# New Developments on Turán's Extremal Problems for Polynomials 

Gradimir V. Milovanović<br>Department of Mathematics, University of Niš<br>Faculty of Electronic Engineering, P.O. Box 73, 18000 Niš, Yugoslavia<br>Themistocles M. Rassias<br>National Technical University of Athens<br>Department of Mathematics, Zagrafou Campus, 15780 Athens, Greece


#### Abstract

In this paper we give an account of $L^{r}$ inequalities of Turán type for algebraic polynomials, mainly initiated and studied by the late Professor Arun K. Varma. This paper could be comprehended as a continuation of our previous survey paper [8].


## 1 Introduction

Let $\mathcal{P}_{n}$ be the set of all algebraic polynomials of degree at most $n$ and let $W_{n}$ be some of its subsets. For a given norm $\|$.$\| we consider extremal$ problems

$$
B_{n, m}=\inf _{P \in W_{n}} \frac{\left\|P^{(m)}\right\|}{\|P\|} \quad(1 \leq m \leq n)
$$

In comparing with inequalities of Markov's type (cf. Milovanović, Mitrinović, Rassias [9, Chap. 6]), here we have opposite inequalities which are known as inequalities of Turán type.

Turán [11] proved the following inequality for polynomials $P \in \mathcal{P}_{n}$ having all their zeros in $[-1,1]$,

$$
\begin{equation*}
\left\|P^{\prime}\right\|_{\infty}>\frac{\sqrt{n}}{6}\|P\|_{\infty} \tag{1}
\end{equation*}
$$

taking the uniform norm $\|f\|_{\infty}=\max _{-1 \leq t \leq 1}|f(t)|$. The constant $\sqrt{n} / 6$ is not the best possible.

Turán's inequality (1) has been generalized and extended in several different ways.

Firstly, inequality (1) was sharpened by Erőd [6], who obtained

$$
\begin{equation*}
\left\|P^{\prime}\right\|_{\infty} \geq B_{n}\|P\|_{\infty} \tag{2}
\end{equation*}
$$

where $B_{2}=1, B_{3}=3 / 2$, and

$$
\begin{aligned}
B_{2 k} & =\frac{2 k}{\sqrt{2 k-1}}\left(1-\frac{1}{2 k-1}\right)^{k-1} \\
B_{2 k+1} & =\frac{(2 k+1)^{2}}{2 k \sqrt{2 k+2}}\left(1-\frac{\sqrt{2 k+2}}{2 k}\right)^{k-1}\left(1+\frac{1}{\sqrt{2 k+2}}\right)^{k},
\end{aligned}
$$

for $k=2,3, \ldots$.
Exactly, equality in (2) is attained for $P(t)=(1-t)^{n}$, if $n=1,2,3$, and for $P(t)=(1-t)^{n-[n / 2]}(1+t)^{[n / 2]}$, if $n \geq 4$.

Let $W_{n}$ be the set of all algebraic polynomials of degree $n$ whose zeros are all real and lie inside $[-1,1]$. The corresponding inequality for the second derivative of such polynomials was investigated by Babenko and Pichugov [2].

If $P \in W_{n}, n \geq 2$, they proved that

$$
\begin{equation*}
\left\|P^{\prime \prime}\right\|_{\infty} \geq B_{n, 2}\|P\|_{\infty} \tag{3}
\end{equation*}
$$

where $B_{n, 2}=\min \{n,(n-1) n / 4\}$.
If $n=2,3,4,5$, then $B_{n, 2}=(n-1) n / 4$, and equality in (3) is attained only for polynomials of the form $P(t)=C(1 \pm t)^{n}$, where $C$ is an arbitrary real constant different from zero.

In the case $n \geq 6$, they found that $B_{n, 2}=n$, and for $n=2 m$ equality in (3) holds only for polynomials of the form $P(t)=C\left(1-t^{2}\right)^{m}$, where $C$ is an arbitrary real constant different from zero.

An analogue in $L^{2}$ norm for algebraic polynomials was considered firstly by Professor A. K. Varma [15]. Taking $\|f\|_{2}^{2}=\int_{-1}^{1} f(t)^{2} d t$ he proved:
Theorem 1 If $P \in W_{n}$ we have

$$
\begin{equation*}
\left\|P^{\prime}\right\|_{2}^{2} \geq \frac{n}{2}\|P\|_{2}^{2} \tag{4}
\end{equation*}
$$

This result is best posible in the sense that there exists a polynomial $P_{0}$ of degree $n$ having all zeros inside $[-1,1]$ and for which

$$
\left\|P_{0}^{\prime}\right\|_{2}^{2}=\left(\frac{n}{2}+\frac{3}{4}+\frac{3}{4(n-1)}\right)\left\|P_{0}\right\|_{2}^{2}, \quad n>1
$$

The proof of this theorem was based on the following inequality

$$
\left\|\sqrt{1-t^{2}} P^{\prime}\right\|_{2}^{2} \geq \frac{n}{2}\|P\|_{2}^{2} \quad\left(P \in W_{n}\right)
$$

which becomes an equality only for $P(t)=C(1+t)^{p}(1-t)^{q}, p+q=n$, where $C$ is an arbitrary non-zero constant.

In this survey we give an account of $L^{r}(r \geq 1)$ inequalities of Turán type.

## 2 Turán Type Inequalities in $L^{2}$ Norm

In [16] Professor Varma gave a more precise form of (4).
Theorem 2 Let $\|f\|_{2}^{2}=\int_{-1}^{1} f(t)^{2} d t, P \in W_{n}$ and $P(1)=P(-1)=0$. Then we have

$$
\begin{equation*}
\left\|P^{\prime}\right\|_{2}^{2} \geq\left(\frac{n}{2}+\frac{3}{4}+\frac{3}{4(n-1)}\right)\|P\|_{2}^{2} \tag{5}
\end{equation*}
$$

with equality for $P(t)=\left(1-t^{2}\right)^{m}, n=2 m$.
Taking the norm $\|f\|_{2}^{2}=\int_{-1}^{1}\left(1-t^{2}\right) f(t)^{2} d t$, in 1979 Varma [17] proved the following result:

Theorem 3 For $P \in W_{n}$ and $n \geq 2$ we have

$$
\left\|P^{\prime}\right\|_{2}^{2} \geq\left(\frac{n}{2}+\frac{1}{4}-\frac{1}{4(n+1)}\right)\|P\|_{2}^{2}
$$

with equality for $P(t)=\left(1-t^{2}\right)^{m}, n=2 m$.
Later Varma [18] proved an improvement of one of his earlier results.
Theorem 4 Let $\|f\|_{2}^{2}=\int_{-1}^{1} f(t)^{2} d t$. If $P \in W_{n}$ and $n=2 m$; then

$$
\begin{equation*}
\left\|P^{\prime}\right\|_{2}^{2} \geq\left(\frac{n}{2}+\frac{3}{4}+\frac{3}{4(n-1)}\right)\|P\|_{2}^{2} \tag{6}
\end{equation*}
$$

where equality holds if and only if $P(t)=\left(1-t^{2}\right)^{m}$. Moreover, if $n=2 m-1$, then

$$
\begin{equation*}
\left\|P^{\prime}\right\|_{2}^{2} \geq\left(\frac{n}{2}+\frac{3}{4}+\frac{5}{4(n-2)}\right)\|P\|_{2}^{2}, \quad n \geq 3 \tag{7}
\end{equation*}
$$

where equality holds if and only if $P(t)=(1-t)^{m-1}(1+t)^{m}$ or $P(t)=$ $(1-t)^{m}(1+t)^{m-1}$.

This result is an improvement of Theorem 2 in two respects. First, the condition $P(1)=P(-1)=0$ is not necessary for (5) to hold. Secondly, here there exist precise bounds for $n$ even and also for $n$ odd as mentioned in (6) and (7).

In the same norm, Varma [18] also proved:
Theorem 5 Let $P \in W_{n}$, subject to the condition $P(1)=1$; then

$$
\left\|P^{\prime}\right\|_{2}^{2} \geq \frac{n}{4}+\frac{1}{8}+\frac{1}{8(2 n-1)}, \quad n \geq 1
$$

where equality holds for $P(t)=((1+t) / 2)^{n}$.
This inequality is an improvement over $\left\|P^{\prime}\right\|_{2}^{2}>n / 4$, given by Szabados and Varma [10].

The corresponding inequality for polynomials $P \in W_{n}$ in $L^{r}$ norm, defined on $(-1,1)$ by $\|f\|_{r}=\left(\int_{-1}^{1}|f(t)|^{r} d t\right)^{1 / r}$, was considered by Zhou [20].

Theorem 6 If $P \in W_{n}$, then for $1 \leq r \leq+\infty$,

$$
\left\|P^{\prime}\right\|_{r} \geq C \sqrt{n}\|P\|_{r}
$$

where $C$ is a positive absolute constant.
A similar result for $0<r<1$ was obtained also by Zhou [21]. Recently, Zhou [22] proved the following results:

Theorem 7 If $P \in W_{n}$, then for $1 \leq r \leq s \leq+\infty$,

$$
\left\|P^{\prime}\right\|_{r} \geq C n^{1 / 2-1 /(2 r)+1 /(2 s)}\|P\|_{s}
$$

where $C$ is a positive absolute constant.
The example $P(t)=\left(1-t^{2}\right)^{[n / 2]}$ in the previous theorem shows that the order $n^{1 / 2-1 /(2 r)+1 /(2 s)}$ cannot be improved.

Theorem 8 Let $1 \leq r \leq s \leq+\infty$ and $P$ be an polynomial of degree $n$ with only real zeros. If at most $k$ zeros of $P$ lie outside the interval $[-1,1]$, then

$$
\left\|P^{\prime}\right\|_{r} \geq C_{k} n^{1 / 2-1 /(2 r)+1 /(2 s)}\|P\|_{s}
$$

where $C_{k}$ is a positive constant depending only upon $k$.
After Professor Varma's death, the following result [14] has appeared:

Theorem 9 Let $\|f\|^{2}=\int_{-1}^{1}\left(1-t^{2}\right)^{\alpha} f(t)^{2} d t, P \in W_{n}(n \geq 2)$ and $\alpha>1$ real. Then we have ( $n=2 m$ )

$$
\left\|P^{\prime}\right\|^{2} \geq \frac{n^{2}(2 n+2 \alpha+1)}{4(n+\alpha-1)(n+\alpha)}\|P\|^{2}
$$

with equality if and only if $P(t)=c\left(1-t^{2}\right)^{m}$. If $P( \pm 1)=0$, then the previous inequality remains valid for $\alpha>-1$.

This result was proved earlier by Varma for the cases $\alpha=0$ and $\alpha=1$. In the same paper [14], Underhill and Varma invesigated the corresponding inequality in $L^{4}$ norm for $\alpha=3$ :
Theorem 10 Let $\|f\|_{4}^{4}=\int_{-1}^{1}\left(1-t^{2}\right)^{3} f(t)^{4} d t$ and $P \in W_{n}$. Then we have ( $n=2 m$ )

$$
\left\|P^{\prime}\right\|_{4}^{4} \geq \frac{3 n^{3}(4 n+7)(4 n+5)}{4(4 n+6)(4 n+4)(4 n+2)}\|P\|_{4}^{4}
$$

with equality if and only if $P(t)=c\left(1-t^{2}\right)^{m}$.
Also, they considered the cases when $\alpha=1$ and $\alpha=2$, as well as an inequality in $L^{r}$ norm, when $r \geq 2$ is even. In [19] Varma proved:
Theorem 11 Let $P \in W_{n}$, subject to the condition $P(1)=0$. Then, for $r \geq 1$, we have

$$
\int_{-1}^{1}\left|P^{\prime}(t)\right|^{r} d t \geq \frac{n^{r}}{2^{r-1}((n-1) r+1)}
$$

wuth equality if and only if $P(t)=((1+t) / 2)^{n}$.

## 3 Bojanov's Solution

More general results on Turán type inequalities were obtained by Bojanov [3]. Introducing the notations

$$
p_{n, k}(t)=(-1)^{n-k} \frac{n^{n}}{2^{n} k^{k}(n-k)^{n-k}}(t+1)^{k}(t-1)^{n-k}
$$

for $k=0,1, \ldots, n(n \in \mathbb{N})$, Bojanov [3] proved the following results:
Theorem 12 Let $x \mapsto \varphi(x)$ be any continuously differentiable, strictly increasing convex function in $[0,+\infty)$. Then for every $n \in \mathbb{N}$ and $m \in$ $\{1, \ldots, n\}$, there exists a constant $A_{n, m}>0$ such that

$$
\int_{-1}^{1} \varphi\left(\left|P^{(m)}(t)\right|\right) d t \geq A_{n, m}\|P\|_{\infty} \quad\left(P \in W_{n}\right)
$$

Moreover,

$$
A_{n, m}=\min _{0 \leq k \leq n}\left\{\int_{-1}^{1} \varphi\left(\left|p_{n, k}^{(m)}(t)\right|\right) d t\right\}
$$

and this is the exact constant.
Theorem 13 For any given $n$ and $m$, there exists a constant $B_{n, m}$ such that

$$
\left\|P^{(m)}\right\|_{\infty} \geq B_{n, m}\|P\|_{\infty} \quad\left(P \in W_{n}\right)
$$

Moreover,

$$
B_{n, m}=\min _{0 \leq k \leq n}\left\{\left\|p_{n, k}^{(m)}\right\|_{\infty}\right\}
$$

Using this theorem one could get the exact previous result of Erőd [6] and Babenko and Pichugov [2], treating the case $m=1$ and $m=2$, respectively. In the first case we have that

$$
B_{n, 1}=\left\|p_{n, k}^{\prime}\right\|_{\infty} \quad \text { for } \quad k=\left[\frac{n}{2}\right]
$$

Combining an idea of Babenko and Pichugov [2] with Theorem 13, Bojanov [3] obtained an explicit value of $B_{n, 2}$.

Following Bojanov [3], let $P \in W_{n}$ and $t_{1} \leq t_{2} \leq \cdots \leq t_{n}$ be the zeros of $t \mapsto P(t)$. Then we have

$$
P^{\prime}(t)=P(t) \sigma(t), \quad P^{\prime \prime}(t)=P^{\prime}(t) \sigma(t)+P(t) \sigma^{\prime}(t) \quad\left(P \in W_{n}\right)
$$

where

$$
\sigma(t)=\sum_{\nu=1}^{n} \frac{1}{t-t_{k}}
$$

Suppose that $\|P\|_{\infty}=|P(\tau)|$ and $\tau \in(-1,1)$. Then $P^{\prime}(\tau)=0$ and therefore $\sigma(\tau)=0$. Thus, $\left|P^{\prime \prime}(\tau)\right|=\left|\sigma^{\prime}(\tau)\right|$. Choose $P=p_{n, k}$, where $k=1, \ldots, n-1$. Then $\tau=b_{n, k}=(2 k-n) / n$ and

$$
\sigma(t)=\frac{k}{t+1}+\frac{n-k}{t-1}
$$

Therefore,

$$
\left\|p_{n, k}^{\prime \prime}\right\|_{\infty} \geq\left|p_{n, k}^{\prime \prime}(\tau)\right|=\left|\sigma^{\prime}(\tau)\right|=\frac{n^{2}}{4}\left(\frac{1}{k}+\frac{1}{n-k}\right)
$$

But the last expression attains its minimal value for $k=[n / 2]$ and this minimal value is $n$ for even $n$, respectively $n\left(1+1 /\left(n^{2}-1\right)\right)$, for odd $n$. Adding the obvious fact that

$$
\left\|p_{n, 1}^{\prime \prime}\right\|_{\infty}=\left\|p_{n, n}^{\prime \prime}\right\|_{\infty}=\frac{1}{4} n(n-1) \geq n \quad(\text { for } n>4)
$$

we get $B_{n, 2}=n$ for even $n \geq 6$, and

$$
B_{n, 2} \geq n\left(1+\frac{1}{n^{2}-1}\right) \quad \text { for odd } n \geq 5
$$

Bojanov [3] also proved:
Theorem 14 Let $x \mapsto \varphi(x)$ be any continuously differentiable, strictly increasing convex function in $[0,+\infty)$. Then for every $n \in \mathbb{N}$ and $m \in$ $\{1, \ldots, n\}$,

$$
\int_{-1}^{1} \varphi\left(\left|P^{(m)}(t)\right|\right) d t \geq \int_{-1}^{1} \varphi\left(\left|p_{n, n}^{(m)}(t)\right|\right) d t
$$

for every polynomial $P \in W_{n}$ such that $P(1)=1$.
If $\varphi(x)=x^{r}(1 \leq r<+\infty)$ this theorem reduces to the following result:
Corollary 15 Let $P \in \mathcal{P}_{n}, P(1)=1$, and $1 \leq r<+\infty$. Then

$$
\left\|P^{(m)}\right\|_{r} \geq \frac{n!}{2^{m}(n-m)!}\left(\frac{2}{(n-m) r+1}\right)^{1 / r}
$$

Notice that for $m=1$ this corollary gives Theorem 11.
Inequalities of Turán type for trigonometric polynomials were investigated by Babenko and Pichugov [1]-[2], Zhou [20], Tyrygin [12]-[13], and Bojanov [3]-[4].

## 4 A Result of Chen

In this section we mention a recent result of Chen [5], which can be expressed in the same way as the Markov's inequality in [7] (see also [9]).

We consider a general case with a given non-negative measure $d \sigma(t)$ on the real line $\mathbb{R}$, with compact or infinite support, for which all moments

$$
\mu_{\nu}=\int_{\mathbb{R}} t^{\nu} d \sigma(t), \quad \nu=0,1, \ldots
$$

exist and are finite, and $\mu_{0}>0$. Then there exists a unique set of orthonormal polynomials $\pi_{\nu}(\cdot)=\pi_{\nu}(\cdot ; d \sigma), \nu=0,1, \ldots$, defined by

$$
\pi_{\nu}(t)=a_{\nu} t^{\nu}+\text { lower degree terms, } \quad a_{\nu}>0
$$

and

$$
\begin{equation*}
\int_{\mathbb{R}} \pi_{\nu}(t) \pi_{\mu}(t) d \sigma(t)=\delta_{\nu \mu}, \quad \nu, \mu \geq 0 \tag{8}
\end{equation*}
$$

For each polynomial $P \in \mathcal{P}_{n}$, with complex coefficients, we take

$$
\|P\|=\left(\int_{\mathbb{R}}|P(t)|^{2} d \sigma(t)\right)^{1 / 2}
$$

As a restricted subset of $\mathcal{P}_{n}$ Chen [5] took

$$
W_{n}=\mathcal{P}_{n, m}(d \sigma)=\left\{P \in \mathcal{P}_{n} \mid P \perp \mathcal{P}_{m-1}\right\}
$$

i.e., $P \in W_{n}$ if $P \in \mathcal{P}_{n}$ and $\left(P, \pi_{\nu}\right)=0$ for each $\nu=0,1, \ldots, m-1$.

Consider now the extremal problem

$$
\begin{equation*}
A_{n, m}=A_{n, m}(d \sigma)=\inf _{P \in W_{n}} \frac{\left\|P^{(m)}\right\|}{\|P\|} \quad(1 \leq m \leq n) \tag{9}
\end{equation*}
$$

Theorem 16 The best constant $A_{n, m}$ defined in (9) is given by

$$
\begin{equation*}
A_{n, m}=\left(\lambda_{\min }\left(B_{n, m}\right)\right)^{1 / 2} \tag{10}
\end{equation*}
$$

where $\lambda_{\min }\left(B_{n, m}\right)$ is the minimal eigenvalue of the matrix

$$
B_{n, m}=\left[b_{i, j}^{(m)}\right]_{m \leq i, j \leq n},
$$

whose elements are given by

$$
\begin{equation*}
b_{i, j}^{(m)}=\int_{\mathbb{R}} \pi_{i}^{(m)}(t) \pi_{j}^{(m)}(t) d \sigma(t), \quad m \leq i, j \leq n . \tag{11}
\end{equation*}
$$

An extremal polynomial is

$$
P^{*}(t)=\sum_{\nu=m}^{n} c_{\nu} \pi_{\nu}(t)
$$

where $\left[c_{k}, c_{k+1}, \ldots, c_{n}\right]^{T}$ is an eigenvector of the matrix $B_{n, m}$ corresponding to the eigenvalue $\lambda_{\min }\left(B_{n, m}\right)$.
Proof. Let $P \in W_{n}$. Then we can write $P(t)=\sum_{\nu=m}^{n} c_{\nu} \pi_{\nu}(t)$ and

$$
P^{(m)}(t)=\sum_{\nu=m}^{n} c_{\nu} \pi_{\nu}^{(m)}(t), \quad m \leq n
$$

where the coefficients $c_{\nu}$ are uniquely determined. Hence, by (8) and (11), we have

$$
\|P\|^{2}=\sum_{\nu=m}^{n}\left|c_{\nu}\right|^{2} \quad \text { and } \quad\left\|P^{(m)}\right\|^{2}=\sum_{i, j=m}^{n} c_{i} \bar{c}_{j} b_{i, j}^{(m)} .
$$

Then

$$
\begin{equation*}
\frac{\left\|P^{(m)}\right\|^{2}}{\|P\|^{2}}=\frac{\sum_{i, j=m}^{n} c_{i} \bar{c}_{j} b_{i, j}^{(m)}}{\sum_{i=m}^{n}\left|c_{i}\right|^{2}}=\frac{\left\langle B_{n, m} \boldsymbol{c}, \boldsymbol{c}\right\rangle}{\langle\boldsymbol{c}, \boldsymbol{c}\rangle} \tag{12}
\end{equation*}
$$

where $\langle\cdot, \cdot\rangle$ denotes the standard inner product in an $(n-m+1)$-dimensional space.

The matrix $B_{n, m}$ is evidently positive definite. Since the right side in (12) is not smaller than the minimal eigenvalue of this matrix, we obtain

$$
\begin{equation*}
\left\|P^{(m)}\right\|^{2} \geq \lambda_{\min }\left(B_{n, m}\right)\|P\|^{2} \tag{13}
\end{equation*}
$$

In order to show that $A_{n, m}$, given by (10), is the best possible, we note that (13) reduces to an equality if we put $P(t)=P^{*}(t)=\sum_{\nu=m}^{n} c_{\nu}^{*} \pi_{\nu}(t)$, where $\left[c_{m}^{*}, c_{m+1}^{*}, \ldots, c_{n}^{*}\right]^{T}$ is an eigenvector of the matrix $B_{n, m}$ corresponding to $\lambda_{\text {min }}\left(B_{n, m}\right) . \quad$ Q.E.D.

An alternative result like Theorem 16 is the following theorem:
Theorem 17 Let $Q_{n, m}=\left[q_{i j}^{(m)}\right]_{m \leq i, j \leq n}$ be an upper triangular matrix of the order $n-m+1$, whose elements $q_{i j}^{(m)}$ are given by the following inner product

$$
q_{i j}^{(m)}=\left(\pi_{j}^{(m)}, \pi_{i-m}\right) \quad(m \leq i, j \leq n)
$$

Then the best constant $A_{n, m}$ defined in (9) is given by

$$
\begin{equation*}
A_{n, m}=\left(\lambda_{\min }\left(Q_{n, m} Q_{n, m}^{T}\right)\right)^{1 / 2} \tag{14}
\end{equation*}
$$

Alternatively, (14) can be expressed in the form

$$
\begin{equation*}
A_{n, m}=\left(\lambda_{\max }\left(C_{n, m}\right)\right)^{-1 / 2} \tag{15}
\end{equation*}
$$

where $C_{n, m}=\left(Q_{n, m} Q_{n, m}^{T}\right)^{-1}$.
Proof. It is enough to consider only a real polynomial set $\mathcal{P}_{n}$. Let $P \in W_{n}$ and $\pi_{j}^{(m)}(t)=\sum_{i=m}^{n} q_{i j}^{(m)} \pi_{i-m}(t)$, where $q_{i j}^{(m)}=\left(\pi_{j}^{(m)}, \pi_{i-m}\right)$. Then

$$
P^{(m)}(t)=\sum_{j=m}^{n} c_{j} \sum_{i=m}^{j} q_{i j}^{(m)} \pi_{i-m}(t)=\sum_{i=m}^{n}\left(\sum_{j=m}^{n} c_{j} q_{i j}^{(m)}\right) \pi_{i-m}(t)
$$

and

$$
\left\|P^{(m)}\right\|^{2}=\sum_{i=m}^{n}\left(\sum_{j=i}^{n} c_{j} q_{i j}^{(m)}\right)^{2}=\sum_{i=m}^{n} y_{i}^{2}
$$

where

$$
\begin{equation*}
y_{i}=\sum_{j=i}^{n} c_{j} q_{i j}^{(m)}, \quad i=m, \ldots, n \tag{16}
\end{equation*}
$$

Let $\boldsymbol{c}=\left[c_{m}, \ldots, c_{n}\right]^{T}, \quad \boldsymbol{y}=\left[y_{m}, \ldots, y_{n}\right]^{T}$, and $Q_{n, m}=\left[q_{i j}^{(m)}\right]_{m \leq i, j \leq n}$. Since $\boldsymbol{y}=Q_{n, m} \boldsymbol{c}$, it follows that

$$
\frac{\left\|P^{(m)}\right\|^{2}}{\|P\|^{2}}=\frac{\langle\boldsymbol{y}, \boldsymbol{y}\rangle}{\langle\boldsymbol{c}, \boldsymbol{c}\rangle}=\frac{\langle\boldsymbol{y}, \boldsymbol{y}\rangle}{\left\langle\left(Q_{n, m} Q_{n, m}^{T}\right)^{-1} \boldsymbol{y}, \boldsymbol{y}\right\rangle}
$$

Thus (14) and (15) hold. Q.E.D.
Now, we will consider a few special measures.
$1^{\circ} d \sigma(t)=e^{-t^{2}} d t,-\infty<t<+\infty$. Here we have

$$
\pi_{\nu}(t)=\hat{H}_{\nu}(t)=\left(\sqrt{\pi} 2^{\nu} \nu!\right)^{-1 / 2} H_{\nu}(t)
$$

where $H_{\nu}$ is a Hermite polynomial of degree $\nu$. Since

$$
H_{\nu}^{\prime}(t)=2 \nu H_{\nu-1}(t) \quad \text { and } \quad \hat{H}_{\nu}^{\prime}(t)=\sqrt{2 \nu} \hat{H}_{\nu-1}(t)
$$

we have

$$
\hat{H}_{\nu}^{(m)}(t)=\sqrt{2 \nu} \sqrt{2(\nu-1)} \cdots \sqrt{2(\nu-m+1)} \hat{H}_{\nu-m}(t),
$$

i.e.,

$$
\hat{H}_{\nu}^{(m)}(t)=\sqrt{2^{m} m!\binom{\nu}{m}} \hat{H}_{\nu-m}(t)
$$

and

$$
b_{i j}^{(m)}=2^{m} m!\binom{i}{m} \delta_{i j}, \quad m \leq i, j \leq n .
$$

Thus, we find $\lambda_{\min }\left(B_{n, m}\right)=2^{m} m$ ! and $A_{n, m}=2^{m / 2} \sqrt{m!}$.
$2^{\circ} d \sigma(t)=t^{s} e^{-t} d t, 0<t<+\infty$. Here we have the generalized Laguerre case with

$$
\pi_{\nu}(t)=\hat{L}_{\nu}^{s}(t)=\sqrt{\nu!/ \Gamma(\nu+s+1)} \sum_{i=0}^{\nu}(-1)^{\nu-i}\binom{\nu+s}{\nu-i} \frac{t^{i}}{i!}
$$

where $\Gamma$ is the gamma function.
First, we consider the simplest case where $m=1$. Since

$$
\frac{d}{d t} \hat{L}_{j}^{s}(t)=\sum_{i=1}^{j} q_{i j}^{(1)} \hat{L}_{i-1}^{s}(t), \quad q_{i j}^{(1)}=-\sqrt{\frac{j!}{\Gamma(j+s+1)}} \cdot \sqrt{\frac{\Gamma(i+s)}{(i-1)!}},
$$

from the equalities (16), it follows that

$$
c_{i}=y_{i+1}-\sqrt{\frac{i+s}{i}} y_{i}, \quad i=1, \ldots, n
$$

where we put $y_{n+1}=0$. The elements $p_{i j}^{(1)}$ of the matrix $P_{n, 1}=Q_{n, 1}^{-1}$ are

$$
\begin{aligned}
& p_{i j}^{(1)}=-\sqrt{1+\frac{s}{i}}, \quad i=1, \ldots, n ; \quad p_{i, i+1}^{(1)}=1, \quad i=1, \ldots, n-1 \\
& p_{i j}^{(1)}=0, \quad \text { otherwise }
\end{aligned}
$$

so that $C_{n, 1}=P_{n, 1}^{T} P_{n, 1}=-J_{n}$, where

$$
J_{n}=\left[\begin{array}{ccccc}
\alpha_{0} & \sqrt{\beta_{1}} & & & \mathbf{O} \\
\sqrt{\beta_{1}} & \alpha_{1} & \sqrt{\beta_{2}} & & \\
& \sqrt{\beta_{2}} & \alpha_{2} & \ddots & \\
& & \ddots & \ddots & \sqrt{\beta_{n-1}} \\
\mathbf{O} & & & \sqrt{\beta_{n-1}} & \alpha_{n-1}
\end{array}\right]
$$

and

$$
\alpha_{0}=-(1+s), \quad \alpha_{\nu}=-\left(2+\frac{s}{\nu+1}\right), \quad \beta_{\nu}=1+\frac{s}{\nu}, \quad \nu=1, \ldots, n-1
$$

We see that $J_{n}$ is the Jacobi matrix for monic orthogonal polynomials $\left\{Q_{\nu}\right\}$, which satisfy the following three-term recurrence relation

$$
Q_{\nu+1}(t)=\left(t-\alpha_{\nu}\right) Q_{\nu}(t)-\beta_{\nu} Q_{\nu-1}(t), \quad \nu=0,1, \ldots
$$

with $Q_{-1}(t)=0$ and $Q_{0}(t)=1$. The eigenvalues of $C_{n, 1}$ are $\lambda_{\nu}=-t_{\nu}$, where $Q_{n}\left(t_{\nu}\right)=0$ for $\nu=1, \ldots, n$.

The standard Laguerre case $(s=0)$ can be exactly solved. In fact, for $t=2(z-1)$ with $-1 \leq z \leq 1$, we have

$$
Q_{\nu}(t)=\cos (2 \nu+1) \frac{\theta}{2} / \cos \frac{\theta}{2}, \quad z=\cos \theta
$$

The eigenvalues of the matrix $C_{n, 1}$ are

$$
\lambda_{\nu}=-t_{\nu}=4 \sin ^{2} \frac{(2 \nu-1) \pi}{2(2 n+1)}, \quad \nu=1, \ldots, n
$$

Since $\lambda_{\max }\left(C_{n, 1}\right)=\lambda_{n}$, we obtain

$$
A_{n, 1}=\left(2 \cos \frac{\pi}{2 n+1}\right)^{-1}
$$

Now, we consider the case when $m=2$ and $s=0$. First, we note that

$$
\frac{d^{m}}{d t^{m}} \hat{L}_{j}(t)=(-1)^{m} \sum_{i=m}^{j}\binom{j-i+m-1}{m-1} \hat{L}_{i-m}(t)
$$

The formulae (16), for $m=2$, become

$$
y_{i}=\sum_{j=i}^{n}(j-i+1) c_{j}, \quad i=2, \ldots, n
$$

Since $\Delta^{2} y_{i}=c_{i}\left(y_{n+1}=y_{n+2}=0\right)$, we find a five-diagonal symmetric matrix of order $n-1$

$$
C_{n, 2}=\left[\begin{array}{rrrrrrrr}
1 & -2 & 1 & & & & & \mathbf{O} \\
-2 & 5 & -4 & 1 & & & & \\
1 & -4 & 6 & -4 & 1 & & & \\
& 1 & -4 & 6 & -4 & 1 & & \\
& & \ddots & \ddots & \ddots & \ddots & \ddots & \\
& & & 1 & -4 & 6 & -4 & 1 \\
& & & & 1 & -4 & 6 & -4 \\
\mathbf{O} & & & & & 1 & -4 & 6
\end{array}\right]
$$

Thus, using the maximal eigenvalue of this matrix, we obtain the best constant $A_{n, 2}=\left(\lambda_{\max }\left(C_{n, 2}\right)\right)^{-1 / 2}$. In the simplest case when $n=2$ and $n=3$ we have $A_{2,2}=1$ and $A_{3,2}=(3-2 \sqrt{2})^{1 / 2}$, respectively.

We conclude this paper with a remark that Varma [17] also studied an extremal problem on $(0,+\infty)$ with respect to the Laguerre measure, i.e., when $\|f\|_{2}^{2}=\int_{0}^{\infty} e^{-t} f(t)^{2} d t$.

Theorem 18 Let $P$ be an algebraic polynomial of degree $n$ whose zeros $\tau_{\nu}$ $(\nu=1, \ldots, n)$ all lie in the interval $[0, \infty)$. If $P(0)=0$ or

$$
\sum_{\nu=1}^{n} \tau_{\nu}^{-1} \geq \frac{1}{2}
$$

then

$$
\left\|P^{\prime}\right\|_{2}^{2} \geq \frac{n}{2(2 n-1)}\|P\|_{2}^{2}
$$

The equality holds for $P(t)=t^{n}$.

## References

[1] V. F. Babenko and S. A. Pichugov, Exact inequality for the derivative of a trigonometric polynomial having only real zeros, Mat. Zametki 39 (1986), 330-336 (Russian).
[2] V. F. Babenko and S. A. Pichugov, On inequality for the derivative of a polynomial with real zeros, Ukrain. Mat. Zh. 38 (1986), 411-416 (Russian).
[3] B. D. Bojanov, Polynomial inequalities, in "Open Problems in Approximation Theory" (B. Bojanov, Ed.), pp. 25-42, SCT, Singapore, 1993.
[4] B. Bojanov, Turán's inequalities for trigonometric polynomials, J. London. Math. Soc. (2) 53 (1996), 539-550.
[5] W. Chen, On the converse inequality of Markov type in $L_{2}$ norm, J. Math. Anal. Appl. 200 (1996), 708-716.
[6] J. Erőd, Bizonyos polinomok maximumának, Mat. Fiz. Lapok 46 (1939), 58-82.
[7] G. V. Milovanović, Various extremal problems of Markov's type for algebraic polynomials, Facta Univ. Ser. Math. Inform. 2 (1987), 7-28.
[8] G. V. Milovanović, D. S. Mitrinović and Th. M. Rassias, On some Turán's extremal problems for algebraic polynomials, in "Topics in Polynomials of One and Several Variables and Their Applications: A Mathematical Legacy of P. L. Chebyshev (1821-1894)" (Th. M. Rassias, H. M. Srivastava, A. Yanushauskas, Eds.), pp. 403-433, World Scientific, Singapore, 1993.
[9] G. V. Milovanović, D. S. Mitrinović and Th. M. Rassias, "Topics in Polynomials: Extremal Problems, Inequalities, Zeros", World Scientific, Singapore - New Jersey - London - Hong Kong, 1994.
[10] J. Szabados and A. K. Varma, Inequalities for derivatives of polynomial having real zeros, in "Approximation Theory III" (E. W. Cheney, Ed.), pp. 881-887, Academic Press, New York, 1980.
[11] P. Turán, Über die Ableitung von Polynomen, Composito Math. 7 (1939), 85-95.
[12] I. Ya. Tyrygin, Inequalities of P. Turán type in mixed integral metrics, Dokl. Akad. Nauk Ukrain. SSR Ser. A 1988, no. 9, 14-17 (Russian).
[13] I. Ya. Tyrygin, On inequalities of Turán type in some integral metrics, Ukrain. Mat. Zh. 40 (1988), 256-260 (Russian).
[14] B. Underhill and A. K. Varma, An extension of some inequalities of P. Erdős and P. Turán concerning algebraic polynomials, Acta Math. Hung. 73 (1996), 1-28.
[15] A. K. Varma, An analogue of some inequalities of P. Turán concerning algebraic polynomials having all zeros inside $[-1,1]$, Proc. Amer. Math. Soc. 55 (1976), 305-309.
[16] A. K. Varma, An analogue of some inequalities of P. Turán concerning algebraic polynomials having all zeros inside $[-1,1]$. II, Proc. Amer. Math. Soc. 69 (1978), 25-33.
[17] A. K. Varma, Some inequalities of algebraic polynomials having real zeros, Proc. Amer. Math. Soc. 75 (1979), 243-250.
[18] A. K. Varma, Some inequalities of algebraic polynomials having all zeros inside $[-1,1]$, Proc. Amer. Math. Soc. 88 (1983), 227-233.
[19] A. K. Varma, Some inequalities of algebraic polynomials, Proc. Amer. Math. Soc. 123 (1995), 2041-2048.
[20] S. P. Zhou, On Turán inequality in $L_{p}$-norm, J. Hangzhou Univ. 11 (1984), 28-33 (Chinese, English summary).
[21] S. P. Zhou, An extension of the Turán inequality in $L^{p}$ for $0<p<1$, J. Math. Res. Exposition 6, No. 2 (1986), 27-30.
[22] S. P. Zhou, Some remarks on Turán inequality, J. Approx. Theory 68 (1992), 45-48.

