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Abstract

In this paper we give an account of Lr inequalities of Turán type
for algebraic polynomials, mainly initiated and studied by the late
Professor Arun K. Varma. This paper could be comprehended as a
continuation of our previous survey paper [8].

1 Introduction

Let Pn be the set of all algebraic polynomials of degree at most n and let
Wn be some of its subsets. For a given norm ‖ . ‖ we consider extremal
problems

Bn,m = inf
P∈Wn

‖P (m)‖
‖P‖

(1 ≤ m ≤ n).

In comparing with inequalities of Markov’s type (cf. Milovanović, Mitri-
nović, Rassias [9, Chap. 6]), here we have opposite inequalities which are
known as inequalities of Turán type.

Turán [11] proved the following inequality for polynomials P ∈ Pn hav-
ing all their zeros in [−1, 1],

‖P ′‖∞ >

√
n

6
‖P‖∞ , (1)

taking the uniform norm ‖f‖∞ = max
−1≤t≤1

|f(t)|. The constant
√
n/6 is not

the best possible.
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Turán’s inequality (1) has been generalized and extended in several
different ways.

Firstly, inequality (1) was sharpened by Erőd [6], who obtained

‖P ′‖∞ ≥ Bn‖P‖∞ , (2)

where B2 = 1, B3 = 3/2, and

B2k = 2k√
2k − 1

(
1− 1

2k − 1

)k−1

,

B2k+1 = (2k + 1)2

2k
√

2k + 2

(
1−
√

2k + 2
2k

)k−1(
1 + 1√

2k + 2

)k
,

for k = 2, 3, . . . .
Exactly, equality in (2) is attained for P (t) = (1− t)n, if n = 1, 2, 3, and

for P (t) = (1− t)n−[n/2](1 + t)[n/2], if n ≥ 4.
Let Wn be the set of all algebraic polynomials of degree n whose zeros

are all real and lie inside [−1, 1]. The corresponding inequality for the
second derivative of such polynomials was investigated by Babenko and
Pichugov [2].

If P ∈Wn, n ≥ 2, they proved that

‖P ′′‖∞ ≥ Bn,2‖P‖∞ , (3)

where Bn,2 = min
{
n, (n− 1)n/4

}
.

If n = 2, 3, 4, 5, then Bn,2 = (n− 1)n/4, and equality in (3) is attained
only for polynomials of the form P (t) = C(1± t)n, where C is an arbitrary
real constant different from zero.

In the case n ≥ 6, they found that Bn,2 = n, and for n = 2m equality
in (3) holds only for polynomials of the form P (t) = C(1− t2)m, where C
is an arbitrary real constant different from zero.

An analogue in L2 norm for algebraic polynomials was considered firstly
by Professor A. K. Varma [15]. Taking ‖f‖22 =

∫ 1

−1
f(t)2 dt he proved:

Theorem 1 If P ∈Wn we have

‖P ′‖22 ≥
n

2
‖P‖22. (4)

This result is best posible in the sense that there exists a polynomial P0

of degree n having all zeros inside [−1, 1] and for which

‖P ′0‖22 =
(n

2
+

3
4

+
3

4(n− 1)

)
‖P0‖22, n > 1.
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The proof of this theorem was based on the following inequality∥∥ √1− t2P ′
∥∥2

2
≥ n

2
‖P‖22 (P ∈Wn),

which becomes an equality only for P (t) = C(1 + t)p(1 − t)q, p + q = n,
where C is an arbitrary non-zero constant.

In this survey we give an account of Lr (r ≥ 1) inequalities of Turán
type.

2 Turán Type Inequalities in L2 Norm

In [16] Professor Varma gave a more precise form of (4).

Theorem 2 Let ‖f‖22 =
∫ 1

−1
f(t)2 dt, P ∈ Wn and P (1) = P (−1) = 0.

Then we have
‖P ′‖22 ≥

(n
2

+
3
4

+
3

4(n− 1)

)
‖P‖22, (5)

with equality for P (t) = (1− t2)m, n = 2m.

Taking the norm ‖f‖22 =
∫ 1

−1
(1− t2)f(t)2 dt, in 1979 Varma [17] proved

the following result:

Theorem 3 For P ∈Wn and n ≥ 2 we have

‖P ′‖22 ≥
(n

2
+

1
4
− 1

4(n+ 1)

)
‖P‖22,

with equality for P (t) = (1− t2)m, n = 2m.

Later Varma [18] proved an improvement of one of his earlier results.

Theorem 4 Let ‖f‖22 =
∫ 1

−1
f(t)2 dt. If P ∈Wn and n = 2m; then

‖P ′‖22 ≥
(n

2
+

3
4

+
3

4(n− 1)

)
‖P‖22, (6)

where equality holds if and only if P (t) = (1−t2)m. Moreover, if n = 2m−1,
then

‖P ′‖22 ≥
(n

2
+

3
4

+
5

4(n− 2)

)
‖P‖22, n ≥ 3, (7)

where equality holds if and only if P (t) = (1 − t)m−1(1 + t)m or P (t) =
(1− t)m(1 + t)m−1.
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This result is an improvement of Theorem 2 in two respects. First, the
condition P (1) = P (−1) = 0 is not necessary for (5) to hold. Secondly,
here there exist precise bounds for n even and also for n odd as mentioned
in (6) and (7).

In the same norm, Varma [18] also proved:

Theorem 5 Let P ∈Wn, subject to the condition P (1) = 1; then

‖P ′‖22 ≥
n

4
+

1
8

+
1

8(2n− 1)
, n ≥ 1,

where equality holds for P (t) = ((1 + t)/2)n.

This inequality is an improvement over ‖P ′‖22 > n/4, given by Szabados
and Varma [10].

The corresponding inequality for polynomials P ∈ Wn in Lr norm,

defined on (−1, 1) by ‖f‖r =
(∫ 1

−1
|f(t)|r dt

)1/r

, was considered by Zhou
[20].

Theorem 6 If P ∈Wn, then for 1 ≤ r ≤ +∞,

‖P ′‖r ≥ C
√
n ‖P‖r,

where C is a positive absolute constant.

A similar result for 0 < r < 1 was obtained also by Zhou [21]. Recently,
Zhou [22] proved the following results:

Theorem 7 If P ∈Wn, then for 1 ≤ r ≤ s ≤ +∞,

‖P ′‖r ≥ Cn1/2−1/(2r)+1/(2s)‖P‖s,

where C is a positive absolute constant.

The example P (t) = (1 − t2)[n/2] in the previous theorem shows that
the order n1/2−1/(2r)+1/(2s) cannot be improved.

Theorem 8 Let 1 ≤ r ≤ s ≤ +∞ and P be an polynomial of degree n with
only real zeros. If at most k zeros of P lie outside the interval [−1, 1], then

‖P ′‖r ≥ Ckn1/2−1/(2r)+1/(2s)‖P‖s,

where Ck is a positive constant depending only upon k.

After Professor Varma’s death, the following result [14] has appeared:
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Theorem 9 Let ‖f‖2 =
∫ 1

−1
(1− t2)αf(t)2 dt, P ∈ Wn (n ≥ 2) and α > 1

real. Then we have (n = 2m)

‖P ′‖2 ≥ n2(2n+ 2α+ 1)
4(n+ α− 1)(n+ α)

‖P‖2,

with equality if and only if P (t) = c(1 − t2)m. If P (±1) = 0, then the
previous inequality remains valid for α > −1.

This result was proved earlier by Varma for the cases α = 0 and α = 1.
In the same paper [14], Underhill and Varma invesigated the corresponding
inequality in L4 norm for α = 3:

Theorem 10 Let ‖f‖44 =
∫ 1

−1
(1− t2)3f(t)4 dt and P ∈Wn. Then we have

(n = 2m)

‖P ′‖44 ≥
3n3(4n+ 7)(4n+ 5)

4(4n+ 6)(4n+ 4)(4n+ 2)
‖P‖44,

with equality if and only if P (t) = c(1− t2)m.

Also, they considered the cases when α = 1 and α = 2, as well as an
inequality in Lr norm, when r ≥ 2 is even. In [19] Varma proved:

Theorem 11 Let P ∈ Wn, subject to the condition P (1) = 0. Then, for
r ≥ 1, we have ∫ 1

−1

|P ′(t)|r dt ≥ nr

2r−1((n− 1)r + 1)
,

wuth equality if and only if P (t) = ((1 + t)/2)n.

3 Bojanov’s Solution

More general results on Turán type inequalities were obtained by Bojanov
[3]. Introducing the notations

pn,k(t) = (−1)n−k
nn

2nkk(n− k)n−k
(t+ 1)k(t− 1)n−k,

for k = 0, 1, . . . , n (n ∈ N), Bojanov [3] proved the following results:

Theorem 12 Let x 7→ ϕ(x) be any continuously differentiable, strictly in-
creasing convex function in [0,+∞). Then for every n ∈ N and m ∈
{1, . . . , n}, there exists a constant An,m > 0 such that∫ 1

−1

ϕ(|P (m)(t)|) dt ≥ An,m‖P‖∞ (P ∈Wn).
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Moreover,

An,m = min
0≤k≤n

{∫ 1

−1

ϕ(|p(m)
n,k (t)|) dt

}
and this is the exact constant.

Theorem 13 For any given n and m, there exists a constant Bn,m such
that

‖P (m)‖∞ ≥ Bn,m‖P‖∞ (P ∈Wn).

Moreover,
Bn,m = min

0≤k≤n

{
‖p(m)
n,k ‖∞

}
.

Using this theorem one could get the exact previous result of Erőd
[6] and Babenko and Pichugov [2], treating the case m = 1 and m = 2,
respectively. In the first case we have that

Bn,1 = ‖p′n,k‖∞ for k =
[n

2

]
.

Combining an idea of Babenko and Pichugov [2] with Theorem 13, Bojanov
[3] obtained an explicit value of Bn,2.

Following Bojanov [3], let P ∈ Wn and t1 ≤ t2 ≤ · · · ≤ tn be the zeros
of t 7→ P (t). Then we have

P ′(t) = P (t)σ(t), P ′′(t) = P ′(t)σ(t) + P (t)σ′(t) (P ∈Wn),

where

σ(t) =
n∑
ν=1

1
t− tk

.

Suppose that ‖P‖∞ = |P (τ)| and τ ∈ (−1, 1). Then P ′(τ) = 0 and
therefore σ(τ) = 0. Thus, |P ′′(τ)| = |σ′(τ)|. Choose P = pn,k, where
k = 1, . . . , n− 1. Then τ = bn,k = (2k − n)/n and

σ(t) =
k

t+ 1
+
n− k
t− 1

.

Therefore,

‖p′′n,k‖∞ ≥ |p′′n,k(τ)| = |σ′(τ)| = n2

4

(1
k

+
1

n− k

)
.

But the last expression attains its minimal value for k = [n/2] and this
minimal value is n for even n, respectively n

(
1 + 1/(n2 − 1)

)
, for odd n.

Adding the obvious fact that

‖p′′n,1‖∞ = ‖p′′n,n‖∞ =
1
4
n(n− 1) ≥ n (for n > 4),
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we get Bn,2 = n for even n ≥ 6, and

Bn,2 ≥ n
(

1 +
1

n2 − 1

)
for odd n ≥ 5.

Bojanov [3] also proved:

Theorem 14 Let x 7→ ϕ(x) be any continuously differentiable, strictly in-
creasing convex function in [0,+∞). Then for every n ∈ N and m ∈
{1, . . . , n}, ∫ 1

−1

ϕ(|P (m)(t)|) dt ≥
∫ 1

−1

ϕ(|p(m)
n,n (t)|) dt

for every polynomial P ∈Wn such that P (1) = 1.

If ϕ(x) = xr (1 ≤ r < +∞) this theorem reduces to the following result:

Corollary 15 Let P ∈ Pn, P (1) = 1, and 1 ≤ r < +∞. Then

‖P (m)‖r ≥
n!

2m(n−m)!

( 2
(n−m)r + 1

)1/r

.

Notice that for m = 1 this corollary gives Theorem 11.
Inequalities of Turán type for trigonometric polynomials were investi-

gated by Babenko and Pichugov [1]–[2], Zhou [20], Tyrygin [12]–[13], and
Bojanov [3]–[4].

4 A Result of Chen

In this section we mention a recent result of Chen [5], which can be ex-
pressed in the same way as the Markov’s inequality in [7] (see also [9]).

We consider a general case with a given non-negative measure dσ(t) on
the real line R, with compact or infinite support, for which all moments

µν =
∫

R
tν dσ(t), ν = 0, 1, . . . ,

exist and are finite, and µ0 > 0. Then there exists a unique set of orthonor-
mal polynomials πν(·) = πν(· ; dσ), ν = 0, 1, . . ., defined by

πν(t) = aνt
ν + lower degree terms, aν > 0,

and ∫
R
πν(t)πµ(t) dσ(t) = δνµ, ν, µ ≥ 0. (8)
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For each polynomial P ∈ Pn, with complex coefficients, we take

‖P‖ =
(∫

R
|P (t)|2 dσ(t)

)1/2

.

As a restricted subset of Pn Chen [5] took

Wn = Pn,m(dσ) =
{
P ∈ Pn | P ⊥ Pm−1

}
,

i.e., P ∈Wn if P ∈ Pn and (P, πν) = 0 for each ν = 0, 1, . . . ,m− 1.
Consider now the extremal problem

An,m = An,m(dσ) = inf
P∈Wn

‖P (m)‖
‖P‖

(1 ≤ m ≤ n). (9)

Theorem 16 The best constant An,m defined in (9) is given by

An,m =
(
λmin(Bn,m)

)1/2
, (10)

where λmin(Bn,m) is the minimal eigenvalue of the matrix

Bn,m =
[
b
(m)
i,j

]
m≤i,j≤n,

whose elements are given by

b
(m)
i,j =

∫
R
π

(m)
i (t)π(m)

j (t) dσ(t), m ≤ i, j ≤ n. (11)

An extremal polynomial is

P ∗(t) =
n∑

ν=m

cνπν(t),

where
[
ck, ck+1, . . . , cn

]T is an eigenvector of the matrix Bn,m correspond-
ing to the eigenvalue λmin(Bn,m).

Proof. Let P ∈Wn. Then we can write P (t) =
n∑

ν=m
cνπν(t) and

P (m)(t) =
n∑

ν=m

cνπ
(m)
ν (t), m ≤ n,

where the coefficients cν are uniquely determined. Hence, by (8) and (11),
we have

‖P‖2 =
n∑

ν=m

|cν |2 and ‖P (m)‖2 =
n∑

i,j=m

cic̄jb
(m)
i,j .
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Then

‖P (m)‖2

‖P‖2
=

n∑
i,j=m

cic̄jb
(m)
i,j

n∑
i=m

|ci|2
=
〈Bn,mc, c〉
〈c, c〉

, (12)

where 〈·, ·〉 denotes the standard inner product in an (n−m+1)-dimensional
space.

The matrix Bn,m is evidently positive definite. Since the right side in
(12) is not smaller than the minimal eigenvalue of this matrix, we obtain

‖P (m)‖2 ≥ λmin(Bn,m)‖P‖2. (13)

In order to show that An,m, given by (10), is the best possible, we note that

(13) reduces to an equality if we put P (t) = P ∗(t) =
n∑

ν=m
c∗νπν(t), where[

c∗m, c
∗
m+1, . . . , c

∗
n

]T is an eigenvector of the matrix Bn,m corresponding to
λmin(Bn,m). q.e.d.

An alternative result like Theorem 16 is the following theorem:

Theorem 17 Let Qn,m =
[
q
(m)
ij

]
m≤i,j≤n be an upper triangular matrix of

the order n−m+ 1, whose elements q(m)
ij are given by the following inner

product
q
(m)
ij = (π(m)

j , πi−m) (m ≤ i, j ≤ n).

Then the best constant An,m defined in (9) is given by

An,m =
(
λmin(Qn,mQTn,m)

)1/2
. (14)

Alternatively, (14) can be expressed in the form

An,m =
(
λmax(Cn,m)

)−1/2
, (15)

where Cn,m =
(
Qn,mQ

T
n,m

)−1.

Proof. It is enough to consider only a real polynomial set Pn. Let P ∈Wn

and π
(m)
j (t) =

n∑
i=m

q
(m)
ij πi−m(t), where q(m)

ij = (π(m)
j , πi−m). Then

P (m)(t) =
n∑

j=m

cj

j∑
i=m

q
(m)
ij πi−m(t) =

n∑
i=m

( n∑
j=m

cjq
(m)
ij

)
πi−m(t)
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and

‖P (m)‖2 =
n∑

i=m

( n∑
j=i

cjq
(m)
ij

)2

=
n∑

i=m

y2
i ,

where

yi =
n∑
j=i

cjq
(m)
ij , i = m, . . . , n. (16)

Let c = [cm, . . . , cn]T , y = [ym, . . . , yn]T , and Qn,m =
[
q
(m)
ij

]
m≤i,j≤n.

Since y = Qn,mc, it follows that

‖P (m)‖2

‖P‖2
=
〈y,y〉
〈c, c〉

=
〈y,y〉

〈(Qn,mQTn,m)−1y,y〉
.

Thus (14) and (15) hold. q.e.d.

Now, we will consider a few special measures.

1◦ dσ(t) = e−t
2
dt, −∞ < t < +∞. Here we have

πν(t) = Ĥν(t) = (
√
π 2νν!)−1/2Hν(t),

where Hν is a Hermite polynomial of degree ν. Since

H ′ν(t) = 2νHν−1(t) and Ĥ ′ν(t) =
√

2νĤν−1(t),

we have

Ĥ(m)
ν (t) =

√
2ν
√

2(ν − 1) · · ·
√

2(ν −m+ 1)Ĥν−m(t),

i.e.,

Ĥ(m)
ν (t) =

√
2mm!

(
ν

m

)
Ĥν−m(t),

and

b
(m)
ij = 2mm!

(
i

m

)
δij , m ≤ i, j ≤ n.

Thus, we find λmin(Bn,m) = 2mm! and An,m = 2m/2
√
m!.

2◦ dσ(t) = tse−tdt, 0 < t < +∞. Here we have the generalized Laguerre
case with

πν(t) = L̂sν(t) =
√
ν!/Γ(ν + s+ 1)

ν∑
i=0

(−1)ν−i
(
ν + s

ν − i

)
ti

i!
,
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where Γ is the gamma function.
First, we consider the simplest case where m = 1. Since

d

dt
L̂sj(t) =

j∑
i=1

q
(1)
ij L̂

s
i−1(t), q

(1)
ij = −

√
j!

Γ(j + s+ 1)
·

√
Γ(i+ s)
(i− 1)!

,

from the equalities (16), it follows that

ci = yi+1 −
√
i+ s

i
yi, i = 1, . . . , n,

where we put yn+1 = 0. The elements p(1)
ij of the matrix Pn,1 = Q−1

n,1 are

p
(1)
ij = −

√
1 +

s

i
, i = 1, . . . , n; p

(1)
i,i+1 = 1, i = 1, . . . , n− 1;

p
(1)
ij = 0, otherwise,

so that Cn,1 = PTn,1Pn,1 = −Jn, where

Jn =



α0

√
β1 O√

β1 α1

√
β2√

β2 α2
. . .

. . . . . .
√
βn−1

O
√
βn−1 αn−1


and

α0 = −(1 + s), αν = −
(

2 +
s

ν + 1
)
, βν = 1 +

s

ν
, ν = 1, . . . , n− 1.

We see that Jn is the Jacobi matrix for monic orthogonal polynomials
{Qν}, which satisfy the following three-term recurrence relation

Qν+1(t) = (t− αν)Qν(t)− βνQν−1(t), ν = 0, 1, . . . ,

with Q−1(t) = 0 and Q0(t) = 1. The eigenvalues of Cn,1 are λν = −tν ,
where Qn(tν) = 0 for ν = 1, . . . , n.

The standard Laguerre case (s = 0) can be exactly solved. In fact, for
t = 2(z − 1) with −1 ≤ z ≤ 1, we have

Qν(t) = cos(2ν + 1)
θ

2

/
cos

θ

2
, z = cos θ.
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The eigenvalues of the matrix Cn,1 are

λν = −tν = 4 sin2 (2ν − 1)π
2(2n+ 1)

, ν = 1, . . . , n.

Since λmax(Cn,1) = λn, we obtain

An,1 =
(

2 cos
π

2n+ 1

)−1

.

Now, we consider the case when m = 2 and s = 0. First, we note that

dm

dtm
L̂j(t) = (−1)m

j∑
i=m

(
j − i+m− 1

m− 1

)
L̂i−m(t).

The formulae (16), for m = 2, become

yi =
n∑
j=i

(j − i+ 1)cj , i = 2, . . . , n.

Since ∆2yi = ci (yn+1 = yn+2 = 0), we find a five-diagonal symmetric
matrix of order n− 1

Cn,2 =



1 −2 1 O

−2 5 −4 1
1 −4 6 −4 1

1 −4 6 −4 1
. . . . . . . . . . . . . . .

1 −4 6 −4 1
1 −4 6 −4

O 1 −4 6


.

Thus, using the maximal eigenvalue of this matrix, we obtain the best
constant An,2 =

(
λmax(Cn,2)

)−1/2. In the simplest case when n = 2 and
n = 3 we have A2,2 = 1 and A3,2 = (3− 2

√
2)1/2, respectively.

We conclude this paper with a remark that Varma [17] also studied an
extremal problem on (0,+∞) with respect to the Laguerre measure, i.e.,
when ‖f‖22 =

∫∞
0
e−tf(t)2 dt.
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Theorem 18 Let P be an algebraic polynomial of degree n whose zeros τν
(ν = 1, . . . , n) all lie in the interval [0,∞). If P (0) = 0 or

n∑
ν=1

τ−1
ν ≥ 1

2
;

then
‖P ′‖22 ≥

n

2(2n− 1)
‖P‖22.

The equality holds for P (t) = tn.
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