 & -1 \\
1 & 0
\end{array}\right], \quad G^{-1}{ }_{\mid 2}=\left[\begin{array}{cccc}
1 & 0 & -1 & -2 \\
0 & 1 & -1 & -3
\end{array}\right]
$$

Using formula $\left(G_{1}\right)$, we obtain the Moore-Penrose inverse $A^{\dagger}$, as in Example 4.1.

## References

[1] A. Ben-Israel and T.N.E. Grevile, Generalized Inverses: Theory and Applications, Wiley-Interscience, New York, 1974.
[2] R.E. Cline, Inverses of rank invariant powers of a matrix, SIAM J. Numer. Anal. 5 (1968), 182-197.
[3] S.K. Mitra and C.R. Radhakrishna, Extensions of a duality theorem concerning g-inverses of matrices, Indian J. Stat. 37 (1975), 439-445.
[4] P. Lancaster and M. Tismenetsky, The Theory of Matrices with Applications, Academic Press, 1985.
[5] P. Noble, A methods for computing the generalized inverse of a matrix, SIAM J. Numer. Anal. 3 (1966), 582-584.
[6] R. Penrose, A generalized inverse for matrices, Proc. Cambridge Philos. Soc. 51 (1955), 406413.
[7] R. Penrose, On best approximate solution of linear matrix equations, Proc. Cambridge Philos. Soc. 52 (1956), 17-19.
[8] L.D. Pyle, The weighted generalized inverse in nonlinear programming-active set selection using a variable-metric generalization of the simplex algorithm, Internat. Symp. on Extremal Methods and Systems Analysis, Lect. Notes Economics and Mathematical Systems 174, Springer-Verlag, Berlin 1977, pp. 197-231.
[9] P. Robert, On the Group inverse of a linear transformation, J. Math. Anal. Appl. 22 (1968), 658-669.
[10] R.P. Tewarson, A direct method for generalized matrix inversion, SIAM J. Numer. Anal. 4 (1967), 499-507.
[11] G. Zielke, A survey of generalized matrix inverse, Banach Center Publication 13 (1984), 499526.
[12] G. Zielke, Die Auflösung beliebiger linearer algebraisher Gleichungssysteme durch Blockzerlegung, Beiträge zur Numer. Math. 8 (1980), 181-199.
[13] G. Zielke, Motivation und Darstellung von verallgemeinerten Matrixinversen, Beiträge zur Numer. Math. 7 (1979), 177-218.
[14] S. Zlobec, An explicit form of the Moore-Penrose inverse of an arbitrary complex matrix, SIAM Rev. 12 (1970), 132-134.

Elektronski fakultet u Nišu
(Received 0612 1996)
Katedra za matematiku
18001 Niš, p.p. 73
Yugoslavia
grade@elfak.ni.ac.yu

Filozofski fakultet u Nišu
Grupa za matematiku
18000 Niš
Yugoslavia


[^0]:    AMS Subject Classification (1991): Primary 15A09, 15A24
    Partially supported by Ministry of Science and Technology of Serbia, grant number 04M03/C

