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1. Introduction and preliminaries

In this paper we consider some classes of polynomials, as well as rational func-

tions (precisely the so-called Laurent polynomials), orthogonal on the semicircle in

the complex plane C.

First, we start with the well-known definition of the inner product space and

orthogonal systems (cf. [19, p. 75]).
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Definition 1.1. Let X be a complex linear space of functions with an inner

(scalar) product (f, g) : X2 → C such that

(a) (f + g, h) = (f, h) + (g, h) (Linearity),

(b) (αf, g) = α(f, g) (Homogeneity),

(c) (f, g) = (g, f) (Hermitian Symmetry),

(d) (f, f) > 0 , (f, f) = 0 ⇔ f = 0 (Positivity),

where f, g, h ∈ X and α is a complex scalar. The bar in the above line denotes the

complex conjugate. The space X is called an inner product space.

If X is a real linear space of functions, then the inner product (f, g) : X2 → R

is such that the condition (c) is replaced by

(c′) (f, g) = (g, f) (Symmetry).

Several examples of interesting orthogonal systems are presented in the mono-

graph [19, pp. 79–89]. A standard system of orthogonal polynomials {pk}, where

pk(t) = tk + terms of lower degree, k = 0, 1, . . . , (1.1)

and

(pk, pm) = 0 (k 6= m), (pk, pm) > 0 (k = m) ,

is called a system of (monic) orthogonal polynomials with respect to the inner product

(· , ·). With P we denote the space of all algebraic polynomials, and with Pn (⊂ P)
its subset of polynomials of degree at most n.

In this section we mention only three types of orthogonal polynomials (on the real

line, unit circle, and unit semicircle) in the separate subsections. Some considerations

on orthogonality on the semicircle with respect to the Gegenbauer weight function is

treated in Section 2. Section 3 is devoted to integration of quasi-singular integrals and

introducing orthogonal Laurent’s polynomials on the semicircle. Some properties of

mentioned Laurent’s polynomials will be proved elsewhere.

1.1. Orthogonal polynomials on the real line

The most common type of orthogonality is one with respect to the following inner

product on R,

(f, g) =

∫

R

f(t)g(t) dλ(t) , (1.2)

where dλ(t) is a nonnegative measure on the real line R, with finite or unbounded

support, for which all moments µk =
∫
R
tk dλ(t), k = 0, 1, . . . , exist and are finite,
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and µ0 > 0. If λ is an absolutely continuous function, then we say that λ′(t) =
w(t) is a weight function and in that case, the measure dλ(t) can be expressed as

dλ(t) = w(t) dt. In the general case, the function λ can be written in the form

λ = λac + λs + λj, where λac is absolutely continuous, λs is singular, and λj is a

jump function.

Since the inner product (1.2) in this case has the following property (tf, g) =
(f, tg), the (monic) orthogonal polynomials pk(t) ≡ pk( dλ; t) satisfy the funda-

mental three-term recurrence relation

pk+1(t) = (t− ak)pk(t)− bkpk−1(t), k = 0, 1, 2, . . . , (1.3)

p−1(t) = 0, p0(t) = 1,

where the coefficients ak and bk are given by

ak =
(tpk, pk)

(pk, pk)
, k = 0, 1, 2, . . . ,

bk =
(pk, pk)

(pk−1, pk−1)
, k = 1, 2, . . . ,

and they depend only on the measure dλ(t) (or the weight function w). We note

that bk > 0, k ≥ 1. The coefficient b0 in (1.3) can be arbitrary, but the definition

b0 = µ0 =
∫
R

dλ(t) is sometimes convenient.

These polynomials pn( dλ; t), n ≥ 1, orthogonal with respect to the inner product

(1.2), have only real zeros, mutually different and all these zeros are located in the

support of the measure dλ(t). Furthermore, the zeros of pn(t) and pn+1(t) interlace,

i.e.,

τ (n+1)
1 < τ (n)1 < τ (n+1)

2 < τ (n)2 < · · · < τ (n+1)
n < τ (n)n < τ (n+1)

n+1 ,

where τ (n)1 < τ (n)2 < · · · < τ (n)n denote the zeros of pn( dλ; t) in increasing order

(for proofs see [19, pp. 99–101]).

The typical examples of these polynomials are classical orthogonal polynomials

of Jacobi, Laguerre and Hermite (cf. [19, p. 121–146]), for which the recurrence

coefficients ak and bk in (1.3) are known in the explicit form. There are many im-

portant applications of these polynomial in different areas of mathematics (approx-

imation theory, numerical analysis, . . .), mathematical physics, as well as in other

computational and applied sciences.

The same recursion coefficients ak and bk appear in the Jacobi continued fraction

associated with the measure dλ (Stieltjes transform of the measure)

F (z) =

∫

R

dλ(t)

z − t
∼

b0
z − a0−

b1
z − a1−

· · ·
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The n-th convergent of this continued fraction is a rational function

Rn(z) =
b0

z − a0−
b1

z − a1−
· · ·

bn−1

z − an−1
=

σn(z)

pn(z)
,

with simple poles at the zeros of pn(z), z = τ (n)k , k = 1, . . . , n. The numerators

σn(z) (deg σn = n − 1) in Rn(z) are the so-called associated polynomials, which

satisfy the same three-term recurrence relation, but with the different starting values

(σ0(z) = 0, σ−1 = −1). Expanding Rn(z) in partial fractions we get

Rn(z) =
σn(z)

pn(z)
=

n∑

k=1

A(n)
k

z − τ (n)k

. (1.4)

On the other side, let dλ(t) be as in (1.2). Then, for each n ∈ N, there exists the

n-point Gauss-Christoffel quadrature formula

∫

R

f(t) dλ(t) =
n∑

k=1

A(n)
k f(τ (n)k ) +Rn(f), (1.5)

which is exact for all algebraic polynomials of degree at most 2n−1, i.e., Rn(f) = 0
for each f ∈ P2n−1.

There is a deep connection between (1.4) and the Gauss-Christoffel quadrature

formula (1.5). Namely, the coefficients A(n)
k in (1.4) are exactly the weight coeffi-

cients (Christoffel numbers) in (1.5) and zeros of the polynomial πn(t) are the nodes

of (1.5), so that orthogonal polynomials are main tool in construction of Gaussian

quadrature formulas.

The quadrature nodes τ (n)1 , . . . , τ (n)n in (1.5) are eigenvalues of the symmetric

tridiagonal Jacobi matrix

Jn( dλ) =





a0
√
b1 O

√
b1 a1

√
b2

√
b2 a2

. . .
. . .

. . .
√

bn−1

O
√

bn−1 an−1





,

and the weight coefficients are given by A(n)
k = b0v2k,1, k = 1, . . . , n, where vk,1

is the first component of the normalized eigenvector vk = [vk,1 . . . vk,n]T such

that vT
k vk = 1. The most popular method for solving this eigenvalue problem is
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the Golub-Welsch procedure [15], obtained by a simplification of the QR algorithm.

Thus, the knowledge of the coefficients ak and bk in the recurrence relation (1.3) is

of exceptional importance, which are unfortunately known in explicit form only for a

narrow class of orthogonal polynomials, including classical orthogonal polynomials.

For a wide class of the so-called strong nonclassical orthogonal polynomials,

these recursive coefficients must be constructed numerically. Such approaches belong

to the constructive theory of orthogonal polynomials developed by Walter Gautschi

in the 1980s (see [7], [8], [22]).

In general, in numerical construction of recursion coefficients an important aspect

is the sensitivity of the problem with respect to small perturbation in the input. Re-

cent progress in symbolic computation and variable-precision arithmetic now makes

it possible to generate ak and bk directly by using the original Chebyshev method of

moments, but in sufficiently high precision. Such an approach enables us to over-

come the numerical instability! Symbolic/variable-precision software for orthogonal

polynomials is available:

• Gautschi’s package SOPQ in MATLAB (see [9, 10]

• Our MATHEMATICA package OrthogonalPolynomials (see [5], [23]).

Both packages are freely downloadable.

1.2. Orthogonal polynomials on the unit circle

The second type of important orthogonality is one on the unit circle, with respect

to the inner product

(f, g) =

∫ 2π

0
f
(
eiθ

)
g
(
eiθ

)
dµ(θ), dµ(θ) ≥ 0.

The polynomials φk(z) orthogonal with respect to this inner product have been in-

troduced and studied by Szegő [31, 32]. The inner product has not the property

(zf, g) = (f, zg) and therefore the three-term recurrence relation does not exist!

But, (zf, zg) = (f, g), which is important in proving that all zeros of φk(z) are

inside the unit circle |z| = 1.

The monic orthogonal polynomials {φk} on the unit circle |z| = 1, for k =
0, 1, . . . , satisfy the recurrence relations

φk+1(z) = zφk(z) + φk+1(0)φ
∗

k(z), φ∗

k+1(z) = φ∗

k(z) + φk+1(0)zφ
∗

k(z),

where φ∗

k(z) = zkφk(1/z).
For details see Nevai [25], as well as an extensive book in two volumes published

by Barry Simon in 2005 [29, 30]. These polynomials have many applications in
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theory of time series, digital filters, statistics, image processing, scattering theory,

control theory, etc.

Similarly, orthogonal polynomials on a rectifiable curve or arc lying in the com-

plex plane can be considered (see for example, [14] and [33]). Also, complex orthog-

onal polynomials may be constructed with double integrals. For example, by

(f, g) =

∫∫

B
f(z) g(z)w(z) dxdy

for a suitable positive weight functions w(z), where B is a bounded region lying

in the complex plane, a system of orthogonal polynomials can be generated (see

Carlemann [3] and Bochner [1]).

1.3. Motivation for introducing orthogonal polynomials on the semicircle

In the eighties of the last century, one new type of orthogonality – orthogonality

on the semicircle – was introduced by Gautschi and Milovanović [13] (see also [12]).

We give first a motivation for this kind of orthogonality.

One of the attractive problems in the area of Numerical Integration after 1970

was the numerical integration of the Cauchy principal value integrals, e.g.,

v.p.

∫ b

a

f(x)w(x)

x− c
dx, a < c < b (1.6)

(see, for example, [6, 16, 17, 18, 24, 26, 27, 28, 34]). Our main idea in computing

(1.6) for a holomorphic function z *→ f(z) in a domain D ⊂ C, containing the

segment [a, b], was to integrate the complex function

z *→ F (z) =
f(z)

z − c
(z ∈ D)

over some contour Γ ∈ D, which connects the points z = a and z = b, bypassing the

point z = c (because of simplicity we put w(z) = 1). Namely, taking a contour C
and a semicircle γε, with a small radius ε, so that C = [−1, c− ε] ∪ γε ∪ [c+ ε] ∪ Γ
is a closed contour (see Figure 1), we can apply Cauchy’s theorem. Thus, we have

∫ c−ε

a
F (z) dz +

∫

γε

F (z) dz +

∫ b

c+ε
F (z) dz +

∫

Γ
F (z) dz = 0,

i.e.,

v.p.

∫ b

a

f(x)

x− c
dx = −

∫

Γ
F (z) dz − lim

ε→0

∫

γε

f(z)

z − c
dz,
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where the last term on the right side can be expressed in an explicit form over residue

of the function z *→ F (z) at the point z = c, i.e., iπf(c). This means that we

have replaced a direct calculation of the Cauchy principal value integrals with the

corresponding integrals over the curve Γ.

Γ

γε

z = a z = c z = b

Figure 1: Bypassing the point z = c over the contour Γ

Suppose now that a = −1, b = 1, c = 0, and let the contour Γ be a unit semicircle

Γ =
{
z = eiθ : 0 ≤ θ ≤ π

}
and w(z) = 1. Then the integral in this symmetric case

over the semicircle Γ, after putting z = eiθ, becomes
∫

Γ
F (z) dz =

∫

Γ

f(z)

z
dz = i

∫ π

0
f
(
eiθ

)
dθ. (1.7)

Remark 1.1. The Cauchy principal value integral (1.6), for a = −1, b = 1,

−1 < c < 1 and the Gegenbauer w(z) = (1 − z2)λ−1/2, λ > −1/2, using bilinear

transformation t = (x + c)/(cx + 1), can be transformed to the symmetric case as

follows

v.p.

∫ 1

−1

f(t)w(t)

t− c
dt = w(c) v.p.

∫ 1

−1

g(x; c)w(x)

x
dx,

where

g(x; c) =
1

(cx+ 1)2λ
f

(
x+ c

cx+ 1

)
.

If we want to calculate the last integral in (1.7), with quadrature formulas of the

maximal degree of exactness, i.e., with formulas of Gaussian type, we need orthogo-

nal polynomials with respect to the inner product

〈f, g〉 =
∫ π

0
f
(
eiθ

)
g
(
eiθ

)
dθ, (1.8)

or alternatively,

〈f, g〉 =
∫

Γ
f(z)g(z)(iz)−1 dz . (1.9)
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Note that the product introduced in this way does not satisfy the conditions (c) and (d)

in Definition 1.1. Namely, the second factor in (1.8), i.e., (1.9), is not conjugated, so

that this product has no Hermitian Symmetry, but it possesses the standard Symmetry

property (c′).

However, the corresponding (monic) orthogonal polynomials with respect to this

not-hermitian inner product exist uniquely and satisfy a three-term recurrence rela-

tion like (1.3), because of the property 〈zf, g〉 = 〈f, zg〉. Otherwise, this kind of

orthogonality can be correctly treated in this case, using the approach based on a

complex moment functional (see Chihara [4, pp. 6–10]) given by

Lzk = µk, µk =

∫ π

0
eikθ dθ =






π, k = 0,

2i/k, k odd,

0, k even, k %= 0.

(1.10)

After much calculation, using moment determinants, Gautschi and Milovanović [13]

obtained the three-term recurrence relation for the monic orthogonal polynomials

{πk},

πk+1(z) = (z − iαk)πk(z)− βkπk−1(z), k = 0, 1, . . . , (1.11)

with starting polynomials π−1(z) = 0, π0(z) = 1, where

α0 = θ0, αk = θk − θk−1, βk = θ2k−1, k ≥ 1,

and

θk =
2

2k + 1

[
Γ((k + 2)/2)

Γ((k + 1)/2)

]2
, k ≥ 0. (1.12)

The sequence (1.12) can be also expressed in the form

θk =






22k+1

π(2k + 1)

(
k

k/2

)
−2

, k is even,

π(k + 1)2

(2k + 1)22k+1

(
k

(k − 1)/2

)2

, k is odd.

Otherwise, this sequence is

{θk}∞k=0 =

{
2

π
,
π

6
,
8

5π
,
9π

56
,
128

81π
,
225π

1408
,
512

325π
,
245π

1536
,
32768

20825π
,
99225π

622592
, . . .

}
,
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and polynomials πk(z), k = 0, 1, . . ., are

π0(z) = 1, π1(z) = z −
2i

π
, π2(z) = z2 −

iπ

6
z −

1

3
,

π3(z) = z3 −
8i

5π
z2 −

3

5
z +

8i

15π
,

π4(z) = z4 −
9

56
iπz3 −

6

7
z2 +

27iπ

280
z +

3

35
,

π5(z) = z5 −
128i

81π
z4 −

10

9
z3 +

256i

189π
z2 +

5

21
z −

128i

945π
,

π6(z) = z6 −
225iπ

1408
z5 −

15

11
z4 +

125

704
iπz3 +

5

11
z2 −

375iπ

9856
z −

5

231
, etc.

It was proved that these polynomials can be expressed in terms of the monic

Legendre polynomials P̂k(z) as

πk(z) = P̂k(z)− iθk−1P̂k−1(z), k ≥ 1,

where θk is given by (1.12).

Also we proved that all zeros of πk(z) are simple, contained in the upper semidisc

D+ =
{
z ∈ C : |z| < 1 and Im z > 0

}
and located symmetrically with respect to

the imaginary axis. Zeros of πk(z) for k = 3, 6, and 10 are presented in Figure 2.

With increasing k the zeros tend to fall to the interval [−1, 1].

-!"# -#"$ #"# #"$ !"#

#"#

#"%

#"&

#"'

#"(

!"#

Figure 2: Zeros of πk(z) for k = 3 (green), k = 6 (blue) and k = 10 (red)
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2. Some considerations on orthogonality on the semicircle
with respect to the Gegenbauer weight function

A more general problem with a complex weight function w, which is positive and

integrable on the open interval (−1, 1), though possibly singular at the endpoints, and

which can be extended to a function w(z) holomorphic in the half disc D+ = {z ∈
C : |z| < 1, Im z > 0} were studied in [11] and [21]. Namely, we considered the

following two inner products (see [11]), one on the real line as (1.2) with dλ(x) =
w(x) dx on [−1, 1], i.e.,

(f, g) =

∫ 1

−1
f(x)g(x)w(x) dx, (2.1)

and the second one on the semicircle Γ,

〈f, g〉 =
∫

Γ
f(z)g(z)w(z)(iz)−1 dz =

∫ π

0
f
(
eiθ

)
g
(
eiθ

)
w
(
eiθ

)
dθ, (2.2)

and established the existence of orthogonal polynomials {πk} on the semicircle with

respect to the non-Hermitian product (2.2), assuming only that

Re〈1, 1〉 = Re

∫ π

0
w
(
eiθ

)
dθ %= 0. (2.3)

The first inner product (2.1) is positive definite and evidently generates a unique

system of real orthogonal polynomials {pk}, which satisfy the three-term recurrence

relation (1.3).

In order to connect these system of polynomials, {πk} and {pk}, i.e., the inner

product (2.1) and not-hermitian product (2.2), when the functions f and g are alge-

braic polynomials, we take a contour Cε, ε > 0, with small circular parts of radius ε
and centers at ±1 (see Figure 3), i.e.,

Cε = [−1 + ε, 1 − ε] ∪ γε,1 ∪ Γε ∪ γε,−1,

and consider the weighted integral of an arbitrary polynomial g ∈ P over Cε. Then,

by Cauchy’s theorem, we have
∫
Cε

g(z)w(z) dz = 0. Supposing that the weight

function w is such that integrals over γε,±1 tend to zero when ε → 0, we obtain in

that case the following connection

∫

Γ
g(z)w(z) dz +

∫ 1

−1
g(z)w(z) dz = 0
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-1 1

Γε

γε!-" γε!"

Figure 3: The contour Cε = [−1 + ε, 1− ε] ∪ γε,1 ∪ Γε ∪ γε,−1

for each g ∈ P. It enables us to express the polynomials πk in terms of the real

polynomials {pk},

πk(z) = pk(z)− iθk−1pk−1(z), k = 0, 1, . . . ,

where

θk−1 =
µ0pk(0) + iqk(0)

iµ0pk−1(0) − qk−1(0)
, k = 0, 1, . . . , (2.4)

and {qk} are the associated polynomials, defined by (cf. [19, pp. 111–114])

qk(z) =

∫ 1

−1

pk(z)− pk(x)

z − x
w(x) dx, k = 0, 1, . . . .

The sequence (2.4) can be expressed also in the form θk = iak+ bk/θk−1, θ−1 =
µ0, where ak and bk are the recursion coefficients in the three-term relation (1.3) for

the real orthogonal polynomials {pk}.

The polynomials πk satisfy the three-term recurrence relation of the form (1.11),

where the coefficients αk and βk are given by

α0 =
b0
µ0

, αk = −θk−1 +
bk

θk−1
(k ≥ 1)

and

βk =
θk−1

θk−2
bk−1 = θk−1(θk−1 − iak−1).

For details see [11].
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Under certain conditions, all zeros of polynomials {πk} orthogonal on the semi-

circle are in D+.

Some applications of polynomials {πk} orthogonal on the semicircle in numeri-

cal differentiation and numerical integration were given in [2] and [20].

Several interesting properties of such polynomials {πk} were shown in [11] and

[21], especially for Gegenbauer weight function w(z) = wλ(z) = (1 − z2)λ−1/2,

with the parameter λ > −1/2. Since the assumption (2.3) is satisfied (µ0 = π %= 0)

in that case, the corresponding polynomials {πλ
k} orthogonal on the semicircle Γ can

be expressed in terms of monic Gegenbauer polynomials Ĉk(z) as

πλ
k (z) = Ĉλ

k (z)− iθk−1Ĉ
λ
k−1(z), (2.5)

where the sequence {θk−1} is given recursively by

θ0 =

Γ

(
λ+

1

2

)

√
π Γ(λ+ 1)

, θk =
k(k + 2λ− 1)

4(k + λ)(k + λ− 1)
·

1

θk−1
, k = 1, 2, . . . ,

wherefrom we can obtain an explicit form in terms of the gamma function,

θk =
1

λ+ k
·
Γ

(
k + 2

2

)
Γ

(
λ+

k + 1

2

)

Γ

(
k + 1

2

)
Γ

(
λ+

k

2

) , k ≥ 0 . (2.6)

These polynomials {πk} satisfy the three-term recurrence relation (1.11), where

α0 = θ0 , αk = θk − θk−1 , βk = θ2k−1 , k ≥ 1.

Using Stirling’s formula in (2.6), we find that

θk →
1

2
, αk → 0 , βk →

1

4
, when k → +∞ .

Especially, interesting cases are:

(1) λ = 0: Chebyshev polynomials of the first kind

Tk(t) = cos(kθ), t = cos θ,

orthogonal on (−1, 1), with respect to the weight function w0(t) = 1/
√
1− t2.

(2) λ = 1: Chebyshev polynomials of the second kind

Uk(t) =
sin((k + 1)θ

sin θ
, t = cos θ,
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orthogonal on (−1, 1), with respect to the weight function w1(t) =
√
1− t2.

Their three-term recurrence relations are the same (cf. [19, p. 10])

Tk+1(t) = 2tTk(t)− Tk−1(t), Uk+1(t) = 2tUk(t)− Uk−1(t),

but with different starting polynomials

T0(t) = 1, T1(t) = t and U0(t) = 1, U1(t) = 2t.

For the corresponding sequences (2.6) we have here (see [21]):

(1) for λ = 0, θ0 = 1, θk =
1

2
, k ≥ 1;

(2) for λ = 1, θk =
1

2
, k ≥ 0.

Using these values of θk, the relation (2.5), as well as the representations of

Chebyshev polynomials in the complex plane [19, §1.1.4] we can prove the following

two theorems:

Theorem 2.1. The monic polynomials orthogonal on the semicircle Γ with re-

spect to the complex function w(z) = w0(z) = (1 − z2)−1/2 can be expressed in

terms of Chebyshev polynomials of the first kind

π0
0(z) = 1, π0

k(z) =
1

2k−1
(Tk(z)− iTk−1(z)) , k ≥ 1,

or in the explicit form

π0
k(z) =

1

2k

{[
1− i

(
z −

√
z2 − 1

)](
z +

√
z2 − 1

)k

+
[
1− i

(
z +

√
z2 − 1

)] (
z −

√
z2 − 1

)k
}
. (2.7)

Here, |z +
√
z2 − 1| > 1, when z ∈ C \ [−1, 1].

A few first polynomials in this sequence are

π0
0(z) = 1, π0

1(z) = z − i, π0
2(z) = z2 −

i

2
z −

1

2
,

π0
3(z) = z3 −

i

2
z2 −

3

4
z +

i

4
, π0

4(z) = z4 −
i

2
z3 − z2 +

3i

8
z +

1

8
,

π0
5(z) = z5 −

i

2
z4 −

5

4
z3 +

i

2
z2 +

5

16
z −

i

16
,

π0
6(z) = z6 −

i

2
z5 −

3

2
z4 +

5i

8
z3 +

9

16
z2 −

5i

32
z −

1

32
,
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π0
7(z) = z7 −

i

2
z6 −

7

4
z5 +

3i

4
z4 +

7

8
z3 −

9i

32
z2 −

7

64
z +

i

64
,

π0
8(z) = z8 −

i

2
z7 − 2z6 +

7i

8
z5 +

5

4
z4 −

7i

16
z3 −

1

4
z2 +

7i

128
z +

1

128
, etc.

-!"# -#"$ #"# #"$ !"#

#"#

#"%

#"&

#"'

#"(

!"#

-!"# -#"$ #"# #"$ !"#

#"#

#"%

#"&

#"'

#"(

!"#

Figure 4: Zeros of πλ
k (z) for k = 3 (green), k = 6 (blue) and k = 10 (red) for λ = 0

(left) and λ = 1 (right)

Theorem 2.2. The monic polynomials orthogonal on the semicircle Γ with re-

spect to the complex function w(z) = w1(z) = (1−z2)1/2 can be expressed in terms

of Chebyshev polynomials of the second kind

π1
0(z) = 1, π1

k(z) =
1

2k
(Uk(z)− iUk−1(z)) , k ≥ 1,

or in the explicit form

π1
k(z) =

1

2k+1
√
z2 − 1

{[(
z +

√
z2 − 1

)
− i

] (
z +

√
z2 − 1

)k

−
[(

z −
√

z2 − 1
)
− i

] (
z −

√
z2 − 1

)k
}
. (2.8)

Here, |z +
√
z2 − 1| > 1, when z ∈ C \ [−1, 1].

A few first polynomials in this sequence are

π1
0(z) = 1, π1

1(z) = z −
i

2
, π1

2(z) = z2 −
i

2
z −

1

4
,

π1
3(z) = z3 −

i

2
z2 −

1

2
z +

i

8
, π1

4(z) = z4 −
i

2
z3 −

3

4
z2 +

i

4
z +

1

16
,
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π1
5(z) = z5 −

i

2
z4 − z3 +

3i

8
z2 +

3

16
z −

i

32
,

π1
6(z) = z6 −

i

2
z5 −

5

4
z4 +

i

2
z3 +

3

8
z2 −

3i

32
z −

1

64
,

π1
7(z) = z7 −

i

2
z6 −

3

2
z5 +

5i

8
z4 +

5

8
z3 −

3i

16
z2 −

1

16
z +

i

128
,

π1
8(z) = z8 −

i

2
z7 −

7

4
z6 +

3i

4
z5 +

15

16
z4 −

5i

16
z3 −

5

32
z2 +

i

32
z +

1

256
, etc.

3. Integration of quasi-singular integrals and orthogonality
on the semicircle

As we mentioned in Section 2, using polynomials {πk} we can construct quadra-

ture formulas for Cauchy Principal Value integrals by construction quadrature formu-

las of maximal degree of exactness over semicircle ([12, 20, 21]). The nodes of such

formulas are inside of the half disc D+ = {z ∈ C : |z| < 1, Im z > 0} and we can

see that with increasing the number of nodes k, these zeros of πk(z) tend to fall to

the interval [−1, 1] (see Figures 2 and 4). Because of that such quadrature formulas

cannot be applied to calculation of real quasi-singular integrals. As an illustration we

consider a simple example with quasi-singular integral

∫ 1

−1

f(x)

(x− c)2 + d2
w(x) dx, −1 < c < 1, |d| 0 1,

where x *→ w(x) is a given weight function.

The quasi-singularities in this case are c ± id. For d = 0 this integral diverges,

unless this singularity (a pole of second order) is “killed” by the weight function

z *→ w(z)!
For d %= 0 the integral exists, but for small values of d the convergence of quadra-

ture formulas is very slow and standard methods are unusable! Such integrals are

very common in many fields (physics, electrical engineering, telecommunications,

mechanics, etc.).

In the sequel we consider a simple case with f(x) = cos x, w(x) = 1, and c = 0,

i.e., the integral

I(d) =

∫ 1

−1
F (x, d) dx =

∫ 1

−1

cos x

x2 + d2
dx, (3.1)

when d = 1/2, 10−1, 10−2, and d = 10−3 (see graphics in Figure 5), and then we
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apply the standard n-point Gauss-Legendre quadrature formulas,

∫ 1

−1
F (x) dx =

n∑

ν=1

A(n)
k F (x(n)k ) +Rn(F ), (3.2)

where Rn(F ) is the corresponding remainder term. The nodes x(n)k , k = 1, . . . , n

are zeros of the Legendre polynomial of degree n, and A(n)
k are the corresponding

weight coefficients (Christoffel numbers). General form of Gauss-Christoffel formu-

las on the real line (1.5) and their construction, including MATHEMATICA package

OrthogonalPolynomials (see [5], [23]) are given in Subsection 1.1.

-1.0 -0.5 0.5
x

1

2

3

4

F(x, d)

! = !"#

-1.0 -0.5 0.5
x

20

40

60

80

100

F(x d)

! = !"-!

-1.0 -0.5 0.0 0.5
x

2000

4000

6000

8000

10 000

F(x, d)

! = !"-!

-1.0 -0.5 0.5
x

200 000

400 000

600 000

800 000

1× 106

F(x, d)

! = !"-!

Figure 5: Integrand x *→ F (x, d) for d = 1/2, 10−1, 10−2, 10−3

Absolute values of the relative errors in the Gauss-Legendre quadrature formulas

with n = 5(5)50 nodes are presented in Figure 6 in log-scale. As we can see for

d ≤ 10−2, application of the Gauss-Legendre rule for n ≤ 50 gives quite wrong

results, without any exact decimal digits, but for d = 0.1 this Gaussian rule with 50

nodes give four exact decimal digits.



Special cases of orthogonal polynomials on the semicircle . . . 17
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Figure 6: Relative errors of the Gauss-Legendre rules with n = 5(5)50 nodes for

different values of d
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Figure 7: Relative errors of the Gauss-Legendre rules with n = 100(50)500 nodes

for d = 0.1, 0.01, 0.001
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An increasing number of quadrature nodes can also give four exact decimal digits

for d = 0.01 if we take n = 500 nodes (see Figure 7). However, for d = 10−3 even

500 nodes do not give any exact digits! The convergence is very slowly!

Absolute values of the relative errors in the Gauss-Legendre quadrature formulas

with n = 100(50)500 nodes are presented in Figure 7 in log-scale.

In order to apply the idea of integration on the semicircle, we will use here again

Cauchy’s theorem on residues

∫ 1

−1

f(x)w(x)

(x− c)2 + d2
dx = Re

{
π

d
f(c+ id)w(c + id)−

∫

Γ

f(z)w(z)

(z − c)2 + d2
dz

}
.

The integral over semicircle Γ can be written in the form

∫

Γ

f(z)w(z)

(z − c)2 + d2
dz = i

∫ π

0

eiθf(eiθ)w(eiθ)

(eiθ − c)2 + d2
dθ. (3.3)

However, an application of the quadrature formula of Gaussian type over the semi-

circle Γ, ∫ π

0
F (eiθ)w(eiθ) dθ =

n∑

ν=1

B(n)
ν F (z(n)ν ) +RΓ

n(F ), (3.4)

developed in [12, §7], where the nodes z(n)ν , ν = 1, . . . , n, are zeros of the polynomial

{πn}, orthogonal with respect to the non-Hermitian product 〈f, g〉, defined in (1.9),

also are not successful, since the zeros of πn(z) can arbitrarily approach the quasi-

singularity c+ id (see Figure 2).

The basic idea for efficient calculating the last integral (3.3) over the semicircle

Γ is to develop a quadrature formula of the form

∫ π

0
F (eiθ)w(eiθ) dθ =

n∑

ν=1

C(n)
ν F (ζ(n)ν ) + EΓ

n(F ), (3.5)

such that it be of the maximal degree of exactness on the space of Laurent’s poly-

nomials (rational functions). As before, we use the concept of orthogonality with

respect to the moment functionals like (1.10),

Lzk = µk, µk =

∫ π

0
eikθ dθ =






π, k = 0,

2i/k, k odd,

0, k even, k %= 0.

(3.6)

including also negative exponents, i.e, −n+ 1 ≤ k ≤ n.
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Let Λp,q be a linear space of polynomials spanned by the basis

Bp,q = {zp, zp+1, . . . , zq}, p ≤ q (p, q ∈ Z).

For p = q = 0, this space reduces to the space of constants

Λ0,0 = Λ0 = P0 = {c ∈ C : c %= 0}.

As before, we use the non-Hermitian product, defined by

〈f, g〉 =
∫

Γ
f(z)g(z)w(z)(iz)−1 dz =

∫ π

0
f
(
eiθ

)
g
(
eiθ

)
w
(
eiθ

)
dθ.

Such orthogonal systems can be connected with the weighted quadrature formu-

las of Gaussian type with maximal degree of exactness on Λ−n+1,n, given by (3.5),

where w is a given complex weight function. More details will be given elsewhere,

as well as ones for other spaces, e.g., Λ−n,n−1, Λ−n,n, etc. Moreover, Λ0,n = Pn. In

this paper we give only some basis facts in order to show the efficiency of quadrature

rules (3.5) for calculating the quasi-singular integrals.

Let {Rν} be system of orthogonal elements in Λ−n+1,n (the Laurent polynomi-

als), e.g., generated by the well-known Gram-Schmidt orthogonalization process,

starting from the monomials {1, z, z−1, z2, z−2, . . .}. An alternatively system of

Laurent’s polynomials R̃ν(z) can be generated starting from the system of mono-

mials {1, z−1, z, z−2, z2, . . .}, and such polynomials can be expressed in terms of

the elements Rν(z).

The construction of the Laurent polynomials from the sequence of monomials

{1, z, z−1, z2, z−2, . . .} show that an arbitrary orthogonal element (Laurent’s poly-

nomial) Rm ∈ Λ
−[m/2],[(m+1)/2] (m ∈ N0) can ne expressed as a linear combination

Rm(z) =
m∑

k=0

c(m)
k zk−[m/2], m ∈ N0, (3.7)

for some constants c(m)
k , k = 0, 1, . . . ,m. Moreover, they can give in the following

rational form

Rm(z) =
Qm(z)

z[m/2]
, (3.8)

where

Q2k(z) = zkR2k(z) and Q2k+1(z) = zkR2k+1(z), k ∈ N0.
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The coefficients c(m)
m and c(m)

0 in (3.7) we are called the leading and trailing

coefficient of Rm(z), respectively.

We always take the leading coefficient to be c(m)
m = 1.

The Laurent polynomials Rm(z), as well as its numerator polynomials {Qm(z)},

satisfy several interesting properties and such properties will be proven elsewhere.

Here we mention some of them.

Theorem 3.1. The Laurent polynomials Rk(z), orthogonal with respect to the

moment functional L in Λ−n+1,n, satisfy following two three-term recurrence rela-

tions

R2k+1(z) = (z − a2k)R2k(z) + b2kR2k−1(z),

R2k+2(z) =
(
1−

a2k+1

z

)
R2k+1(z) + b2k+1R2k(z)

where R0(z) = 1 and R−1(z) = 0, and {ak} and {bk} are sequences of complex

numbers depending only on the weight function w(z).

For coefficients we can prove also the following formulas of Darboux-type

a2k =
(zR2k, R2k)

(R2k, R2k)
, b2k = −

(zR2k, R2k−1)

(R2k−1, R2k−1)
,

a2k+1 =
(R2k+1, R2k+1)

(z−1R2k+1, R2k+1)
, b2k+1 = a2k+1

(z−1R2k+1, R2k)

(R2k, R2k)
.

Theorem 3.2. Monic polynomials {Qk(z)} satisfy the following three-term re-

currence relation of the form

Qk+1(z) = (z − ak)Qk(z) + bkz Qk−1(z), k = 0, 1, . . . ,

Q0(z) = 1, Q−1(z) = 0,

where {ak} and {bk} are the same sequences of coefficients as in Theorem 3.1.

Theorem 3.3. The polynomials Qn(z) can be characterized by the following

relations ∫ π

0
e−ikθQn

(
eiθ

)
w
(
eiθ

)
dθ = 0, k = 0, 1, . . . , n− 1.
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For the weight function w(z) = 1, the coefficients ak are:

a0 =
2i

π
,

a1 =
2iπ

π2 − 4
,

a2 =
i
(
16− π2

) (
π2 − 4

)

6π (π2 − 8)
,

a3 =
12iπ

(
π2 − 8

) (
32 − 3π2

)

4096 − 2048π2 + 256π4 − 9π6
,

a4 =
i
(
256 − 112π2 + 9π4

) (
16384 − 2448π2 + 81π4

)

20π (180224 − 60672π2 + 6696π4 − 243π6)
,

a5 =
10 iπ

(
88−9π2

) (
9π2−64

) (
1048576−198144π2+9315π4

)

(16384−2448π2+81π4) (4194304−2515968π2+391716π4−18225π6)
,

etc., while the coefficients bk are

b1 =
2i

π
,

b2 =
iπ

(
16− π2

)

6 (π2 − 4)
,

b3 =
4i
(
π2 − 4

) (
3π2 − 32

)

3π (π2 − 16) (π2 − 8)
,

b4 =
iπ

(
π2 − 8

) (
16384 − 2448π2 + 81π4

)

20 (32− 3π2) (256− 112π2 + 9π4)
,

b5 =
2i
(
256 − 112π2 + 9π4

) (
1048576 − 198144π2 + 9315π4

)

5π (9π2 − 88) (9π2 − 64) (16384 − 2448π2 + 81π4)
, . . .

If we put ak = iαk and bk = iβk . Then,

lim
k→∞

αk = 1, lim
k→∞

βk =
1

2
.

These convergence properties we can see from Table 1. The exact digits in the se-

quences {αk} and {βk} are shown in bold.
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Table 1: The coefficients αk and βk, k ≤ 17

k αk βk
0 0.63661977236758

1 1.07046146176622 0.63661977236758

2 1.02104877276530 0.54686268616792

3 1.00754385210227 0.51972424516012

4 1.00328553025512 0.51017104738859

5 1.00169153484126 0.50612004856595

6 1.00098589542046 0.50408672459805

7 1.00062713848922 0.50292614522532

8 1.00042471990174 0.50220008310515

9 1.00030139516589 0.50171492617644

10 1.00022178414612 0.50137443170299

11 1.00016802220006 0.50112619730380

12 1.00013037600341 0.50093962699110

13 1.00010321476497 0.50079585268455

14 1.00008311950419 0.50068271506772

15 1.00006792948381 0.50059208830190

16 1.00005623226900 0.50051837338324

17 1.00004707746447 0.50045761013324

A few first orthogonal Laurent polynomials for the Legendre weight function

w(z) = 1 are:

R0(z) = 1, R1(z) = z −
2i

π
,

R2(z) = z −
4

(π2 − 4) z
−

2iπ

π2 − 4
,

R3(z) = z2 −
2i
(
3π2 − 16

)
z

3π (π2 − 8)
−

2i
(
π2 − 16

)

3π (π2 − 8) z
−

8

3 (π2 − 8)
,

R4(z) = z2 −
8
(
3π2 − 32

)

(256 − 112π2 + 9π4) z2
−

2i
(
9π3 − 80π

)
z

256− 112π2 + 9π4

−
2i
(
9π3 − 112π

)

3 (256 − 112π2 + 9π4) z
+

512− 72π2

3 (256− 112π2 + 9π4)
,
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R5(z) = z3 −
2i
(
16384 − 5616π2 + 405π4

)
z2

5π (5632 − 1368π2 + 81π4)

−
2i
(
16384 − 2448π2 + 81π4

)

5π (5632 − 1368π2 + 81π4) z2
−

36
(
27π2 − 256

)
z

5 (5632 − 1368π2 + 81π4)

−
12

(
63π2 − 640

)

5 (5632 − 1368π2 + 81π4) z
−

2i
(
45π2 − 512

)

15π (9π2 − 88)
,

etc.

Remark 3.1. In the Chebyshev cases, when w(z) = (1−z2)±1/2, the expressions

for recurrence coefficients, as well as ones for the Laurent polynomials are much

simpler than the previous in the Legendre case.

Without proof we mention here one of main results:

Theorem 3.4. The quadrature formula (3.5) is exact for each F ∈ Λ−n+1,n if

and only if its nodes ζν = ζ(n)ν are zeros of the polynomial Qn(z), and the coefficients

C(n)
ν are given by

C(n)
ν =

1

Q′

n(ζν)

∫ π

0

Qn
(
eiθ

)
w
(
eiθ

)

eiθ − ζν
dθ, ν = 1, . . . , n. (3.9)

In the Legendre case (w(z) = 1) for n = 5 we give in Table 2 the quadrature

parameters (nodes and weight coefficients)

(1) for the standard Gauss-Legendre quadrature formula on [−1, 1], generated by

our MATHEMATICA package OrthogonalPolynomials (see [5], [23]) by the

command

{xk,Ak}=aGaussianNodesWeights[5,{aLegendre},...];

(2) for the Gautschi-Milovanović quadrature on the semicircle by the same pack-

age using the command

{zk,Bk}=aGaussianNodesWeights[5,{aGautschiMilovanovic,1/2},...];

(3) for new quadrature formulas of Gaussian type given in Theorem 3.4. The
nodes ζk are zeros of the nominator polynomial Q5(z) in (3.8), in our case given by

Q5(z) = z5 −
2i
(
16384− 5616π2 + 405π4

)

5π (9π2 − 88) (9π2 − 64)
z4 −

36
(
27π2 − 256

)

5 (9π2 − 88) (9π2 − 64)
z3

−
2i
(
45π2 − 512

)

15π (9π2 − 88)
z2 −

12
(
63π2 − 640

)

5 (9π2 − 88) (9π2 − 64)
z −

2i
(
16384− 2448π2 + 81π4

)

5π (9π2 − 88) (9π2 − 64)
,

and weight coefficients given by (3.9).
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Table 2: Nodes and weight coefficients for n = 5 in the standard Gauss-Legendre

formula (3.2), as well as ones in Gaussian formulas on the semicircle (3.4) and (3.5)

for w(z) = 1

k k = 3 k = 2 and k = 4 k = 1 and k = 5

x(5)k 0. ±0.5384693101056831 ±0.9061798459386640

A(5)
k 0.5688888888888889 0.4786286704993665 0.2369268850561891

z(5)k i 0.2221614120619286 ∓0.4802650814481394 ∓0.8905272718373425
+i 0.1179279409749741 +i 0.0224954605960690

B(5)
k 1.991380659532854 0.5027034456938210 0.0724025513346485

∓i 0.9261893208883687 ∓i 0.3066364594922929

ζ(5)k i 0.8922797389775098 ∓0.6465025063224080 ∓0.9563699220720102
+i 0.6459772999484531 +i 0.1706736496489362

C(5)
k 0.8100409076045721 0.7346361111536882 0.4311397618389223

∓i 0.0470837665077862 ∓i 0.0627646610077391

-!"# -#"$ #"# #"$ !"#

#"#
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#"&

#"'

#"(

!"#

Figure 8: Zeros x(5)k (blue), z(5)k (green), and ζ(5)k (red), k = 1, . . . , 5, of polynomials

p5(z), π5(z), and Q5(z), respectively
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Nodes of three different Gaussian quadratures with 5 nodes, given in Table 2,

x(5)k , z(5)k , and ζ(5)k , k = 1, . . . , 5, are shown in different colors in Figure 8, in blue,

green, and red, respectively.

Finally, we reconsider the example with the integral (3.1), using its reduction to

the integral over a semicircle like (3.3), as well as an application of the new quadra-

ture rule (3.5).
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Figure 9: Relative errors of the quadrature rules (3.5) with n = 1(1)15 nodes for

different values of d

The quadrature sums of this new quadrature rule (3.5) converge very fast. In

Figure 9 in log-scale we present relative errors for quadrature rules with a small

number of nodes n ≤ 15, and d = 0.5, as well as for very small d = 10−m, m =
1, 2, . . . , 6. As we can see, the relative errors are smaller when d tends to zero. For

example, for d = 10−6 the quadrature formula with only n = 5 nodes gives result

with about 12 exact decimal digits (the corresponding relative error is 3.00× 10−12),

while for n = 10 quadrature nodes we get result with 18 exact decimal digits (the

relative error is 8.85 × 10−19).

We can conclude that this new quadrature formula is very efficient for calculating

real quasi-singular integrals on the finite intervals.
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cle. II, Constr. Approx. 3 (1987), 389–404.
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[25] P. Nevai, Géza Freud, Orthogonal polynomials and Christoffel functions, a case study,
J. Approx. Theory 48 (1986), 3–167.

[26] D.F. Paget, Generalized Product Integration, Ph.D. Thesis, Univ. of Tasmania, 1976.

[27] D.F. Paget, D. Elliott, An algorithm for numerical evaluation of certain Cauchy princi-

pal value integrals, Numer. Math. 19 (1972), 373–385.

[28] P. Rabinowitz, Gauss-Kronrod integration rules for Cauchy principal value integrals,
Math. Comp. 41 (1983), 63–78.

[29] B. Simon, Orthogonal Polynomials on the Unit Circle. Part 1. Classical Theory, Amer-
ican Mathematical Society Colloquium Publications, 54, American Mathematical So-
ciety, Providence, R.I., 2005.

[30] B. Simon, Orthogonal Polynomials on the Unit Circle. Part 2. Spectral Theory, Ameri-
can Mathematical Society Colloquium Publications, 54, American Mathematical Soci-
ety, Providence, R.I., 2005.



28 G. V. Milovanović
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18000 Niš, Serbia

e-mail: gvm@mi.sanu.ac.rs




