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Abstract

We consider extremal problems of Markov-Bernstein type in in-
tegral norms, especially for restricted polynomial classes, which were
introduced and studied by the late Professor Arun K. Varma. Beside
some results on extremal problems of Markov and Bernstein type for
the non-restricted polynomial class Pn in Lr norms, with a special
attention to the case r = 2, we give a short account of L2 inequalities
of Markov type for curved majorants and on Bernstein inequalities in
mixed norms. Also, we consider extremal problems for some classes
of nonnegative polynomials on [0, +∞) and [−1, 1] with respect to
the generalized Laguerre and Jacobi measure, respectively.

1 Introduction

There are many results on extremal problems and inequalities of Markov-
Bernstein type with algebraic polynomials. The first result of Markov type
for polynomials of the second degree was connected with some investigations
of the well-known Russian chemist Mendeleev [22]. A general case in the
class Pn of all algebraic polynomials of degree at most n was considered
by A. A. Markov [20]. Taking the uniform norm ‖f‖∞ = max

−1≤t≤1
|f(t)| he

solved the extremal problem

An = sup
P∈Pn

‖P ′‖∞
‖P‖∞ .

The best constant is An = n2 and the extremal polynomial P ∗(t) = cTn(t),
where Tn is the Chebyshev polynomial of the first kind of degree n and
c is an arbitrary constant. The best constant can be expressed also as
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An = Tn(1). Thus, the classical Markov’s inequality can be expressed in
the form

‖P ′‖∞ ≤ n2‖P‖∞ (P ∈ Pn).

In 1892, younger brother V. A. Markov [21] found the best possible inequal-
ity for k-th derivative,

‖P (k)‖∞ ≤ T (k)
n (1)‖P‖∞ (P ∈ Pn),

where the extremal polynomial is also Tn. The best constant can be ex-
pressed in the form

T (k)
n (1) = ‖T (k)

n ‖∞ =
1

(2k − 1)!!

k−1∏

i=0

(n2 − i2).

A version of this remarkable paper in German was published in 1916.
In 1912 Bernstein [2] considered another type of these inequalities taking

‖f‖ = max
|z|≤1

|f(z)|. He proved the inequality

‖P ′‖ ≤ n‖P‖ (P ∈ Pn),

with equality case when P (z) = czn (c is an arbitrary constant).
There are several different forms of this Bernstein’s inequality. A stan-

dard form of that can be done as

|P ′(t)| ≤ n√
1− t2

, −1 < t < 1. (1)

The equality is attained at the points t = tν = cos (2ν−1)π
2n , ν = 1, . . . , n, if

and only if P (t) = γTn(t), where |γ| = 1.
Combining the inequalities of Markov and Bernstein we can state the

following result:

Theorem 1 If P ∈ Pn then

|P ′(t)| ≤ min
{

n2,
n√

1− t2

}
‖P‖∞, −1 ≤ t ≤ 1.

Several monographs and papers have been published in this area (cf.
Durand [8], Govil [11], [12], Milovanović [24], [25], Milovanović, Mitrinović
and Rassias [28], [29], Mohapatra, O’Hara and Rodriguez [31], Rahman and
Schmeisser [33], [34]).

In this survey we consider extremal problems of Markov-Bernstein type
in integral norms, especially for restricted polynomial classes, which were
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introduced and studied by the late Professor Arun K. Varma. The paper
is organized as follows. In Section 2 we give some definitions and pre-
liminary results on extremal problems of Markov and Bernstein type for
the non-restricted polynomial class Pn in Lr norms, with a special atten-
tion to the case r = 2. Sections 3 and 4 are devoted to L2 inequalities
of Markov type for curved majorants and Bernstein inequalities in mixed
norms, respectively. In Section 5 we consider extremal problems for the
class of nonnegative polynomials on [0, +∞) with respect to the general-
ized Laguerre measure. Finally, Section 6 is devoted to the corresponding
extremal problems for Lorentz classes of nonnegative polynomials on the
interval (−1, 1) with respect to the Jacobi measure.

2 Extremal Problems in Lr Norm on Pn

The classical Markov and Bernstein inequalities and corresponding ex-
tremal problems were generalized for various domains, various norms and
for various subclasses for polynomials, both algebraic and trigonometric
(for details see Chapter 6 in [29]).

Let

‖f‖r =
(∫

R
|f(t)|r dλ(t)

)1/r

, r ≥ 1, (2)

where dλ(t) is a given nonnegative measure on the real line R, with compact
or infinite support, for which all moments µk =

∫
R tk dλ(t), k = 0, 1, . . .,

exist and are finite and µ0 > 0. In a special case r = 2, (2) reduces to

‖f‖2 =
(∫

R
|f(t)|2 dλ(t)

)1/2

. (3)

In that case we have an inner product defined by

(f, g) =
∫

R
f(t)g(t) dλ(t)

such that ‖f‖2 =
√

(f, f). Then also, there exists a unique set of (monic)
orthogonal polynomials πk(·) = πk( · ; dλ), k ≥ 0, with respect to (·, ·), such
that

πk(t) = tk + lower degree terms, (πk, πm) = ‖πk‖22 δkm,

where δkm is Kronecker’s delta. In this paper we deal with the measures
of the classical orthogonal polynomials dλ(t) = w(t) dt, where the weight
function t 7→ w(t) satisfy the differential equation

d

dt
(A(t)w(t)) = B(t)w(t),
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where

A(t) =





1− t2, if (a, b) = (−1, 1),
t, if (a, b) = (0, +∞),
1, if (a, b) = (−∞,+∞),

(4)

and B(t) is a polynomial of the first degree. For such classical weights we
will write w ∈ CW .

Based on this definition, the classical orthogonal polynomials {Qk} on
(a, b) can be specificated as the Jacobi polynomials P

(α,β)
k (t) (α, β > −1) on

(−1, 1), the generalized Laguerre polynomials Ls
k(t) (s > −1) on (0,+∞),

and finally as the Hermite polynomials Hk(t) on (−∞, +∞). The classical
orthogonal polynomial Qk(t) satisfies the second order linear differential
equation of hyphergeometric type A(t)y′′ + B(t)y′ + λky = 0, where λk is
a constant. The weight functions, the constants λk and the corresponding
polynomials B(t) are given in Table 1.

Table 1

(a, b) w(t) B(t) λk

(−1, 1) (1− t)α(1 + t)β β − α− (α + β + 2)t k(k + α + β + 1)
(0, +∞) tse−t s + 1− t k

(−∞, +∞) e−t2 −2t 2k

The first results on extremal problems in the L2-norm and corresponding
Markov’s inequalities

‖P ′‖2 ≤ An‖P‖2 (P ∈ Pn), (5)

were given by E. Schmidt [35] and Turán [37]:

Theorem 2 Let ‖ . ‖2 be defined by (3). (a) If (a, b) = (−∞, +∞) and
dλ(t) = e−t2 dt the best constant in (5) is given by An =

√
2n. An extremal

polynomial is Hermite’s polynomial Hn.
(b) Let (a, b) = (0, +∞) and dλ(t) = e−t dt. Then (5) holds with

An =
(
2 sin

π

4n + 2

)−1

.

The extremal polynomial is

P (t) =
n∑

ν=1

sin
νπ

2n + 1
Lν(t),

where Lν is Laguerre polynomial.
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Theorem 2 (b), in this form, was formulated by Turán [37].
An important generalization of A. A. Markov’s inequality for algebraic

polynomials in an integral norm was given by Hille, Szegő, and Tamarkin
[16], who proved the following result:

Theorem 3 Let r ≥ 1, (a, b) = (−1, 1), P ∈ Pn, and let ‖ . ‖r be given by
(2). Then

‖P ′‖r ≤ An2‖P‖r, (6)

where the constant A = A(n, r) is given by

A(n, r) = 2(r − 1)1/r−1
(
r +

1
n

)(
1 +

r

nr − r + 1

)n−1+1/r

,

for r > 1, and

A(n, 1) = 2
(
1 +

1
n

)n+1

.

The factor n2 in (6) cannot be replaced by any function tending to
infinity more slowly. Namely, for each n, there exist polynomials P (t) of
degree n such that the left side of (6) is ≤ Bn2, where B is a constant of
the same nature as A = A(n, r).

The constant A(n, r) in Theorem 3 is not the best possible. We can see
that A(n, r) ≤ 6 exp(1 + 1/e), for every n and r ≥ 1. Also,

A(n, r) →




2(1 + 1/(n− 1))n−1 < 2e (n fixed, r → +∞),
2e (r = 1, n → +∞),
2er(r − 1)(1/r)−1 (r > 1 fixed, n → +∞).

Some improvements of the constant A(n, r) have recently been obtained
by Goetgheluck [10]. He found that

A(n, 1) =

√
8
π

(
1 +

3
4n

)2

,

as well as a very complicated expression for r > 1.
Recently Guessab and Milovanović [14] have considered a weighted L2-

analogues of the Bernstein’s inequality (see Theorem 1), which can be stated
in the following form:

‖
√

1− t2 P ′(t)‖∞ ≤ n‖P‖∞. (7)

Using the norm ‖f‖2 = (f, f), with w ∈ CW , they determined the best
constant Cn,m(w) (1 ≤ m ≤ n) in inequality

‖Am/2P (m)‖ ≤ Cn,m(w)‖P‖, (8)

where A is defined by (4).
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Theorem 4 For all polynomials P ∈ Pn the inequality (8) holds, with the
best constant

Cn,m(w) =
√

λn,0λn,1 · · ·λn,m−1,

where λn,k = −(n− k)
(

1
2 (n + k − 1)A′′(0) + B′(0)

)
.

The equality is attained in (8) if and only if P is a constant multiple of
the classical polynomial Qn(t) orthogonal with respect to the weight function
w ∈ CW .

We note that λn,0 = λn, where λn is given in Table 2.1. In some special
cases we have:

(1) Let w(t) = (1 − t)α(1 + t)β (α, β > −1) on (−1, 1) (Jacobi case).
Then

‖(1− t2)m/2P (m)‖ ≤
√

n!Γ(n + α + β + m + 1)
(n−m)!Γ(n + α + β + 1)

‖P‖,

with equality if and only if P (t) = cP
(α,β)
n (t).

(2) Let w(t) = tse−t (s > −1) on (0,+∞) (generalized Laguerre case).
Then

‖tm/2P (m)‖ ≤
√

n!/(n−m)! ‖P‖,
with equality if and only if P (t) = cLs

n(t).

(3) The Hermite case with the weight w(t) = e−t2 on (−∞, +∞) is the
simplest. Then the best constant is Cn,m(w) = 2m/2

√
n!/(n−m)!.

In connection with the previous results is also the following charac-
terization of the classical orthogonal polynomials given by Agarwal and
Milovanović [1].

Theorem 5 For all P ∈ Pn the inequality

(2λn + B′(0))‖
√

AP ′‖2 ≤ λ2
n‖P‖2 + ‖AP ′′‖2 (9)

holds, with equality if only if P (t) = cQn(t), where Qn is the classical
orthogonal polynomial with respect to the weight function w ∈ CW and c is
an arbitrary real constant.

The Hermite case was considered by Varma [45]. Then, the inequality
(9) reduces to

‖P ′‖2 ≤ 1
2(2n− 1)

‖P ′′‖2 +
2n2

2n− 1
‖P‖2.
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In the generalized Laguerre case, the inequality (9) becomes

‖
√

t P ′‖2 ≤ n2

2n− 1
‖P‖2 +

1
2n− 1

‖tP ′′‖2,

where w(t) = tse−t on (0, +∞).
In the Jacobi case the inequality (9) reduces to the inequality

(
(2n− 1)(α + β) + 2(n2 + n− 1)

)‖√1− t2 P ′‖2

≤ n2(n + α + β + 1)2‖P‖2 + ‖(1− t2)P ′′‖2.

In the simplest case, when α = β = 0 (Legendre case), we obtain

‖
√

1− t2 P ′‖2 ≤ n2(n + 1)2

2(n2 + n− 1)
‖P‖2 +

1
2(n2 + n− 1)

‖(1− t2)P ′′‖2.

In the Chebyshev case (α = β = −1/2), we get

‖
√

1− t2 P ′‖2 ≤ n4

2n2 − 1
‖P‖2 +

1
2n2 − 1

‖(1− t2)P ′′‖2,

where ‖f‖2 =
∫ 1

−1
(1− t2)−1/2f(t)2 dt.

The corresponding result for trigonometric polynomials was obtained
by Varma [47].

3 L2 Inequalities of Markov Type for Curved
Majorants

Answering to a question of P. Turán1, Rahman, Pirrre and Rahman, Rah-
man and Schmeisser, Videnskĭı and others (see Chapter 6 in [29]) gave
several inequalities in the uniform norm on [−1, 1]. The first who started
with the corresponding inequalities in L2 norm was Professor Varma. In
order to present his results, at first, for polynomials P ∈ Pn we define

‖P‖∗ = sup
1<t<1

|P (t)|√
1− t2

, (10)

or generally,

‖P‖ϕ = sup
1<t<1

|P (t)|
ϕ(t)

,

1Professor Paul Turán asked this question in 1970 at a conference on Constructive
Function Theory held in Varna, Bulgaria.
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where the majorant t 7→ ϕ(t) is a nonnegative function on [−1, 1]. Taking
a norm ‖ . ‖ for polynomials on [−1, 1], Turán’s problem can be stated in
the form: If ‖P‖∗ ≤ 1, or ‖P‖ϕ ≤ 1, how large can ‖P (m)‖ be?

In the case of uniform norm, a general majorant

ϕ(t) = (1− t)λ/2(1 + t)µ/2,

where λ, µ are nonnegative integers, was used by Pierre and Rahman [32].
Varma [46], [49] and Varma, Mills and Smith [50] considered L2 inequalities
using the majorants

ϕ(t) =
√

1− t2 (circular majorant)

and
ϕ(t) = 1− t2 (parabolic majorant).

For a circular majorant Varma [46] proved:

Theorem 6 Let P ∈ Pn+1 (n ≥ 2) and let ‖ . ‖∗ be defined by (10). If
‖P‖∗ ≤ 1 then ∫ 1

−1

(P ′(t))2
√

1− t2 dt ≤ π

4
(n2 + 1),

with equality if P (t) = p0(t) = (1 − t2)Un−1(t), Uk(t) = sin(k + 1)θ/ sin θ,
t = cos θ.

Under same conditions, Varma [46] also proved the following inequality

∫ 1

−1

(P ′(t))2 dt ≤ 2n2(2n2 − 1)
4n2 − 1

+ 2 + 4
n∑

k=1

1
2k − 1

,

which is at least asymptotically best possible.
Recently, Varma [49] proved:

Theorem 7 Under same conditions as in the previous theorem, we have
∫ 1

−1

(P (j)(t))2(1− t2)1/2 dt ≤
∫ 1

−1

(p(j)
0 (t))2(1− t2)1/2 dt (j = 2, 3)

and ∫ 1

−1

(P ′(t))2(1− t2)−1/2 dt ≤
∫ 1

−1

(p′0(t))
2(1− t2)−1/2 dt,

with equality if P (t) = (1− t2)Un−1(t).
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In the L2 norm for real algebraic polynomials of degree n + 2 that have
the parabolic majorant

|P (t)| ≤ 1− t2, −1 ≤ t ≤ 1, (11)

Varma, Mills and Smith [50] proved the following results:

Theorem 8 If P ∈ Pn+2 (n ≥ 1) and (11) is satisfied then

∫ 1

−1

(P ′(t))2 dt ≤
∫ 1

−1

(q′0(t))
2 dt, (12)

where q0(t) = ±(1−t2)Tn(t), Tn(t) = cos nθ and t = cos θ. Further, equality
in (12) occurs if and only if P (t) = q0(t).

Theorem 9 If P ∈ Pn+2 (n ≥ 1) and (11) is satisfied then

∫ 1

−1

(P ′′(t))2 dt ≤
∫ 1

−1

(q′′0 (t))2 dt,

with equality if and only if P (t) = q0(t).

Similarly, Varma [49] proved:

Theorem 10 Let P be any member of the set of those algebraic polynomi-
als of degree n + 2 which have only real zeros, all of them in the interval
[−1, 1], and for which (11) is satisfied. Then

∫ 1

−1

(P ′(t))2(1− t2)−1/2 dt ≤
∫ 1

−1

(q′0(t))
2(1− t2)−1/2 dt

and ∫ 1

−1

(P ′′(t))2(1− t2)1/2 dt ≤
∫ 1

−1

(q′′0 (t))2(1− t2)1/2 dt,

with equalities if and only if P (t) = q0(t) = ±(1− t2)Tn(t).

Theorem 11 If P ∈ Pn+2 (n ≥ 1) and (11) is satisfied then

∫ 1

−1

(P ′′′(t))2(1− t2)1/2 dt ≤
∫ 1

−1

(q′′′0 (t))2(1− t2)1/2 dt,

with equality if and only if P (t) = q0(t) = ±(1− t2)Tn(t).
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It is interesting to remark that the last theorem does not require that
the zeros of P (t) are real and lie inside [−1, 1].

Also, we mention here an interesting auxiliary result proved by Varma
[49]:

Theorem 12 Let Q ∈ Pn−1 and let

|Q(t)| ≤ (1− t2)−1/2, −1 < t < 1.

Then ∫ 1

−1

(Q′(t))2(1− t2)3/2 dt ≤ π

2
(n2 − 1),

with equality if and only if Q(t) = ± sin nθ/ sin θ, t = cos θ.

4 Bernstein Inequality in Mixed Norms

In order to find L2 generalizations of Bernstein inequality (1), i.e., (7),
Varma [48] considered the class Hn of all real polynomials of degree n
bounded by 1 on the interval [−1, 1] and proved:

Theorem 13 If P ∈ Hn then we have

∫ 1

−1

(1− t2)(P ′(t))2 dt ≤ n2
(
1 +

1
4n2 − 1

)
=

∫ 1

−1

(1− t2)(T ′n(t))2 dt,

with equality only for P (t) = ±Tn(t).

This result can be interpreted in the form (7) using mixed norms ‖ . ‖∞
and ‖ . ‖2, defined by (3) with dλ(t) = dt on the interval (−1, 1). Thus, for
for all P ∈ Pn we have

‖A1/2P ′‖2 ≤ Cn‖P‖∞, (13)

where A is defined by (4) and

Cn =
(∫ 1

−1

(1− t2)(T ′n(t))2 dt

)1/2

=
2n2

√
4n2 − 1

.

Defining

‖f‖α =
(∫ 1

−1

f(t)2(1− t2)α dt

)1/2

(α > −1),
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we can consider inequalities of the form

‖A1/2P ′‖α−1 = ‖P ′‖α ≤ Cn(α)‖P‖∞, (14)

Using the Varma’s method, Shen [36] proved that (14) holds for α = 3/2
and α = 1/2, with best constants

Cn(3/2) =
(∫ 1

−1

(1− t2)3/2(T ′n(t))2 dt

)1/2

=
n
√

π

2

and

Cn(1/2) =
(∫ 1

−1

(1− t2)1/2(T ′n(t))2 dt

)1/2

= n

√
π

2
,

respectively. Furthermore, it was proved that this inequality holds also for
α = −1/2 and α = 0. Namely, applying the n-point Gauss-Chebyshev
quadrature formula to the integral ‖P ′‖2−1/2, we have

∫ 1

−1

(1− t2)−1/2(P ′(t))2 dt =
π

n

n∑
ν=1

(P ′(τν))2, (15)

where τν = cos((2ν − 1)π/(2n)), ν = 1, . . . , n are zeros the Chebyshev
polynomial Tn. Then by Bernstein’s inequality (1), it follows that

|P ′(τν)| ≤ n(1− τ2
ν )−1/2, ν = 1, . . . , n.

Since T ′n(τν) = n(1−τ2
ν )−1/2(−1)ν−1, ν = 1, . . . , n, we have that |P ′(τν)| ≤

|T ′(τν)|. Using (15) we conclude that (14) is valid for α = −1/2. Here,
Cn(−1/2) = n

√
nπ.

The case α = 0 follows from the following theorem (for r = 2) proved
by Bojanov [3]:

Theorem 14 Let P ∈ Pn and r ∈ [1, +∞). Then

‖P ′‖r ≤ ‖T ′n‖r‖P‖∞.

Equality is attained only for P (t) = cTn(t), where c is an arbitrary constant.

Since ∫ 1

−1

(T ′n(t))2 dt = 2n2
n∑

k=1

1
2k − 1

we find that

Cn(0) = n

√√√√
n∑

k=1

2
2k − 1

.
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Recently, Bojanov [4] proved (14) for |α| ≤ 1/2 with the best constant
Cn(α) = ‖T ′n‖α. Also, he considered the corresponding problem for higher
derivatives. The inequalities with the second derivative were investigated
by Varma [48] and [49].

Theorem 15 If P ∈ Hn then we have
∫ 1

−1

(P ′′(t))2(1− t2)−1/2 dt ≤
∫ 1

−1

(T ′′n (t))2(1− t2)−1/2 dt.

Theorem 16 If P ∈ Hn then we have
∫ 1

−1

(P ′′(t))2(1− t2)3/2 dt ≤
∫ 1

−1

(T ′′n (t))2(1− t2)3/2 dt =
π

2
n2(n2 − 1).

In order to prove the last theorem, Varma [49] used the Bernstein in-
equality (1) and Theorem 12 with Q(t) = P ′(t)/n.

Theorem 13 can be also interpreted in terms of trigonometric polyno-
mials tn of degree n with real coefficients such that

‖tn‖∞ = max
0≤θ≤π

|tn(θ)| ≤ 1.

Theorem 17 Let tn be a trigonometric polynomial of degree n with real
coefficients such that ‖tn‖∞ ≤ 1. Then

∫ π

0

(t′n(θ))2 sin θ dθ ≤ n2
(
1 +

1
4n2 − 1

)
,

with equality only for tn(t) = ± cos nθ.

Putting tn(θ) = P (cos θ), this result reduces to Theorem 13.
Recently, Chen [5] investigated the following quantity:

sup
‖tn‖∞≤1

∫ π

0

(t(k)
n (θ))2w(θ) dθ, (16)

where w(θ) = sinj θ and j is a positive integer. The case k = 1 and
j = 2 was investigated by Shen [36]. The solution of (16) gives us the best
constant in (14) for α = (j + 1)/2. For example, we have

Cn(2) = n

√
2
3

(
1− 9

(4n2 − 1)(4n2 − 9)

)

and
Cn(5/2) =

n

4

√
3π (n ≥ 3).

At the end of this section we mention that there are several opposite
inequalities of the previous (see Labelle [18], Lupaş [19], Daugavet and
Rafal’son [7], Konjagin [17], etc.).
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5 L2 Inequalities With Generalized Laguerre
Measure for Nonnegative Polynomials

Several results on inequalities of Markov and Turán type in L2 norm on
the restricted polynomial classes were obtained by Professor A. K. Varma
[39]–[44] and [51].

In 1981 Varma [43] investigated the problem of determining the best
constant Cn(α) in the L2 inequality

‖P ′‖2 ≤ Cn(α)‖P‖2, (17)

for polynomials with nonnegative coefficients, with respect to the general-
ized Laguerre weight function t 7→ w(t) = tαe−t (α > −1) on [0, +∞).

Theorem 18 Let Pn be an algebraic polynomial of degree exactly equal to
n with nonnegative coefficients. Then for α ≥ (

√
5− 1)/2,

∫ ∞

0

(P ′n(t))2tαe−t dt ≤ n2

(2n + α)(2n + α− 1)

∫ ∞

0

Pn(t)2tαe−t dt. (18)

The equality holds for Pn(t) = tn. For 0 ≤ α ≤ 1/2,
∫ ∞

0

(P ′n(t))2tαe−t dt ≤ 1
(2 + α)(1 + α)

∫ ∞

0

Pn(t)2tαe−t dt. (19)

Moreover, (19) is also the best possible in the sense that for Pn(t) =
tn + λt the value of the expression on the left can be made arbitrarily close
to the one on the right by choosing λ positive and sufficiently large.

Using some shortness we will renew the key points in Varma’s proof. At
first, we write

Pn(t) = antn + Pn−1(t), Pn−1(t) =
n−1∑

k=0

aktk, ak ≥ 0.

Introducing the following inner product and norm by

(f, g) =
∫ +∞

0

f(t)g(t)tαe−t dt and ‖f‖ =
√

(f, f), (20)

respectively, we have

‖P ′n‖2 = ‖P ′n−1‖2 + a2
nn2Γ(2n + α− 1) + 2nan(P ′n−1, t

n−1)
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and
‖Pn‖2 = a2

nΓ(2n + α + 1) + ‖Pn−1‖2 + 2an(Pn−1, t
n).

Putting

bn =
n2

(2n + α)(2n + α− 1)
(21)

and
λn = 2n(P ′n−1, t

n−1)− 2bn(Pn−1, t
n),

Varma obtained

‖P ′n‖2 − bn‖Pn‖2 = λnan + ‖P ′n−1‖2 − bn‖Pn−1‖2. (22)

Also, he derived that

λn =
2
n

bn

n−1∑

k=0

akµknΓ(k + n + α− 1), (23)

where µkn = (k − n)[n(n− k) + (2α− 1)n + α(α− 1)], 0 ≤ k ≤ n− 1.
Clearly, for α ≥ 0 we have

µkn ≤ −α(2n + α− 1) ≤ 0, k = 0, 1, . . . , n− 1. (24)

Using (23) and (24), Varma claimed that

λn ≤ 0, n = 1, 2, . . . . (25)

Also, he noted that for every n = 2, 3, . . .,

bn ≥ bn−1 for α ≥
√

5− 1
2

(26)

and
bn < bn−1 for 0 ≤ α ≤ 1

2
. (27)

Using these ideas Varma completed his proof of Theorem 18. Namely, for
α ≥ (

√
5− 1)/2 he obtained from (22), (25) and (26) that

Φk ≤ Φk−1 (k = 2, . . . , n),

where we put Φk = ‖P ′k‖2 − bn‖Pk‖2. Adding all these inequalities Varma
concluded that Φn ≤ Φ1.

A simple computation shows that for every P1(t) = a1t + a0, a1 > 0,
a0 ≥ 0, ‖P ′1‖2 ≤ b1‖P1‖2, i.e., Φ1 ≤ 0, with equality if P1(t) = a1t, a1 > 0.
So, Varma proved that Φn ≤ 0, i.e., (18).
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Using (27) instead of (26), Varma got the following inequalities

Φk ≤ Φk−1 + (bk−1 − bk)‖Pn‖2 (k = 2, . . . , n).

In a similar way, he concluded that

Φn ≤ Φ1 + (b1 − bn)‖Pn‖2 ≤ (b1 − bn)‖Pn‖2,
i.e., ‖P ′n‖2 ≤ b1‖Pn‖2.

The case α = 1 was considered by Varma [42]. The cases α ∈ (−1, 0)
and α ∈ (1/2, (

√
5− 1)/2) were not solved in the paper of Varma [43]. Xie

[52] tried to solve this problem for α ∈ (1/2, (
√

5−1)/2). In fact, he proved
the following complicated and crude result:

Theorem 19 Let bn = bn(α) be given by (21) and

αn =
1− 2n− 4n2 +

√
16n4 + 32n3 + 20n2 + 4n + 1
2(2n + 1)

(n ≥ 1).

Then for each polynomial P of degree n with nonnegative coefficients,

‖P ′‖2 ≤ bn(α)‖P‖2 (α ≥ α1)

and

‖P ′‖2 ≤
{

b1(α)‖P‖2 (αν ≤ α < αν−1, n ≤ ν),

[b1(α) + bn(α)− bν(α)]‖P‖2 (αν ≤ α < αν−1, n > ν),

where ν = 2, 3, . . . .

In the paper [23], we gave a complete solution to Varma’s problem (17)
determining

Cn(α) = sup
P∈Wn

‖P ′‖2
‖P‖2 , (28)

for all α ∈ (−1, +∞), where Wn is defined in the following way:

Wn =
{

P
∣∣ P (t) =

n∑
ν=0

aνtν , aν ≥ 0 (ν = 0, 1, . . . , n− 1), an > 0
}

.

We denote by W 0
n the subset of Wn for which a0 = 0 (i.e., P (0) = 0). Note

that the supremum in (28) is attained for some P ∈ W 0
n . Indeed,

sup
P∈Wn

‖P ′‖
‖P‖ = sup

P ∈ W 0
n

a0 ≥ 0

‖P ′‖
‖P + a0‖ = sup

P∈W 0
n

‖P ′‖
‖P‖ .

Let (., .) and ‖ . ‖ be defined by (20). The following theorem (see Milo-
vanović [23]) gives the solution of the extremal problem (17), i.e., (28).
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Theorem 20 The best constant Cn(α) defined in (28) is

Cn(α) =





1
(2 + α)(1 + α) (−1 < α ≤ αn),

n2

(2n + α)(2n + α− 1) (αn ≤ α < +∞),
(29)

where
αn =

1
2
(n + 1)−1

(
(17n2 + 2n + 1)1/2 − 3n + 1

)
. (30)

In our proof we take that P ∈ W 0
n , i.e., P (t) =

n∑
ν=1

aνtν , aν ≥ 0, and

put In(α) = ‖ . ‖. Then

P (t)2 =
2n∑

ν=2

bνtν (bν ≥ 0)

and

‖P‖2 = In(α) =
2n∑

ν=2

bνΓ(ν + α + 1),

where Γ is the gamma function.
The inequality

t
(
P ′(t)2 − P (t)P ′′(t)

) ≤ P ′(t)P (t) (P ∈ Wn; t ≥ 0)

(see [23]) or [29, Subsection 2.1.5]) and a simple application of integration
by parts give us

‖P ′‖ ≤ 1
4
{
In(α) + (1− 2α)In(α− 1) + (α− 1)2In(α− 2)

}
,

i.e.,

‖P ′‖ ≤
2n∑

ν=2

Hν(α)bνΓ(ν + α + 1),

where

Hν(α) =
ν2

4(ν + α)(ν + α− 1)
.

Therefore, ‖P ′‖2 ≤ (
max

2≤ν≤2n
Hν(α)

)‖P‖2, so

Cn(α) ≤ max
2≤ν≤2n

Hν(α).
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Figure 1: The constant Cn(α) for n = 1, 2, 4 and n = ∞

Determining the maximum of f(x) = x2/
(
(x + α)(x + α − 1)

)
on the

interval [2, 2n], we find that

max
2≤ν≤2n

Hν(α) =

{
H2(α) if −1 < α ≤ αn,

H2n(α) if αn ≤ α < +∞,

where αn is given by (30).
We can also show that Cn(α), as it is defined in (29), is the best possible,

i.e. that Cn(α) = max
2≤ν≤2n

Hν(α) (see [23]).

The best constant Cn(α) for n = 1, 2, 3 and n = ∞ as a funcion of α
is displayed in Figure 1. An enlarged nontrivial part of that is given in
Figure 2. We can see that:

(a) Cn(αn − 0) = Cn(αn + 0);
(b) Cn+1(α) ≥ Cn(α);
(c) The sequence {αn} is decreasing, i.e.,

α1 > α2 > α3 > · · · > α∞,

where

α1 = (
√

5− 1)/2, α2 = (
√

73− 5)/6, α3 = (
√

10− 2)/2, etc.,
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Figure 2: Enlarged nontrivial part in Figure 1

and
α∞ = lim

n→∞
αn = (

√
17− 2)/2 = 0.561552812 . . . .

G. V. Milovanović and I. Ž. Milovanović [27] solved the following ex-
tremal problem for higher derivatives

Cn,k(α) = sup
P∈Wn

‖P (k)‖2
‖P‖2 (1 ≤ k ≤ n). (31)

Theorem 21 The best constant Cn,k(α) is given by

Cn,k(α) =





(k!)2

(α + 1)2k
, −1 < α ≤ αn,k,

n2(n− 1)2 · · · (n− k + 1)2

(2n + α)(2k) , α ≥ αn,k,

where αn,k is the unique positive root of the equation

(2n + α)(2k)

(2k + α)(2k)
=

(
n

k

)2

.

Here (p)ν = p(p + 1) · · · (p + ν − 1) and p(ν) = p(p− 1) · · · (p− ν + 1).
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In the special case, when n → +∞, the best constant Cn,k, defined in
Theorem 21, reduces to

C∗k(α) = lim
n→∞

Cn,k(α) =





(k!)2

(α + 1)2k
, −1 < α ≤ α∗k,

1
4k , α∗k ≤ α < +∞,

where α∗k is the unique positive root of the equation (α + 1)2k = 4k(k!)2.
We note that α∗1 = α∞ = (

√
17− 3)/2.

The corresponding extremal problem for polynomials with nonnegative
coefficients, with respect to the Freud’s weight t 7→ w(t) = tα exp(−ts),
α > −1, s > 0, on the interval (0, +∞), was investigated by Milovanović
and Djordjević [26]. In this case, using the same method, it was proved
that for P ∈ W 0

n

‖P‖2 = (P, P ) =
1
s

2n∑
ν=2

bνΓ
(α + ν + 1

s

)

and

‖P ′‖2 = (P ′, P ′) ≤ 1
s

2n∑
ν=2

Hν(α; s)bνΓ
(α + ν + 1

s

)
,

where (f, g) =
∫∞
0

w(t)f(t)g(t) dt and

Hν(α; s) =
ν2

2
·
Γ
(

α + ν − 1
s

)

Γ
(

α + ν + 1
s

) .

The corresponding best constant we will denote by Cn(α; s). If s = 2 it
gets a simple result (see Milovanović and Djordjević [26]):

Theorem 22 The best constant Cn(α; 2) is given by

Cn(α; 2) =





2
α + 1 , −1 < α ≤ −n− 1

n + 1 ,

2n2

2n + α− 1 , −n− 1
n + 1 ≤ α < +∞.

Putting α = 0 we obtain the following inequality
∫ ∞

0

e−t2P ′(t)2 dt ≤ 2n2

2n− 1

∫ ∞

0

e−t2P (t)2 dt

for each P ∈ Wn.
The case when s is an arbitrary positive number is more complicated.

The following conjecture was stated by Milovanović and Djordjević [26]:



20 Milovanović

Conjecture 23 Let s ≥ 1 and let αn (> −1) be the unique root of the
equation

Γ
(

α + 1
s

)

Γ
(

α + 3
s

) = n2
Γ
(

α + 2n− 1
s

)

Γ
(

α + 2n + 1
s

) .

The best constant Cn(α; s) is given by

Cn(α; s) =

{
H2(α; s), −1 < α ≤ αn,

H2n(α; s), αn ≤ α < +∞.

Recently Guessab, Milovanović and Arino [15] considered the extremal
problem (31) in Lr-norm,

‖P‖r =
(∫ ∞

0

|P (t)|rtαe−t dt
)1/r

, r ≥ 1.

For every r ∈ N, using the previous method they determined the best
constant in the inequality

‖P (m)‖r
r ≤ C(m)

n,r (α)‖P‖r
r (P ∈ Wn). (32)

Theorem 24 Let r ∈ N and let αn,r,m (> −1) be the unique root of the
equation

Γ(α + 1)
Γ(mr + α + 1)

=
(

n

m

)r Γ((n−m)r + α + 1)
Γ(nr + α + 1)

.

Then the best constant C
(m)
n,r (α) in (32) is given by

C(m)
n,r (α) =





(m!)r Γ(α + 1)
Γ(mr + α + 1) , −1 < α ≤ αn,r,m,

(
n(m)

)r Γ((n−m)r + α + 1)
Γ(nr + α + 1) , αn,r,m ≤ α < +∞,

where n(m) = n(n− 1) · · · (n−m + 1).

Our method of proving this theorem works only when r is an integer.
We also use the fact that

sup
P∈Wn

‖P (m)‖r

‖P‖r
= sup

P∈W 0
n

a0,...,am−1≥0

‖P (m)‖r

‖P + Qm−1‖r
= sup

P∈W 0
n

‖P (m)‖r

‖P‖r
,

where Qm−1(t) =
m−1∑
k=0

aktk (ak ≥ 0) and W 0
n is a subset of Wn such that

P (0) = P ′(0) = · · · = P (m−1)(0) = 0.
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The case r = 3 and m = 1 was considered earlier by Guessab and
Milovanović [13]. In that case we have that the best constant C

(1)
n,3(α) given

by

C
(1)
n,3(α) =





1
(3 + α)(2 + α)(1 + α) (−1 < α ≤ αn),

n3

(3n + α)(3n + α− 1)(3n + α− 2) (αn ≤ α < +∞),

where αn is the unique positive root of the equation

(n2 + n + 1)α3 + 3(2n2 + 2n− 1)α2 + (11n2 − 16n + 2)α− 3n(7n− 2) = 0.

In the simplest case (r = 1, m = 1), we have

C
(1)
n,1(α) =





1
α + 1 , −1 < α ≤ 0,

n
α + n, α ≥ 0.

Recently, this case was also considered by Chen [6].
For P ∈ Wn and for positive integers r and p (r ≤ p), Varma [51] proved

the Lr inequality
∫ +∞

0

|P ′n(t)|rtp−1e−t dt ≤ nr(nr + p− r − 1)!
(nr + p− 1)!

∫ +∞

0

|Pn(t)|rtp−1e−t dt,

with equality if and only if Pn(t) = ctn.
In the case p = 1, he obtained the best constant in the form 1/r!, with

extremal polynomial Pn(t) = ct.
Evidently, he did not know our more general result given in Theorem

24 (see [15]). We believe that this theorem holds for every real r ≥ 1.

6 Extremal Problems for Lorentz Classes of
Polynomials

In this section we consider the extremal problems of Markov’s type for non-
negative algebraic polynomials on [−1, 1] in L2 metric with Jacobi weight
w(t) = (1− t)α(1 + t)β (α, β > −1). These problems were investigated by
Varma [42], Erdős and Varma [9], Milovanović and Petković [30], Chen [6],
and Underhill and Varma [38].

Let Ln be the Lorentz class of algebraic polynomials of the form

P (t) =
n∑

ν=0

bν(1− t)ν(1 + t)n−ν , bν ≥ 0 (ν = 0, 1, . . . , n).
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A subset of the Lorentz class Ln for which P (i−1)(−1) = P (i−1)(1) = 0
(i = 1, . . . , k) will be denoted by L

(k)
n . Notice that L

(0)
n ⊃ L

(1)
n ⊃ · · ·, where

L
(0)
n ≡ Ln. The corresponding representation of a polynomial P from L

(k)
n

is

P (t) =
n−k∑

ν=k

bν(1− t)ν(1 + t)n−ν ,

where bν ≥ 0 (ν = k, . . . , n− k).
Let w(t) = (1− t)α(1 + t)β , α, β > −1, and ‖f‖2 = (f, f), where

(f, g) =
∫ 1

−1

w(t)f(t)g(t) dt (f, g ∈ L2(−1, 1)).

For the determination of the best constant

C(k)
n (α, β) = sup

P∈L
(k)
n \{0}

‖P ′‖2
‖P‖2 , (33)

where k = 0, 1, . . . , [n/2], Milovanović and Petković [30] used the following
inequality

(1− t2)(P ′(t)2 − P ′′(t)P (t)) ≤ nP (t)2 − 2tP (t)P ′(t),

which holds for every t ∈ [−1, 1] and P ∈ Ln (see also [29, Subsection
2.1.5]). They proved:

Theorem 25 Let P ∈ Ln and α, β ≥ 1, then the best constant C
(0)
n (α, β),

defined in (33), is given by

C(0)
n (α, β) =

n2(2n + α + β)(2n + α + β + 1)
4(2n + λ)(2n + λ− 1)

,

where λ = min(α, β).

In a special case we obtain:

Corollary 26 Let P ∈ Ln, then

C(0)
n (1, 1) =

n(n + 1)(2n + 3)
4(2n + 1)

.

This result was proved earlier by Erdős and Varma [9] (see, also, Varma
[42]).

In the same paper [30], Milovanović and Petković proved the following
assertion for the class of polynomials L

(k)
n (1 ≤ k ≤ [n/2]).
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Theorem 27 Let P ∈ L
(k)
n (1 ≤ k ≤ [n/2]), α, β > −1, then

C(k)
n (α, β) =

1
16

(2n+α+β)(2n+α+β +1) max
(
H2k(α, β),H2n−2k(α, β)

)
,

where Hν(α, β) ≡ f(ν) and f is given by

f(x) = (α− 1)2

(x + α− 1)(x + α) + (β − 1)2

(2n− x + β − 1)(2n− x + β)

+ 2n + α + β − 2αβ
(x + α)(2n− x + β) .

Especially interesting cases appear when α = β.

Theorem 28 Let P ∈ L
(k)
n , k ≥ 1, α = β > −1, then

C(k)
n (α, β) =

(n + α)(2n + 2α + 1)q(n, k, α)
2(2k + α− 1)(2k + α)(2n− 2k + α− 1)(2n− 2k + α)

,

where

q(n, k, α) = α(α− 1)n2 + 2k(n− k)(n− 1 + 3α− 2α2).

In the special cases when α = 0 (Legendre case), α = −1/2 (Chebyshev
case), and α = 1, we have:

Corollary 29 Let P ∈ L
(k)
n , k ≥ 1, then

C(k)
n (0, 0) =

n(n− 1)(2n + 1)
4(2k − 1)(2n− 2k − 1)

,

C(k)
n (−1/2,−1/2) =

2n(2n− 1)[3n2 + 8k(n− k)(n− 3)]
(4k − 3)(4k − 1)(4n− 4k − 3)(4n− 4k − 1)

,

C(k)
n (1, 1) =

n(n + 1)(2n + 3)
4(2k + 1)(2n− 2k + 1)

. (34)

From Corollary 26 we see that (34) holds and for k = 0 too.
For k = 1, the best constants in Corollary 29 reduce to

C(1)
n (0, 0) =

n(n− 1)(2n + 1)
4(2n− 3)

, (35)

C(1)
n (−1/2,−1/2) =

2n(2n− 1)(11n2 − 32n + 24)
3(4n− 5)(4n− 7)

,
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and

C(1)
n (1, 1) =

n(n + 1)(2n + 3)
12(2n− 1)

.

It is of interest to note that Erdős and Varma [9] proved that the best
constant in the Lorentz class Ln (n ≥ 2) for α = β = 0 is the same one as
that in (35), i.e. C

(0)
n (0, 0) = C

(1)
n (0, 0).

Recently, Underhill and Varma [38] provided a new proof of the ultra-
spherical case, without the requirement that P (±1) = 0 for −a < α < 1.
Namely, they proved:

Theorem 30 Let P ∈ Ln, n ≥ 2, α > −1, and let αn be the unique
positive solution of the equation

2α4 + (8n− 5)α3 + (12n2 − 17n + 4)α2

+(8n3 − 20n2 + 11n− 1)α− 2n(2n2 − 5n + 4) = 0.

Then for α ≥ αn we have

C(0)
n (α, α) =

n2(2n + 2α + 1)(n + α)
2(2n + α)(2n + α− 1)

,

and for −1 < α ≤ αn,

C(0)
n (α, α) =

(2n + 2α + 1)(n + α)A(n, α)
2(α + 1)(α + 2)(2n + α− 2)(2n + α− 3)

,

where A(n, α) = α(α− 1)n2 + 2(n− 1)
(
n− (α− 1)(2α− 1)

)
.

Also, they considered the corresponding problem in L4 norm with the
ultraspherical weight t 7→ (1− t2)3 on (−1, 1).

At the end we mention a result for polynomials with non-negative coef-
ficients

Sn =
{

P
∣∣ P (t) =

n∑
ν=0

aνtν , aν ≥ 0 (ν = 0, 1, . . . , n)
}

,

given by Chen [6]:

Theorem 31 Let P ∈ Sn and α > −1. Then
∫ 1

−1

(P ′(t))2(1− t2)α dt ≤ 2n + 2α + 1
2n− 1

n2

∫ 1

−1

(P (t))2(1− t2)α dt,

with equality when P (t) = tn.
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[9] P. Erdős and A. K. Varma, An extremum problem concerning algebraic
polynomials, Acta Math. Hung. 47 (1986), 137–143.

[10] P. Goetgheluck, On the Markov inequality in Lp-spaces, J. Approx.
Theory 62 (1990), 197–205.

[11] N. K. Govil, Inequalities for the derivative of a polynomial, J. Approx.
Theory 63 (1990), 65–71.

[12] N. K. Govil, Some inequalities for derivatives of polynomials, J. Ap-
prox. Theory 66 (1991), 29–35.

[13] A. Guessab and G. V. Milovanović, An extremal problem for poly-
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