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ORTHOGONAL POLYNOMIALS ON THE RADIAL RAYS

AND AN ELECTROSTATIC INTERPRETATION OF ZEROS

Gradimir V. Milovanovi�c

Communicated by Mileva Prvanovi�c

Abstract. For polynomials orthogonal on the radial rays in the complex
plane, which were introduced in [12], we give �rst a short account, and then we de-
velop two interesting classes of orthogonal polynomials: (1) the generalized Hermite
polynomials; (2) the generalized Gegenbauer polynomials. For such polynomials we
obtain the corresponding linear di�erential equations of the second order. Assuming
a logarithmic potential, we give an electrostatic interpretation of the zeros of the
generalized Gegenbauer polynomials.

1. Introduction

In [13] we considered a class of Humbert's polynomials fp�n;m(x)g
1
n=0 de�ned

by the generating function (see also [14])

(1.1) G�
m(x; t) = (1� 2xt+ tm)�� =

1X
n=0

p�n;m(x)t
n;

where m 2 N and � > �1=2. These polynomials reduce to Horadam polynomials
[6], Gegenbauer polynomials [3], and Horadam-Pethe polynomials [7], for m = 1,
m = 2, an m = 3, respectively. The explicit form of this incomplete polynomials
p�n;m(x) is

(1.2) p�n;m(x) =

[n=m]X
k=0

(�1)k
(�)n�(m�1)k

k!(n�mk)!
(2x)n�mk;

AMS Subject Classi�cation (1991): 33C45, 78A30

Partially supported by Ministry of Science and Technology of Serbia, grant number
04M03/C



54 Milovanovi�c

where (�)0 = 1; (�)n = �(� + 1) � � � (� + n � 1); n 2 N, and a recurrence relation
is given by

np�n;m(x) = (�+ n� 1)2xp�n�1;m(x)� (n+m(�� 1))p�n�m;m(x);

where n � m � 1. For corresponding monic polynomials p̂�n;m(x), we have

p̂�n;m(x) = xp̂�n�1;m(x)� bnp̂
�
n�m;m(x); n � m � 1;

p̂�n;m(x) = xn; 0 � n � m� 1;

where

bn =
(n� 1)!

(m� 1)!
�

n+m(�� 1)

2m(�+ n�m)m
:

One interesting question can be stated: Is it possible to �nd an inner product

( � ; � ) such that the polynomials p�n;m(x) be orthogonal with respect to ( � ; � )? Work-
ing on this subject, we have not solved the problem, but recently we introduced a
new class of polynomials orthogonal on some radial rays in the complex plane and
investigated their existence and uniqueness. A recurrence relation for these polyno-
mials, a representation and the connection with standard polynomials orthogonal
on (0; 1) were derived in [12]. It was shown that their zeros are simple and dis-
tributed symmetrically on the radial rays, with the possible exception of a multiple
zero at the origin. An analogue of the Jacobi polynomials and the corresponding
problem with the generalized Laguerre polynomials, were also treated.

In this paper we give �rst a short account on polynomials orthogonal on the
radial rays in the complex plane, and then we develop two interesting classes of
polynomials:

{ the generalized Hermite polynomials;

{ the generalized Gegenbauer polynomials.

Also, we obtain the corresponding linear di�erential equations of the second order
for such orthogonal polynomials and give an electrostatic interpretation of zeros of
the generalized Gegenbauer polynomials.

The paper is organized as follows. In Section 2 we give a preliminary material
on polynomials orthogonal on the radial rays in the complex plane. Sections 3 and
4 are dedicated to the generalized Hermite and generalized Gegenbauer orthogo-
nal polynomials, respectively. Assuming a logarithmic potential, an electrostatic
interpretation of zeros of the generalized Gegenbauer orthogonal polynomials is
discussed in Section 5.

2. Preliminaries

We start with a type of nonstandard orthogonality on the radial rays in the
complex plane. Suppose that we haveM points in the complex plane, zs = ase

i's 2
C , s = 0; 1; . . . ;M � 1, with di�erent arguments 's. Some of as (or all) can be 1.
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The case M = 6 is shown in Fig. 2.1. We can de�ne an inner product on these
radial rays `s in the complex plane which connect the origin z = 0 and the points
zs, s = 0; 1; . . . ;M � 1. Namely,

(f; g) =

M�1X
s=0

e�i's
Z
`s

f(z)g(z) jw(z)j dz;

where z 7! w(z) is a suitable complex weight function. This product can be ex-
pressed in the form

(2.1) (f; g) =

M�1X
s=0

Z as

0

f
�
xei's

�
g
�
xei's

� ��w�xei's��� dx

and we can see that kfk2 = (f; f) > 0, except when f(z) = 0.

Fig. 2.1

The case when M is an even number (M = 2m), as = 1, 's = �s=m,
s = 0; 1; . . . ; 2m� 1, and z 7! w(z) is a holomorphic function such that

jw(x"s)j = w(x); s = 0; 1; . . . ; 2m� 1;

where "s = exp(i's) = exp(i�s=m) and x 7! w(x) is a weight function on (0; 1)

(nonnegative on (0; 1) and
R 1
0
w(x) dx > 0), was considered in [12]. In this sym-

metric case, the inner product (2.1) reduces to

(2.2) (f; g) =

Z 1

0

�2m�1X
s=0

f(x"s)g(x"s)

�
w(x) dx:

In the case m = 1, (2.2) becomes

(f; g) =

Z 1

�1

f(x)g(x)w(x) dx;
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so we have the standard case of polynomials orthogonal on (�1; 1) with respect to
the even weight function x 7! w(x).

Several cases whenM is an arbitrary number of rays were investigated in [11]
and [17{18].

In [12] we proved an existence result for the (monic) orthogonal polynomi-
als f�N (z)g

+1
N=0 with respect to the inner product (2.2). It is well known that

an orthogonal sequence of polynomials satis�es a three-term recurrence relation if
the inner product has the property (zf; g) = (f; zg). However, in our case the
corresponding property is given by (zmf; g) = (f; zmg). Then the following result
holds:

Theorem 2.1. Let the inner product (�; �) be given by (2.2) and let the correspond-

ing monic orthogonal polynomials f�N (z)g
+1
N=0 exist. They satisfy the recurrence

relation

�N+m(z) = zm�N (z)� bN�N�m(z); N � m;(2.3)

�N (z) = zN ; N = 0; 1; . . . ; 2m� 1;

where

(2.4) bN =
(�N ; z

m�N�m)

(�N�m; �N�m)
=

k�Nk
2

k�N�mk2
:

In a simple case when m = 2 and w(x) = 1, i.e., when the inner product (�; �)
is given by

(f; g) =

Z 1

0

h
f(x)g(x) + f(ix)g(ix) + f(�x)g(�x) + f(�ix)g(�ix)

i
dx;

we can calculate directly the coeÆcient bN in the recurrence relation (2.3). Namely,
then we have

(2.5) b4n+� =

8>>><
>>>:

16n2

(8n+ 2� � 3)(8n+ 2� + 1)
if � = 0; 1;

(4n+ 2� � 3)2

(8n+ 2� � 3)(8n+ 2� + 1)
if � = 2; 3:

Notice that

bN !
1

4
as N ! +1;

just like in Szeg}o's theory for orthogonal polynomials on the interval (�1; 1).

A more general case with the Jacobi weight will be considered in Section 4.
In that case we obtain the generalized Gegenbauer polynomials.
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3. Generalized Hermite polynomials

Now, we study orthogonal polynomials relative to the inner product

(3.1) (f; g) =

Z +1

0

�2m�1X
s=0

f(x"s)g(x"s)

�
w(x) dx;

where

(3.2) w(x) = x2m exp
�
�x2m

�
;  > �

1

2m
:

Here we have 2m radial rays in the complex plane `s, s = 0; 1; . . . ; 2m� 1, which
connect the origin z = 0 and z = 1 with 2m di�erent angles 's = �s=m, s =
0; 1; . . . ; 2m � 1. As before, "0, "1, . . . , "2m�1 are (2m)th roots of unity, i.e.,
"s = exp(i�s=m), s = 0; 1; . . . ; 2m� 1.

In the case m = 1, (3.1) becomes

(3.3) (f; g) =

Z +1

�1

f(x)g(x)w(x) dx;

so we have the standard case of polynomials orthogonal on the real line with respect
to the weight function x 7! w(x) = jxj2 exp (�x2). For  = 0, (3.3) reduces to
the inner product, which gives the Hermite polynomials fHn(x)g

+1
n=0. It is well

known that these polynomials can be expressed in terms of the generalized Laguerre

polynomials fL
(s)
n (x)g+1n=0, which are orthogonal on the half line with respect to the

inner product

(3.4) (f; g) =

Z +1

0

f(t)g(t) tse�t dt:

Namely, we have (cf. [10, p. 120 and p. 147])

(3.5) H2k(x) = ckL
(�1=2)
k (x2) and H2k+1(x) = dkxL

(1=2)
k (x2);

where ck and dk are constants. The following theorem gives the generalized Hermite
polynomials.

Theorem 3.1. Let the inner product (�; �) be given by (3.1) and w(x) by (3.2). The
corresponding monic orthogonal polynomials f�N (z)g

+1
N=0 satisfy the recurrence

relation

�N+m(z) = zm�N (z)� bN�N�m(z); N � m;

�N (z) = zN ; N = 0; 1; . . . ; 2m� 1;
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where

b2mn+� =

�
n+ 1 + �� if 0 � � � m� 1;

n if m � � � 2m� 1:

Also, they can be expressed in the form

(3.6) �N (z) = z�L̂(��)n (z2m); N = 2mn+ �; n = [N=2m];

where � 2 f0; 1; . . . ; 2m � 1g, �� =  + (2� + 1 � 2m)=(2m), and L̂
(s)
n (t) denotes

the monic generalized Laguerre polynomial orthogonal with respect to the inner

product (3.4).

Proof. Using [12, Sect. 6] we conclude that

�2mn+�(z) = z�q(�)n (z2m); � = 0; 1; . . . ; 2m� 1; n = 0; 1; . . . ;

where q
(�)
n (t) are monic polynomials orthogonal on [0;+1) with respect to the

weight
t 7! w�(t) = t(2�+1�2m)=2mw(t1=2m) = t+(2�+1�2m)=2me�t:

In fact, this is the generalized Laguerre weight with the parameter s = �� =
 + (2� + 1� 2m)=(2m). Thus, the representation (3.6) holds.

Let L̂
(s)
n (t) be the monic generalized Laguerre polynomials orthogonal with

respect to the weight t 7! tse�t on (0;+1). They satisfy the three-term recurrence
relation (cf. [16, p. 46])

L̂
(s)
n+1(t) =

�
t� (2n+ s+ 1)

�
L̂(s)n (t)� n(n+ s)L̂

(s)
n�1(t);

as well as the following relations (see [25])

tL̂
(s+1)
n�1 (t) = L̂(s)n (t) + (n+ s)L̂

(s)
n�1(t); L̂(s)n (t) = L̂(s�1)n (t)� nL̂

(s)
n�1(t):

In order to determine bN in the recurrence relation for �N (z) we combine

(3.6) and the previous relations for L
(s)
n (t), taking t = z2m and s = �� . �

Remark 3.1. For m = 1 we can see that formulae (3.6) reduce to (3.5).

The zero distribution of the polynomials �N (z) immediately follows from
(3.6):

Theorem 3.2. Let N = 2mn+ �, n = [N=2m], � 2 f0; 1; . . . ; 2m� 1g. All zeros
of the polynomial �N (z) are simple and located symmetrically on the radial rays

ls, s = 0; 1; . . . ; 2m� 1, with the possible exception of a multiple zero of order � at

the origin z = 0.

Like the generalized Laguerre polynomial L
(s)
n (t), the polynomial �N (z) sat-

is�es a second order linear homogeneous di�erential equation.
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Theorem 3.3. The polynomials �N (z) orthogonal with respect to the inner prod-

uct (3.1) satisfy a second order linear homogeneous di�erential equation of the

form

(3.7) z2y00 +B(z)y0 + C(z)y = 0;

where

(3.8) B(z) = 2z
�
1 +m( � 1� z2m)

�
; C(z) = 2mNz2m � �(� + 2m( � 1) + 1);

and N = 2mn+ �, n = [N=(2m)], � 2 f0; 1; . . . ; 2m� 1g.

Proof. Let N = 2mn + �, n = [N=(2m)], � 2 f0; 1; . . . ; 2m � 1g. Starting from
the representation of the orthogonal polynomial �N (z) given by (3.6), where �� =
 + (2� + 1� 2m)=(2m),  > �1=(2m), we �nd

2mt�L̂(��)n (t) = z�� [z�0N (z)� ��N (z)] ;

4m2t2�2L̂(��)n (t) = z��
�
z2�00N (z)� (2� + 2m� 1)z�0N (z) + �(� + 2m)�N (z)

�
;

where t = z2m and � is the standard di�erentiation operator � =
d

dt
.

Now, using the generalized Laguerre di�erential equation

t�2L̂(��)n (t) + (�� + 1� t)L̂(��)n (t) + nL̂(��)n (t) = 0;

we obtain

z2y00 + 2z
�
1 +m( � 1� z2m)

�
y0 +

�
2mNz2m � �(� + 2m( � 1) + 1)

�
y = 0;

i.e., (3.7), where y = �N (z). �

Remark 3.2. For m = 1, the equation (3.7) reduces to the Hermite equation

y00 � 2zy0 + 2Ny = 0:

Remark 3.3. A simple case could be if we choose the parameter  in the
weight function (3.2) such that the coeÆcient B(z) in (3.8) reduces to a monomial
of degree 2m+ 1. Namely, if  = (m� 1)=m, the equation (3.7) reduces to

y00 � 2mz2m�1y0 +

�
2mNz2m�2 �

�(� � 1)

z2

�
y = 0:

Using (3.6), we put

�
()
2mn(z) = �2mn(z) = L̂(�0)n (z2m); �0 =  � 1 +

1

2m
:
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Since

�
()
2mn+�(z) = z�L̂(��)n (z2m) and �� =  � 1 +

1

2m
+

�

m
;

we conclude that

�
()
2mn+�(z) = z��

(+�=m)
2mn (z) (� = 1; . . . ; 2m� 1):

Thus, it is enough to consider di�erential equation (3.7) only for N = 2mn, i.e.,

zy00 + 2
�
1 +m( � 1� z2m)

�
y0 + 2mNz2m�1y = 0:

4. Generalized Gegenbauer polynomials

As we mentioned in Section 1, the Humbert's polynomials p�n;m(x) de�ned by
(1.1), i.e. (1.2), are a generalization of the well-known Gegenbauer polynomials.
Their generating function (1.1) reduces for m = 2 to the corresponding one of
the polynomials C�

n(x). Regarding to the orthogonality there are the generalized

Gegenbauer polynomialsW
(�;�)
n (x) introduced by Lascenov [9] (see also [1, pp. 155{

156]). These polynomials are orthogonal on [�1; 1] with respect to the weight
function x 7! jxj�(1�x2)�, where �; � > �1 and � = (��1)=2. It is interesting to
say that these polynomials have been \rediscovered" in 1980 (see [19]). We used
these polynomials in the least squares approximation with constraints [15] and in
quadrature processes [8].

The relations between generalized monic Gegenbauer polynomials W
(�;�)
N (x)

and Jacobi polynomials P
(�;�)
n (x) are given by

(4.1)

W
(�;�)
2n (x) =

n!

(n+ �+ � + 1)n
P (�;�)
n (2x2 � 1);

W
(�;�)
2n+1 (x) =

n!

(n+ �+ � + 2)n
xP (�;�+1)

n (2x2 � 1):

An important relation relation for generalized polynomials is the following

(4.2) W
(�;�)
2n+1 (x) = xW

(�;�+1)
2n (x):

The corresponding three-term recurrence relation is given by

W
(�;�)
N+1 (x) = xW

(�;�)
N (x) � �NW

(�;�)
N�1 (x); N = 0; 1; . . . ;

W
(�;�)
�1 (x) = 0; W

(�;�)
0 (x) = 1;

where

�2n =
n(n+ �)

(2n+ �+ �)(2n+ �+ � + 1)
; �2n�1 =

(n+ �)(n+ �+ �)

(2n+ �+ � � 1)(2n+ �+ �)
;



Orthogonal polynomials and an electrostatic interpretation 61

for n = 1; 2; . . . , except for �+ � = �1 when �1 = (� + 1)=(�+ � + 2).

It is easy to prove that polynomials W
(�;�)
N (x)

�
N = 2n + �; � = 0 or 1

�
satisfy a second order linear di�erential equation

(1�x2)x2y00+
�
2�+1�(2�+2�+3)x2

�
xy0+

�
N
�
N+2(�+�+1)

�
x2��(�+2�)

�
y = 0:

It is enough to consider only case � = 0, i.e. N = 2n. Then, this equation
reduces to

(4.3) (1� x2)y00 +
�
2� + 1� (2�+ 2� + 3)x2

� 1
x
y0 +N

�
N + 2(�+ � + 1)

�
y = 0:

Another case (� = 1; N = 2n+1) can be obtain from (4.3) putting �: = �+1 and
N = 2n, and using equality (4.2). This fact will be used below.

A natural extension of the generalized Gegenbauer polynomials can be given
by Theorem 2.1 and using the inner product (1.2), with the weight function

(4.4) w(x) = (1� x2m)�x2m ; � > �1;  > �
1

2m
:

Theorem 4.1. The monic polynomials f�N (z)g
+1
N=0 orthogonal with respect to the

inner product (2.2), where the weight function is given by (4.4), can be expressed

in the form

(4.5) �N (z) = 2�nz�P̂ (�;��)
n (2z2m � 1); N = 2mn+ �; n = [N=2m];

where � 2 f0; 1; . . . ; 2m�1g, �� = +(2�+1�2m)=(2m), and P̂
(�;�)
n (x) denotes the

monic Jacobi polynomial orthogonal with respect to the weight x 7! (1�x)�(1+x)�

on (�1; 1). The polynomials �N (z) satisfy the recurrence relation (2.3), where

(4.6) b2mn+� =

8>>><
>>>:

n(n+ �)

(2n+ �+ ��)(2n+ �+ �� + 1)
if 0 � � � m� 1;

(n+ ��)(n+ �+ ��)

(2n+ �+ ��)(2n+ �+ �� + 1)
if m � � � 2m� 1:

The proof of this theorem can be done in a similar way as for Theorem 3.1.

Also, a result on a symmetric location of zeros of �N (z) on the radial rays ls,
s = 0; 1; . . . ; 2m� 1, can be proved. Namely, let N = 2mn+ �, n = [N=2m], � 2

f0; 1; . . . ; 2m� 1g and let �
(n;�)
k , k = 1; . . . ; n, denote the zeros in increasing order

of the Jacobi polynomial P
(�;��)
n (x)

�
� > �1; �� = +(2�+1�2m)=(2m) > �1

�
,

i.e.,

�1 < �
(n;�)
1 < �

(n;�)
2 < � � � < � (n;�)n < 1:
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Each zero �
(n;�)
k generates 2m zeros z

(n;�)
k;s of �N (z) on the radial rays ls,

z
(n;�)
k;s =

2m

r
1

2

�
1 + �

(n;�)
k

�
eis�=m; s = 0; 1; . . . ; 2m� 1:

If � > 0, there exists a zero of order � at the origin z = 0. Thus, �N (z) has all
zeros inside the unit circle.

Remark 4.1. For m = 1, formulae (4.5) reduce to (4.1). If � =  = 0 and
m = 2, (4.6) reduces to (2.5).

According to Theorem 4.1 we see that for N = 2mn + �, where � 2
f0; 1; . . . ; 2m � 1g, we have an equality (up to a multiplicative constant) of the
form

�N (z) = �
(�;)
N (z) � z�P (�;��)

n (2z2m � 1);

where �� = �0 + �=m, �0 =  � 1 + 1=(2m). For N = 2mn, i.e. � = 0, we have

(4.7) �N (z) = �
(�;)
2mn (z) � P (�;�0)

n (2z2m � 1);

and for an arbitrary �,

�
(�;)
2mn+�(z) � z�P (�;�0+�=m)

n (2z2m � 1);

i.e.,

(4.8) �
(�;)
2mn+�(z) = z��

(�;+�=m)
2mn (z):

In order to get a linear di�erential equation for �N (z) we take N = 2mn
and start from the corresponding di�erential equation for the Jacobi polynomials

y = P
(�;�)
n (x),

(4.9) (1� x2)y00 + [� � �� (�+ � + 2)x]y0 + n(n+ �+ � + 1)y = 0;

where � = �0 =  � 1+ 1=(2m). Putting N = 2mn, x = 2z2m � 1 and using (4.7),
we �nd

�P (�;�)
n (x) � �0N (z)

dz

dx
; �2P (�;�)

n (x) � �00N (z)
�dz
dx

�2
+ �0N (z)

d2z

dx2
:

Then, substituting into (4.9), we obtain the following result:

Theorem 4.2. The polynomials �N (z) orthogonal with respect to the inner prod-

uct (2.2), with the weight function (4.4), satisfy a second order linear homogeneous

di�erential equation of the form

(4.10) (1� z2m)z2Y 00 + C(z)zY 0 +Az2mY = 0;

where N = 2mn and

A = N
�
N + 2m(�+ ) + 1

�
; C(z) = 2

�
m( � 1) + 1�

�
m(�+ ) + 1

�
z2m

�
:

Remark 4.2. For m = 1, (4.10) reduces to (4.3). Notice that � = 2�+1 = 2.

Now, using (4.8) and (4.10), with : =  + �=m, we get the corresponding
di�erential equation for each N (= 2mn+ �).
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Theorem 4.3. The polynomials �N (z) orthogonal with respect to the inner prod-

uct (2.2), with the weight function (4.4), satisfy a second order linear homogeneous

di�erential equation of the form

(4.11) (1� z2m)z2Y 00 + C(z)zY 0 +
�
Az2m �B

�
Y = 0;

where N = 2mn+ �, � 2 f0; 1; . . . ; 2m� 1g, and

C(z) = 2
�
m( � 1) + 1�

�
m(�+ ) + 1

�
z2m

�
;

A = N
�
N + 2m(�+ ) + 1

�
; B = �

�
� + 2m( � 1) + 1

�
:

Remark 4.3. It is interesting to mention a physical problem connected to
equation (4.11). The equations for the dispersion of a buoyant contaminant can be
approximated by the Erdogan-Chatwin equation

@tc = @y

nh
D0 +

�
@yc

�2
D2

i
@yc

o
:

Smith [20] showed that in the limit of strong non-linearity (D0 = 0) there are
similarity solutions for a concentration jump and for a �nite discharge. A stability
analysis for this problem involves a family of orthogonal polynomials YN (z), where

(4.12) (1� z4)Y 00N � 6z3Y 0N +N(N + 5)z2YN = 0;

and the degree N is restricted to the values 0; 1; 4; 5; 8; 9; . . . . As we can see, the
polynomials YN (z) are just a special case of our polynomials �N (z). Namely, for
m = 2, � =  = 1=2, equation (4.11) becomes

(1� z4)Y 00 � 6z3Y 0 +
�
N(N + 5)z2 � �(� � 1)z�2

�
Y = 0;

where N = 4n+�, � 2 f0; 1; 2; 3g. Evidently, for N = 4n and N = 4n+1 (n 2 N0 ),
this equation reduces to (4.12).

5. Electrostatics and the zeros of orthogonal polynomials

An electrostatic interpretation of the zeros of Jacobi polynomials was given
by Stieltjes in 1885 (see [22]{[24]). Namely, he considered an electrostatic problem
with particles of charge p and q (p; q > 0) �xed at x = 1 and x = �1, respectively,
and n unit charges con�ned to the interval [�1; 1] at points x1; x2; . . . ; xn. As-
suming a logarithmic potential, Stieltjes proved that the electrostatic equilibrium

arises when xk are zeros of the Jacobi polynomial P
(2p�1;2q�1)
n (x). In that case,

the Hamiltonian

H(x1; x2; . . . ; xn) = �
nX

k=1

�
log(1� xk)

p + log(1 + xk)
q
�
�

X
1�k<j�n

log jxk � xj j
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becomes a minimum. This minimum is indeed the unique global minimum (cf.
Szeg}o [25, p. 140]). Obviously, H(x1; x2; . . . ; xn) can be interpreted as the energy
of the previous electrostatic system. Stieltjes' approach is closely connected with
the calculation of the discriminant of the classical orthogonal polynomials (cf. [16,
pp. 65{69]).

Let xk = xk(�; �) denote the zeros of the Jacobi polynomial P
(�;�)
n (x). Then

Markov inequalities (see e.g. Szeg}o [25, p. 121])

(5.1)
@x�
@�

< 0;
@x�
@�

> 0 (� = 1; 2; . . . ; n)

hold. They can be veri�ed very easy from Stieltjes' interpretation of the zeros of

P
(�;�)
n (x). For example, when the charge at x = �1 is increased, the n unit charges

are repelled towards the �xed charge at x = 1.

The cases of Laguerre and Hermite orthogonal polynomials are also treated
(see Szeg}o [25, pp. 140{142]).

Forrester and Rogers [2] gave an interpretation of zeros of the classical poly-
nomials as the equilibrium positions of two-dimensional electrostatic problems. Al-
so, Hendriksen and Rossum [4] considered an electrostatic interpretation of zeros
of classical orthogonal polynomials, including Bessel polynomials, as well as some
polynomials introduced by Smith [20], [21]. Recently, the electrostatic interpre-
tation of the zeros was also exploited to obtain interpolation points suitable for
approximation of smooth functions de�ned on a simplex (see Hesthaven [5]).

Now, we consider a symmetric electrostatic problem with 2m positive point
charges all of strength q which are placed at the �xed points

(5.1) �k = exp
�k�i
m

�
(k = 0; 1; . . . ; 2m� 1)

and a charge of strength p (> �m + 1=2) at the origin z = 0. Also we have N
positive free unit charges, positioned at z1, z2, . . . , zN . Assuming a logarithmic
potential, we try to �nd these points in electrostatic equilibrium.

In order to de�ne the conditions for equilibrium we need some basic facts. At
�rst, we consider the simplest electrostatic problem with a point charge of strength
q placed at the origin. Assuming a logarithmic potential, the �eld force at the point
M , with the radius vector r, is given by

E =
Aq

r
r0 =

Aq

r2
r;

where A is a constant and r0 = r=r. In a complex notation, it can be represented
as

(5.2)
Aq

z�z
z =

Aq

�z
;
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where z 2 C corresponds to the point M .

Now, using (5.2) we can state the equilibrium conditions for the previous
symmetric electrostatic problem. Omitting the constant A and equating to zero
the resultant force on the unit charge at z� (� = 1; 2; . . . ; N), we obtain

q
� 1

�z� � ��0
+

1

�z� � ��1
+ � � �+

1

�z� � ��2m�1

�
+ p

1

�z�

+
1

�z� � �z1
+

1

�z� � �z2
+ � � �+

1

�z� � �z��1
+

1

�z� � �z�+1
+ � � �+

1

�z� � �zN
= 0:

Put

(5.3) �N (z) =

NY
k=1

(z � zk)

and note that

z2m � 1 =

2m�1Y
k=0

(z � �k):

Lemma 5.1. We have
NX
k=1
k 6=�

1

z� � zk
=

�00N (z�)

2�0N (z�)

and

(5.4)
2m�1X
k=0

1

z� � �k
=

2mz2m�1�

z2m� � 1
;

where �N (z) is de�ned by (5.3).

Proof. Let �N (z) be de�ned by (5.3). The logarithmic derivative gives

�0N (z)

�N (z)
=

NX
k=1

1

z � zk

�
z 62 fz1; z2; . . . ; zNg

�
:

Then, for z 62 fz1; z2; . . . ; zNg, we have

R�(z) �

NX
k=1
k 6=�

1

z � zk
=

�0N (z)

�N (z)
�

1

z � z�
=

(z � z�)�
0
N (z)� �N (z)

(z � z�)�N (z)
:

In the limit case when z ! z� , we obtain

NX
k=1
k 6=�

1

z� � zk
= lim

z!z�
R�(z) = lim

z!z�

�00N (z�)

�N (z)

z � z�
+ �0N (z)

;
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i.e.,
NX
k=1
k 6=�

1

z� � zk
=

�00N (z�)

2�0N (z�)
:

Similarly, we prove (5.4). �

Using Lemma 5.1, the previous equilibrium conditions can be represented in
the simpler form

2mq�z2m�1�

�z2m� � 1
+

p

�z�
+

�00N (z�)

2�0N (z�)
= 0 (� = 1; . . . ; N);

or

4mqz2m� �0N (z�) + 2p
�
z2m� � 1

�
�0N (z�) + z�

�
z2m� � 1

�
�00N (z�) = 0 (� = 1; . . . ; N):

Thus, we conclude that the polynomial Q(z) de�ned by

Q(z) = z2
�
1� z2m

�
�00N (z) + 2

�
p� (p+ 2qm)z2m

�
z�0N (z)

has zeros at the points z1; z2; . . . ; zN and its degree is N +2m. Then we must have

(5.5) Q(z) + �2m(z)�N (z) = 0;

where
�2m(z) = a2mz

2m + a2m�1z
2m�1 + � � �+ a0:

We are interested here only in solutions with the rotational symmetry. Using
this fact we can conclude that a such solution is an incomplete polynomial

(5.6) �N (z) =

nX
k=0

bkz
N�2mk = z�

nX
k=0

bkz
2m(n�k);

where N = 2mn + �, n = [N=(2m)], � 2 f0; 1; . . . ; 2m � 1g. In that case the
polynomial �2m(z) reduces also to an incomplete polynomial,

(5.7) �2m(z) = a2mz
2m + a0:

Substituting (5.6) and (5.7) in (5.5) and putting z2m = t we get the following
identity

(1� t)
nX

k=0

(2mk + �)(2mk + � � 1)bkt
k

2
�
p� (p+ 2qm)t

� nX
k=0

(2mk + �)bkt
k +

�
a2mt+ a0

� nX
k=0

bkt
k � 0:
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Now, equating the coeÆcients of zN+2m in the last identity, we obtain

�N(N � 1)� (2p+ 4qm)N + a2m = 0;

i.e.,

(5.8) a2m = N
�
N + 2(p+ 2qm)� 1

�
:

Also, this identity for t = 0 yields

(5.9) a0 = ��(� + 2p� 1):

Thus, using (5.7), (5.8), and (5.9), equation (5.5) becomes

(5.10)
�
1� z2m

�
z2�00N (z) + 2

�
p� (p+ 2qm)z2m

�
z�0N (z)

+
�
N
�
N + 2(p+ 2qm)� 1

�
z2m � �(� + 2p� 1)

�
�N (z) = 0;

where N = 2mn+ �, n = [N=(2m)], � 2 f0; 1; . . . ; 2m� 1g.

Comparing (5.10) and (4.11) we �nd

2m( � 1) + 2� 2
�
m(�+ ) + 1

�
z2m = 2p� 2(p+ 2qm)z2m;

N
�
N + 2m(�+ ) + 1

�
= N

�
N + 2(p+ 2qm)� 1

�
;

�
�
� + 2m( � 1) + 1

�
= �(� + 2p� 1);

i.e., � = 2q � 1 and  = 1 + (p� 1)=m.

Thus, assuming a logarithmic potential, we proved the following result:

Theorem 5.2. An electrostatic system of 2m positive point charges all of strength

q, which are placed at the �xed points �k given by (5.1), and a charge of strength p
(> �m+1=2) at the origin z = 0, as well as N positive free unit charges, positioned

at z1, z2, . . . , zN , is in electrostatic equilibrium if these points zk are zeros of the

polynomial �N (z) orthogonal with respect to the inner product (2.2), with the

weight function w(x) = (1� x2m)2q�1x2m+2(p�1).
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