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Abstract. In this paper we consider a class of polynomials {πN (z)} orthogonal on
some radial rays in the complex plane with respect to the inner product (f, g) =
∫

+∞

0

(

∑2m−1

s=0
f(xεs)g(xεs)

)

w(x) dx, where the weight function is given by w(x) =

x2mγ exp
(

−x2m
)

and γ > −1/(2m) is a parameter. Such polynomials generalize the
well-known Hermite polynomials (m = 1 and γ = 0). We give the basic properties
of new class of polynomials. A recurrence relation, a representation and the connec-
tion with generalized Laguerre polynomials orthogonal on (0,+∞), as well as a zero
distribution, are given. A linear second-order differential equation for πN (z) is also
derived.

1. Introduction

The Hermite polynomials {Hn(x)}
+∞

n=0 are orthogonal on the real line with respect
to the inner product

(1.1) (f, g) =

∫ +∞

−∞

f(x)g(x)e−x2

dx.

It is well known that these polynomial can be expressed in terms of the generalized

Laguerre polynomials {L
(s)
n (x)}+∞

n=0, which are orthogonal on the half line with
respect to the inner product

(1.2) (f, g) =

∫ +∞

0

f(t)g(t)tse−t dt.

Namely, we have (cf. [10, p. 120 and p. 147])

H2k(x) = ckL
(−1/2)
k (x2) and H2k+1(x) = dkxL

(1/2)
k (x2),

where ck and dk are constants.
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In this paper we give a generalization of the previous fact, i.e., we introduce a new
class of orthogonal polynomials on some selected radial rays in the complex plane.
The paper is organized as follows. In Section 2 we introduce the orthogonality on
the radial rays and give some basic properties of such polynomials {πN (z)}. A
linear second-order differential equation for πN (z) is obtained in Section 3.

An orthogonality on the rays of finite length with an arbitrary weight function,
as well as an analogue of the Jacobi polynomials were considered in [15] and [16].
An orthogonality on the unit circle was considered by Geronimus [6–9] (see also
Szegő [20] and Nevai [19]. Also, an orthogonality on the semicircle with respect to a
complex valued (non-Hermitian) inner product was introduced ([4–5]) and further
studied in [2–3], [11–14]. A generalization to a circular arc was given in [1] and
further investigations in [18].

2. Orthogonality on the Radial Rays

Let m ∈ N and ε0, ε1, . . . , ε2m−1 be (2m)th roots of unity, i.e., εs = exp(iπs/m),
s = 0, 1, . . . , 2m−1. We study orthogonal polynomials relative to the inner product

(2.1) (f, g) =

∫ +∞

0

(2m−1
∑

s=0

f(xεs)g(xεs)

)

w(x) dx,

where

(2.2) w(x) = x2mγ exp
(

−x2m
)

, γ > −
1

2m
.

Here we have 2m radial rays in the complex plane ℓs, s = 0, 1, . . . , 2m− 1, which
connect the origin z = 0 and z = ∞ with 2m different angles ϕs = πs/m, s =
0, 1, . . . , 2m− 1.

In the case m = 1, (2.1) becomes

(2.3) (f, g) =

∫ 1

−1

f(x)g(x)w(x) dx,

so we have the standard case of polynomials orthogonal on the real line with respect
to the weight function x 7→ w(x) = |x|2γ exp (−x2). For γ = 0, (2.3) reduces to
(1.1).

The inner product (2.1) has the following property:

Lemma 2.1. (zmf, g) = (f, zmg).

Proof. Since εms = ε−m
s = (−1)s we have

(zmf, g) =

∫ +∞

0

(2m−1
∑

s=0

xmεms f(xεs)g(xεs)

)

w(x) dx

=

∫ +∞

0

(2m−1
∑

s=0

f(xεs)xmεms g(xεs)

)

w(x) dx

= (f, zmg). �
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The moments are given by

µp,q = (zp, zq) =

(2m−1
∑

s=0

εp−q
s

)
∫ +∞

0

xp+qw(x) dx, p, q ≥ 0,

i.e.,

(2.4) µp,q = (zp, zq) =
1

2

(2m−1
∑

s=0

εp−q
s

)

Γ
(

γ +
p+ q + 1

2

)

, p, q ≥ 0,

where Γ is the gamma function.

If p = 2mn+ ν, n = [p/(2m)], and 0 ≤ ν ≤ 2m− 1, it is easy to verify that

2m−1
∑

s=0

εps =

2m−1
∑

s=0

ενs =

{

2m if ν = 0,

0 if 1 ≤ ν ≤ 2m− 1.

Thus, µp,q in (2.4) is different from zero only if p ≡ q (mod 2m); otherwise µp,q = 0.
Using the moment determinants

∆0 = 1, ∆N =

∣

∣

∣

∣

∣

∣

∣

∣

µ00 µ10 · · · µN−1,0

µ01 µ11 · · · µN−1,1

...
µ0,N−1 µ1,N−1 · · · µN−1,N−1

∣

∣

∣

∣

∣

∣

∣

∣

, N ≥ 1,

we can prove the following existence result for the (monic) orthogonal polynomials
{πN (z)}+∞

N=0 with respect to the inner product (2.1). This result holds in a general
case and its proof can be found in [15].

Theorem 2.2. If ∆N > 0 for all N ≥ 1 the monic polynomials {πN (z)}+∞

N=0,

orthogonal with respect to the inner product (2.1), exist uniquely.

It is well known that an orthogonal sequence of polynomials satisfies a three-term
recurrence relation if the inner product has the property (zf, g) = (f, zg). In our
case the corresponding property is given by (zmf, g) = (f, zmg) (see Lemma 2.1)
and the following result holds:

Theorem 2.3. Let the inner product (·, ·) be given by (2.1) and let the correspond-

ing system of monic orthogonal polynomials {πN (z)}+∞

N=0 exist. They satisfy the

recurrence relation

πN+m(z) = zmπN (z)− bNπN−m(z), N ≥ m,(2.5)

πN (z) = zN , N = 0, 1, . . . , 2m− 1,
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where

b2mn+ν =

{

n+ 1 + αν if 0 ≤ ν ≤ m− 1,

n if m ≤ ν ≤ 2m− 1.

Let L̂
(s)
n (t) be the monic generalized Laguerre polynomials orthogonal with re-

spect to the weight t 7→ tse−t on (0,+∞). They satisfy the three-term recurrence
relation (cf. [17, p. 46])

L̂
(s)
n+1(t) =

(

t− (2n+ s+ 1)
)

L̂(s)
n (t)− n(n+ s)L̂

(s)
n−1(t),

as well as the following relations (see [20])

tL̂
(s+1)
n−1 (t) = L̂(s)

n (t) + (n+ s)L̂
(s)
n−1(t), L̂(s)

n (t) = L̂(s−1)
n (t)− nL̂

(s)
n−1(t).

We can conclude and easily prove that πN (z) are incomplete polynomials with
the following representation (see Milovanović [15]):

Theorem 2.4. The monic polynomials {πN (z)}+∞

N=0 orthogonal with respect to the

inner product (2.1), where the weight function is given by (2.2), can be expressed in

the form

πN (z) = zνL̂(αν)
n (z2m), N = 2mn+ ν, n = [N/2m],

where ν ∈ {0, 1, . . . , 2m − 1}, αν = γ + (2ν + 1 − 2m)/(2m), and L̂
(s)
n (t) denotes

the monic generalized Laguerre polynomial orthogonal with respect to the weight

t 7→ tse−t on (0,+∞).

The next result gives the zero distribution of the polynomials πN (z) (see [15]):

Theorem 2.5. Let N = 2mn+ ν, n = [N/2m], ν ∈ {0, 1, . . . , 2m− 1}. All zeros

of the polynomial πN (z) are simple and located symmetrically on the radial rays ls,
s = 0, 1, . . . , 2m− 1, with the possible exception of a multiple zero of order ν at the

origin z = 0.

3. Differential Equation

Like the generalized Laguerre polynomial L
(s)
n (t), the polynomial πN (z) satisfies

a second order linear homogeneous differential equation.

Theorem 3.1. The polynomial πN (z) orthogonal with respect to the inner product

(2.1) satisfies the differential equation

(3.1) z2y′′ +B(z)y′ + C(z)y = 0,

where

(3.2)
B(z) = 2z

[

1 +m(γ − 1− z2m)
]

,

C(z) = 2mNz2m − ν(ν + 2m(γ − 1) + 1),
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and N = 2mn+ ν, n = [N/(2m)], ν ∈ {0, 1, . . . , 2m− 1}.

Proof. Let N = 2mn+ ν, n = [N/(2m)], ν ∈ {0, 1, . . . , 2m− 1}. Starting from the
representation of the orthogonal polynomial πN (z) given by

πN (z) = zνL̂(αν)
n (z2m),

where αν = γ + (2ν + 1− 2m)/(2m), γ > −1/(2m), we find

2mtDL̂(αν)
n (t) = z−ν [zπ′

N (z)− νπN (z)] ,

4m2t2D2L̂(αν)
n (t) = z−ν

[

z2π′′

N (z)− (2ν + 2m− 1)zπ′

N(z) + ν(ν + 2m)πN (z)
]

,

where t = z2m and D is the standard differentiation operator D =
d

dt
.

Now, using the generalized Laguerre differential equation

tD2L̂(αν)
n (t) + (αν + 1− t)L̂(αν)

n (t) + nL̂(αν)
n (t) = 0,

we obtain

z2y′′ + 2z
[

1 +m(γ − 1− z2m)
]

y′ +
[

2mNz2m − ν(ν + 2m(γ − 1) + 1)
]

y = 0,

i.e., (3.1), where y = πN (z). �

Remark 3.1. For m = 1, the equation (3.1) reduces to the Hermite equation

y′′ − 2zy′ + 2Ny = 0.

Remark 3.2. A simple case could be if we choose the parameter γ in the weight
function (2.2) such that the coefficient B(z) in (3.2) reduces to a monomial of
degree 2m+ 1. Namely, if γ = (m− 1)/m, the equation (3.1) reduces to

y′′ − 2mz2m−1y′ +

[

2mNz2m−2 −
ν(ν − 1)

z2

]

y = 0.
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II, Constr. Approx. 3 (1987), 389–404.
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