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For quadrature formulae of Chakalov-Popoviciu’s type with multiple nodes∫
R
f(t) dλ(t) =

n∑
ν=1

2sν∑
i=0

Ai,νf
(i)(τν) +R(f),

which have the maximum degree of exactness d = 2
n∑
ν=1

sν + 2n− 1, two numerical procedures

for computation of coefficients Ai,ν are presented. A procedure for nodes τν was given by

Gori, Lo Cascio and Milovanović [4]. Similar procedures for Gauss-Turán quadratures have

been done by authors [7] and Gautschi and Milovanović [3].

1. Introduction and Preliminaries

Given a nonnegative measure dλ(t) on the real line R, with compact or infinite
support, for which all moments

µk =

∫
R
tk dλ(t), k = 0, 1, . . . ,

exist and are finite, and µ0 > 0. A quadrature formula of the form

(1.1)

∫
R
f(t) dλ(t) =

n∑
ν=1

2s∑
i=0

Ai,νf
(i)(τν) +R(f),
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which is exact for all algebraic polynomials of degree at most 2(s + 1)n − 1, was
considered firstly by P. Turán [13], in the case when dλ(t) = dt on [−1, 1]. The
case dλ(t) = ω(t) dt on [a, b] has been considered by Italian mathematicians Ossicini,
Ghizzetti, Guerra, Rosati, and also by Chakalov, Stroud, Stancu, Ionescu, Pavel, etc.
(see [4] for references).

The nodes τν in (1.1) must be zeros of a (monic) polynomial πn(t) which mini-
mizes the following integral

F ≡ F (a0, a1, . . . , an−1) =

∫
R
πn(t)2s+2 dλ(t),

where
πn(t) = tn + an−1t

n−1 + . . . + a1t+ a0.

In order to minimize F we must have

(1.2)

∫
R
πn(t)2s+1tk dλ(t) = 0, k = 0, 1, . . . , n− 1.

Such polynomials πn(t), which satisfies this type of orthogonality “power orthogonal-
ity” are known as s-orthogonal (or s-self associated) polynomials with respect to the
measure dλ(t).

For s = 0 we have the standard case of orthogonal polynomials.

In this paper, we consider a generalization of Turán quadrature formula (1.1)
to rules having nodes with arbitrary multiplicities. Such formulas were derived,
independently, by Chakalov [1–2] and Popoviciu [8]. A deep theoretical progress in
this subject was made by Stancu [9–11] (see also [12]).

Let n ∈ N and let σ = (s1, s2, . . . , sn) be a sequence of nonnegative integers.

In this case, it is important to assume that the nodes τν are ordered, say

(1.3) a ≤ τ1 < τ2 < · · · < τn ≤ b,

with odd multiplicities
2s1 + 1, 2s2 + 2, . . . , 2sn + 1,

respectively. Then the corresponding quadrature formula

(1.4)

∫
R
f(t) dλ(t) =

n∑
ν=1

2sν∑
i=0

Ai,νf
(i)(τν) +R(f),

has the maximum degree of exactness

(1.5) dmax = 2

n∑
ν=1

sν + 2n− 1,
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if and only if

(1.6)

∫
R

n∏
ν=1

(t− τν)2sν+1tk dλ(t) = 0, k = 0, 1, . . . , n− 1.

The last orthogonality conditions correspond to (1.2). The existence of such quadra-
ture rules was proved by Chakalov, Popoviciu, Morelli and Verna, and existence and
uniqueness subject to (1.3) by Ghizzetti and Ossicini, Gautschi (see [4] for references).

The conditions (1.6) define a sequence of polynomials {πn,σ}n∈N0 ,

πn,σ(t) =
n∏
ν=1

(t− τ (n)ν ), a ≤ τ (n)1 < τ
(n)
2 < · · · < τ (n)n ≤ b,

such that ∫
R
πk,σ(t)

n∏
ν=1

(t− τν)2sν+1 dλ(t) = 0, k = 0, 1, . . . , n− 1.

These polynomials called σ–orthogonal polynomials and they correspond to the se-
quence σ = (s1, s2, . . . ). If we have σ = (s, s, . . . ), the above polynomials reduce to
the s-orthogonal polynomials.

Recently Milovanović [5] (see also [6] and [3]) gave a stable procedure for nu-
merical construction of s-orthogonal polynomials with respect to dλ(t) on R, taking
advantage from the following interpretation of the “orthogonality conditions” (1.2):∫

R
πn(t)tkπn(t)2s dλ(t) = 0, k = 0, 1, . . . , n− 1,

i.e., ∫
R

πs,nk (t)tν dµ(t) = 0, ν = 0, 1, . . . , k − 1,

where {πs,nk }k∈N0
is a sequence of monic orthogonal polynomials with respect to the

new measure
dµ(t) = dµs,n(t) = (πn(t))2sdλ(t).

Of course, we are interested only in πn( · ) = πs,nn ( · ). Thus, we can see that the
sequence of polynomials πs,nk , k = 0, 1, . . . , is implicitly defined. This approach
to the σ-orthogonal polynomials was extended in [4], providing an algorithm for
constructing such polynomials. For a given σ = (s1, s2, . . . , sn), the “orthogonality
conditions” (1.6) can be interpreted as∫

R
π
(n)
k,σ(t)ti dµ(t) = 0, i = 0, 1, . . . , k − 1,
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where

πn,σ(t) =
n∏
ν=1

(t− τ (n)ν )

and

dµ(t) =
n∏
ν=1

(t− τ (n)ν )2sν dλ(t).

Then, we can conclude that π
(n)
k,σ is a sequence of standard orthogonal polyno-

mials with respect to the measure dµ(t). These polynomials π
(n)
k,σ(·) ≡ πk(·) satisfy a

three-term recurrence relation

πk+1(t) = (t− αk)πk(t)− βkπk−1(t), k = 0, 1, 2, . . . ,

π−1(t) = 0, π0(t) = 1,

where, because of orthogonality,

αk = αk(σ, k) =
〈tπk, πk〉
〈πk, πk〉

, βk = βk(σ, k) =
〈πk, πk〉

〈πk−1, πk−1〉

and

〈f, g〉 =

∫
R
f(t)g(t) dµ(t).

The coefficient β0 is arbitrary, but sometimes it is convenient to take β0 = 〈1, 1〉 =∫
R dµ(t).

Evidently, this orthogonality is defined implicitly, because of the fact that the
measure dµ(t) depends on zeros of πn and their multiplicities.

In order to find the coefficients αk, βk (k = 0, 1, . . . , n− 1) Gori, Lo Cascio and
Milovanović [4] considered the system of nonlinear equations

(1.7)

f0 ≡ β0 −
∫
R
dµ(t) = 0,

f2k+1 ≡
∫
R
(αk − t)π2

k(t) dµ(t) = 0 (k = 0, 1, . . . , n− 1),

f2k ≡
∫
R

(βkπ
2
k−1(t)− π2

k(t)) dµ(t) = 0 (k = 1, . . . , n− 1),

and used a version of the secant method for its solving. The speed of convergence is
superlinear. A problem of the choice of the strting points for this iterative process
was discussed in [4].

All of the integrals in (1.7) can be calculated exactly, except for rounding errors,
by using a Gauss-Christoffel quadrature formula with respect to the measure dλ(t),

(1.8)

∫
R
g(t) dλ(t) =

N∑
k=1

A
(N)
k g(τ

(N)
k ) +RN (g),
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taking N = n +
n∑
ν=1

sν nodes. This formula is exact for all polynomials g of degree

at most

2N − 1 = 2

(
n+

n∑
ν=1

sν

)
− 1 = 2(n− 1) + 1 + 2

n∑
ν=1

sν .

2. Numerical Procedures for Coefficients Ai,ν

Some methods for determining the coefficients Ai,ν in generalized Gauss-Turán
quadrature formula, in the special case s1 = s2 = · · · = sn = s ∈ N0, were given in
[7], [3], [6]. Here, we give two methods for the numerical calculation of coefficients in
(1.4).

1◦ The first method is a generalization of one from [7]. Basing on the Hermite
interpolation we can obtain that

Ai,ν =
1

i !

2sν−i∑
k=0

1

k !

[
(t− τν)2sν+1

Ω(t)

](k)
t=τν

∫
R

Ω(t)

(t− τν)2sν−i−k+1
d λ(t),

where

Ω(t) = (t− τ1)2s1+1(t− τ2)2s2+1 · · · (t− τn)2sn+1.

Denote

Ωi,ν,k(t) =
Ω(t)

(t− τν)2sν−i−k+1
= (t− τν)i+k×

× (t− τ1)2s1+1 · · · (t− τν−1)2sν−1+1(t− τν+1)2sν+1+1 · · · (t− τn)2sn+1.

For the degree of Ωi,ν,k we can conclude that

deg(Ωi,ν,k) ≤ (2s1 + 1) + · · ·+ (2sν−1 + 1) + 2sν + (2sν+1 + 1) + · · ·+ (2sn + 1)

= 2
n∑
ν=1

sν + n− 1 ≤ 2
( n∑
ν=1

sν + n
)
− 1 = 2N − 1 = dmax,

where N =
n∑
ν=1

sν + n i dmax given by (1.5).

Hence, we have

Ai,ν =
1

i !

2sν−i∑
k=0

1

k !

[
(t− τν)2sν+1

Ω(t)

](k)
t=τν

∫
R

Ωi,ν,k(t) dλ(t)

i = 0, 1, . . . , 2sν ; ν = 1, . . . , n and deg(Ωi,ν,k) ≤ 2N − 1.
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Using the quadrature formula (1.8) with N nodes, the integrals∫
R

Ωi,ν,k(t) dλ(t)

i = 0, 1, . . . , 2sν ; ν = 1, . . . , n; k = 0, 1, . . . , 2sν − i,

can be calculated exactly, except for rounding errors. For determining the derivatives
(in t = τν),

[
(t− τν)2sν+1

Ω(t)

](k)
t=τν

(2.1)

i = 0, 1, . . . , 2sν ; ν = 1, . . . , n; k = 0, 1, . . . , 2sν − i,

we use a numerical procedure based on the next two results.

Lemma 2.1. If g ∈ C(m)(E), m ∈ N0, E ⊂ R, then

(eg)(0) = eg, (eg)(p) =

p∑
l=1

(
p− 1

l − 1

)
g(l)(eg)(p−l), p = 1, . . . ,m.

Theorem 2.2. Let τν , ν = 1, . . . , n, are the zeros of σ-orthogonal polynomial π
(n)
n,σ.

Then, the coefficients of the generalized Gauss-Turán quadrature formula (1.4) can
be expressed in the form

Ai,ν =
1

i !

2sν−i∑
k=0

1

k !

[
(t− τν)2sν+1

Ω(t)

](k)
t=τν

∫
R

Ωi,ν,k(t) dλ(t),

i = 0, 1, . . . , 2sν ; ν = 1, . . . , n and deg(Ωi,ν,k) ≤ 2N − 1,

and the derivatives (2.1) in the form[
(t− τν)2sν+1

Ω(t)

](k)
t=τν

= (−1)n−ν
[
eg(t)

](k)
t=τν

,

where
g(p)(t) = −

∑
1≤j≤n
j 6=ν

g
(p)
j (t), p = 0, 1, . . . ,

with

g
(0)
j (t) = (2sj + 1) log |t− τj |, g

(p)
j (t) = (−1)p−1

(2sj + 1) (p− 1)!

(t− τj)p
, p ∈ N.
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Lemma 2.1 was proved in [7]. The proof of Theorem 2.2 can be done in a similar
way as the corresponding theorem in [7].

2◦ Gautschi and Milovanović [3] proposed a stable method for determining the
coefficients in (1.4) in a special case, when sν = s, ν = 1, . . . , n, s ∈ N0. We present
now a generalization of this method to the general case when sν ∈ N0, ν = 1, . . . , n.

Firstly, we define

(2.2) Ων(t) =
∏
i 6=ν

(t− τi)2si+1, ν = 1, . . . , n.

and use the polynomials

fk,ν(t) = (t− τν)kΩν(t) = (t− τν)k
∏
i6=ν

(t− τi)2si+1,(2.3)

0 ≤ k ≤ 2sν , 1 ≤ ν ≤ n.

Since the quadrature formula (1.4) is exact for all polynomials of degree at most

n∑
i=1

(2si + 1) + n− 1 = 2
( n∑
i=1

si + n
)
− 1

and

deg fk,ν =
∑
i 6=ν

(2si + 1) + k ≤
n∑
i=1

(2si + 1)− 1 = 2

n∑
i=1

si + n− 1,

we see that the integration (1.4) is exact for the polynomials (2.3), i.e.,

R(fk,ν) = 0, 0 ≤ k ≤ 2sν , 1 ≤ ν ≤ n.

Thus, we have
2sj∑
i=0

n∑
j=1

Ai,jf
(i)
k,ν(τj) =

∫
R
fk,ν(t) dλ(t),

that is,

(2.4)

2sν∑
i=0

Ai,νf
(i)
k,ν(τν) = µk,ν ,

because for every j 6= ν we have f
(i)
k,ν(τj) = 0, 0 ≤ i ≤ 2sj . Here, we have put

µk,ν =

∫
R
fk,ν(t) dλ(t) =

∫
R
(t− τν)k

∏
i 6=ν

(t− τi)2si+1 dλ(t).

For each ν we have in (2.4) a system of 2sν + 1 linear equations in the same number
of unknowns, Ai,ν , i = 0, 1, . . . , 2sν .

Using Leibniz’s formula of differentiation, one easily proves the following auxil-
iary result.
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Lemma 2.3. For the polynomials fk,ν given by (2.3) we have

f
(i)
k,ν(τν) =

{
0, i < k,

i(k)Ω(i−k)
ν (τν), i ≥ k,

where i(k) = i(i− 1) . . . (i− k + 1) (with 0(0) = 1) and Ων is defined in (2.2).

Lemma 2.3 shows that each system of linear equations (2.4) is upper triangular.
Thus, once all zeros of the σ-orthogonal polynomial πn, i.e., the nodes of the quad-
rature formula (1.4), are known, the determination of its weights Ai,ν is reduced to
solving the n linear systems of 2sν + 1 equations

f0,ν(τν) f ′0,ν(τν) . . . f
(2sν)
0,ν (τν)

f ′1,ν(τν) . . . f
(2sν)
1,ν (τν)

. . .

f
(2sν)
2sν ,ν

(τν)



A0,ν

A1,ν

...

A2sν ,ν

 =


µ0,ν

µ1,ν

...

µ2sν ,ν

 .

Put ak,k+j = f
(k−1+j)
k−1,ν (τν), so that the matrix of the system has elements al,j , 1 ≤

l, j ≤ 2sν + 1, with al,j = 0 for j < l. Then, by Lemma 2.3,

(2.5) al,j = (j − 1)(l−1)Ω(j−l)
ν (τν), j ≥ l; 1 ≤ l, j ≤ 2sν + 1.

Lemma 2.4. Let τ1, . . . , τn be the zeros of the σ-orthogonal polynomial πn. For the
elements al,j, defined by (2.5), the following relations hold:

ak,k = (k − 1)! a1,1, 1 ≤ k ≤ 2sν + 1,

ak,k+j = −(k + j − 1)(k−1)
j∑
l=1

ulal,j , 1 ≤ k ≤ 2sν − j + 1, j = 1, . . . , 2sν ,

where

(2.6)

a1,1 = Ων(τν) =
∏
i 6=ν

(τν − τi)2si+1,

ul =
∑
i6=ν

(2si + 1)(τi − τν)−l, l = 1, . . . , 2sν .

Proof. The first relation is an immediate consequence of the definition of ak,k and
Lemma 2.3. To prove the second, define v(t) =

∑
i 6=ν

(2si + 1)(t− τi)−1. Since Ων(t) =∏
i 6=ν

(t− τi)2si+1 we have that

Ω′ν(t) =
∑
i6=ν

(2si + 1)

∏
j 6=ν

(t− τj)2sj+1

t− τi
= v(t)Ων(t)
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and

Ω(j)
ν (t) =

dj−1

dtj−1
(Ω′ν(t)) =

dj−1

dtj−1
(v(t)Ων(t))

=

j−1∑
l=0

(
j − 1

l

)
Ω(j−1−l)
ν (t)v(l)(t).

Then, (2.5) becomes

ak,k+j = (k + j − 1)(k−1)
j∑
l=1

(
j − 1

l − 1

)
Ω(j−l)
ν (τν)v(l−1)(τν).

Since

v(l−1)(τν) = (−1)l−1(l − 1)!
∑
i 6=ν

(2si + 1)(τν − τi)−l = −(l − 1)!ul

and

Ω(j−l)
ν (τν) =

al,j
(j − 1)(l−1)

=
(j − l)!
(j − 1)!

al,j ,

we get

ak,k+j = −(k + j − 1)(k−1)
j∑
l=1

ulal,j . �

Using the normalization

(2.7) âk,j =
ak,j

(j − 1)! a1,1
, 1 ≤ k, j ≤ 2sν + 1,

and putting

bk = (k − 1)!Ak−1,ν , 1 ≤ k ≤ 2sν + 1,

µ̂k,ν =
µk,ν
a1,1

=
µk,ν∏

i 6=ν
(τν − ti)2si+1

=

∫
R

(t− τν)k
∏
i 6=ν

(
t− τi
τν − τi

)2si+1

dλ(t),

(2.8)

we have the following result:
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Theorem 2.5. For fixed ν, 1 ≤ ν ≤ n, the coefficients Ai,ν in the generalized Gauss-
Turán quadrature formula (1.4) are given by

(2.9)

b2sν+1 = (2sν)!A2sν ,ν = µ̂2sν ,ν ,

bk = (k − 1)!Ak−1,ν = µ̂k−1,ν −
2sν+1∑
j=k+1

âk,jbj , k = 2sν , . . . , 1,

where µ̂k,ν are given by (2.8), and

(2.10) âk,k = 1, âk,k+j = −1

j

j∑
l=1

ulâl,j ,

the ul being defined by (2.6).

Proof. The relations (2.10) follow directly from Lemma 2.4 and the normalization
(2.7).

The coefficients bk, 1 ≤ k ≤ 2sν + 1, are obtained from the corresponding upper

triangular system of equations Â~b = ~c, where

Â = [âij ], ~b = [b1, . . . , b2sν+1]>, ~c = [µ̂0,ν , . . . , µ̂2sν ,ν ]>. �

The normalized moments µ̂k,ν can be computed exactly, except for rounding
errors, by using the same Gauss–Christoffel formula as in the construction of σ–

orthogonal polynomials, i.e., (1.7) with N =
n∑
ν=1

sν + n knots.

3. Numerical Example

We consider dλ(t) = exp(−t2) on (−∞,∞). For σ = (2, 3, 1, 0) and n = 2, 3, 4
we obtained nodes presented in [4, Table 3.2]. The corresponding coefficients Ai,ν in
(1.4) are given in Table 3.1. The program was realized in double precision arithmetics
in Fortran 77. Numbers in parentheses denote decimal exponents.
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(n, ν) i Ai,ν Ai+1,ν

(2, 1) 0 5.5750534971103(−01) 3.4778922593627(−01)

2 1.1456073878170(−01) 1.9324854881444(−02)

4 1.6831045076734(−03)
(2, 2) 0 1.2149485011945(+00) −9.4898082628822(−01)

2 4.6409822415796(−01) −1.3936562310488(−01)
4 2.9601486207523(−02) −3.8946444133502(−03)

6 3.0213805488220(−04)

(3, 1) 0 9.8928293038098(−02) 5.6292658871948(−02)

2 1.4901698533911(−02) 1.9926066743596(−03)

4 1.2337522705640(−04)
(3, 2) 0 1.6643430091052(+00) −3.8422572567644(−01)

2 3.3544868474452(−01) −4.6647400978611(−02)

4 2.0078549180029(−02) −1.3347959561273(−03)
6 3.6139855170650(−04)

(3, 3) 0 9.1825487621984(−03) −2.6791280976776(−03)
2 2.7691297098298(−04)

(4, 1) 0 3.3814580519967(−02) 1.8234555269879(−02)
2 4.4272482400368(−03) 5.3818002728426(−04)

4 2.9404522795306(−05)

(4, 2) 0 1.6731958587618(+00) 6.4256576039810(−02)
2 2.9158368086251(−01) 5.4969167382666(−03)

4 1.5689106119729(−02) 1.0149676939238(−04)
6 2.6496909868643(−04)

(4, 3) 0 6.5415234972435(−02) −1.7240365858891(−02)

2 2.2465753694907(−03)
(4, 4) 0 2.8176651292167(−05)

Finally, we consider the integral,

I =

∫ ∞
−∞

e−t
2

cos t dt,

whose exact value is

I =
√
π exp(−1/4) = 1.38038844704314 . . . .

n In Rn

2 1.38038845047992 2.5(−09)

3 1.38038844704384 5.1(−13)

4 1.38038844704314 4.8(−15)

The Gauss-Turán quadrature formula (1.4) gives the results In, n = 2, 3, 4,
showed in Table 3.2. The corresponding relative errors Rn = |(In − I)/I| are given
in the last column of this table.



G.V. MILOVANOVIĆ - M.M. SPALEVIĆ
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Nǐs, Nǐs, 1988, pp. 311–328.
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