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Abstract. Continuing previous work, we discuss applications of our summation/integ-

ration procedure to some classes of complex slowly convergent series. Especially, we consider

the series of the form
+∞∑
k=1

(±1)kkν−1R(k), where 0 < ν ≤ 1 and R(s) is a rational function.

Such cases were recently studied by Gautschi, using the Laplace transform method. Also,

we gave an appropriate method for calculating values of the Riemann zeta function ζ(z) =
+∞∑
k=1

k−z, which can be transformed to a weighted integral on (0,+∞) of the function t 7→

exp
(
−(z/2) log(1 + β2

m
t2)

)
cos(z arctan(βmt)), βm = 2/((2m + 1)π), m ∈ N0, involving the

hyperbolic weight w(t) = 1/ cosh2 t. Numerical results are included to illustrate the method.

1. Introduction and Preliminaries

We consider the summation of slowly convergent series of the type

Tm = Tm(ν, a, p) =
+∞∑

k=m

kν−1

(k + a)p
(1.1)

and

Sm = Sm(ν, a, p) =
+∞∑

k=m

(−1)k kν−1

(k + a)p
, (1.2)

where m ∈ Z, 0 < ν ≤ 1, and a and p are such to provide convergence of (1.1) and
(1.2). In particular, we consider the Riemann zeta function

z 7→ ζ(z) =
+∞∑

k=1

1

kz
= T1(1, 0, z).

Some methods of summation of series can be found, for example, in the books
of Henrici [4], Lindelöf [5], and Mitrinović and Kečkić [8].

Using the Laplace transform method (see [3, §4]), Gautschi [2] considered the

series
+∞∑
k=1

(±1)kkν−1R(k), where 0 < ν ≤ 1 and R( · ) is a rational function R(s) =
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P (s)/Q(s), with P , Q real polynomials of degrees deg P ≤ deg Q. As he showed,
the problem can be simplified by first obtaining the partial fraction decomposition
of R and then it is enough to consider only the case

R(s) =
1

(s + a)m
, Re a ≥ 0, m ≥ 1.

By interpreting the terms in such series as Laplace transforms at integer values,
Gautschi expressed the sum of the series as a weighted integral over R+ of certain
special functions related to the incomplete gamma function. Namely, if 0 < ν < 1,

ε(t) =
t

et − 1
(Einstein’s weight), ϕ(t) =

1

et + 1
(Fermi’s weight),

and if the function gn(t) is defined for t > 0 by

gn(t; a, ν) =
e−attν−1

n!Γ(1 − ν)

∫ t

0
eaτ (t − τ)nτ−ν dτ, (1.3)

where n ∈ N0, Re a ≥ 0, Im a ≥ 0, a 6= 0, Gautschi obtained the following represen-
tations:

+∞∑

k=1

kν−1

(k + a)m
=

∫ +∞

0
t−νε(t)gm−1(t; a, ν) dt, m ≥ 1,

and
+∞∑

k=1

(−1)k−1kν−1

(k + a)m
=

∫ +∞

0
t−νϕ(t)tgm−1(t; a, ν) dt, m ≥ 0,

which suggest to apply Gaussian quadrature to the integrals on the right, using the
weight functions t−νε(t) and t−νϕ(t), respectively. The first 80 recursion coefficients
for the corresponding orthogonal polynomials, for ν = 1/2, were given to 25 signifi-
cant digits in [2, Tables 1 and 2 of the Appendix]. The case ν = 1 of purely rational
series was also considered. The first 40 recursion coefficients for the polynomials
orthogonal with respect to ε(t) and ϕ(t) can be found to 25 significant digits in [3,
Appendices A1 and A2].

An alternative summation/integration procedure for the series of the type S±(f ; m)

=
+∞∑
k=m

(±1)kf(k), where z 7→ f(z) is a holomorphic function in the region

Gm = {z ∈ C | Re z ≥ α, m − 1 < α < m}, m ∈ N,

was derived in [7]. This method requires the indefinite integral F of f chosen so as
to satisfy the following decay conditions:

(C1) F is a holomorphic function in the region Gm;

(C2) lim
|t|→+∞

e−c|t|F (x + it/π) = 0, uniformly for x ≥ α;

(C3) lim
x→+∞

∫ +∞
−∞ e−c|t| |F (x + it/π) | dt = 0,
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where c = 2 or c = 1, when we consider S+(f ; m) or S−(f ; m), respectively. It was
shown that

S±(f ; m) =

∫ +∞

0
Φ±(m − 1

2 , 1
π t)w±(t) dt, (1.4)

where

Φ+(x, y) = −1

2
[F (x + iy) + F (x − iy)] , (1.5)

Φ−(x, y) =
(−1)m

2i
[F (x + iy) − F (x − iy)] , (1.6)

and weights are the hyperbolic functions given by w+(t) = 1/ cosh2 t and w−(t) =
sinh t/ cosh2 t. Numerical quadratures of Gaussian type with respect to these weights
were constructed in [7]. The first n = 40 coefficients in the three-term recurrence
relation for the corresponding orthogonal polynomials were obtained accurately to
30 decimal digits.

Numerical experiments show that is enough to use only the quadrature with
respect to the first weight w+(t) = 1/ cosh2 t. Namely, in the series S−(f ; m) we
can include the hyperbolic sine as a factor in the corresponding integrand so that

S−(f ; m) =

∫ +∞

0
Φ−(m − 1

2 , 1
π t) sinh(t)w+(t) dt. (1.7)

The paper is organized as follows. Section 2 discusses the summation of (1.1)
and (1.2) using Gaussian quadratures with respect to the hyperbolic weight w(t) =
w+(t) = 1/ cosh2 t. An application to the Riemann zeta function is given in §3.
Finally, numerical examples are presented in §4.

2. Summation of Tm(ν, a, p) and Sm(ν, a, p)

We consider the series (1.1) and (1.2) under conditions Re a ≥ 0, 0 < ν < 1, and
Re p ≥ 1. In order to employ the method from [7], we need the indefinite integral
F of f(x) = xν−1(x + a)−p which satisfies the decay conditions (C1) – (C2).

Let 2F1(a, b; c; z) be the Gauss hypergeometric function defined by the series

F (a, b; c; z) = 2F1(a, b; c; z) =
+∞∑

n=0

(a)n(b)n

(c)n

zn

n!
,

which is convergent in the unit circle. This function is analytic for |z| < 1, and it
can be analytically continued using the integral representation

F (a, b; c; z) =
Γ(c)

Γ(b)Γ(c − b)

∫ 1

0
ub−1(1 − u)c−b−1(1 − zu)−a du,

where Re c > Re b > 0. Namely, this integral represents a one valued analytic
function in the z-plane cut along the real axis from 1 to ∞ and hence it gives the
analytic continuation of the Gauss hypergeometric function.
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Since (cf. [9, p. 30])

∫ z

0

xν−1

(x + a)p
dx =

zν

νap 2F1(p, ν; 1 + ν;−z/a) (Re ν > 0)

and

∫ ∞

z

xν−1

(x + a)p
dx =

zν−p

ν − p
2F1(p, p − ν; 1 + p − ν;−a/z) (Re ν < Re p)

we can take

F (z) =





zν−p

ν − p
2F1(p, p − ν; 1 + p − ν;−a/z), |z| > |a|,

zν

νap 2F1(p, ν; 1 + ν;−z/a) + C, |z| < |a|,

where

C = aν−p
{ 1

ν − p
2F1(p, p − ν; 1 + p − ν;−1) − 1

ν
2F1(p, ν; 1 + ν;−1)

}
,

so that F (∞) = 0. In integral form we have, for example,

F (z) = −zν−p
∫ 1

0
up−ν−1

(
1 +

au

z

)−p

du, Re p > Re ν > 0. (2.1)

Thus, using (1.4) and (1.7), we reduce the series Tm(ν, a, p) and Sm(ν, a, p) to the
corresponding integrals, where Φ+ and Φ− are given by (1.5) and (1.6), respectively.
Formulas (1.4) and (1.7) suggest to apply Gaussian quadrature to the integrals on
the right, using the weight function w(t) = 1/ cosh2 t.

In some important cases, F (z) can be an elementary function. For some details
see [6, Ch. 6] and [1, Ch. 15]. The Padé approximation for 2F1(1, σ; ̺ + 1;−1/z) is
given in [6].

We mention here a few special cases which will be treated in §4. For fixed
numbers ν and a, we denote the function (2.1) by Fp(z) = Fp(z; ν, a).

10 For ν = 1/2 and p = 1, 2, 3, 4:

F1(z) = F1(z; 1/2, a) =
2√
a

(
arctan

√
z

a
− π

2

)
,

F2(z) =
1

2a
F1(z) +

√
z

a(a + z)
,

F3(z) =
3

8a2
F1(z) +

√
z

4a2(a + z)2
(3z + 5a),

F4(z) =
5

16a3
F1(z) +

√
z

24a3(a + z)3

(
15z2 + 10(3a + 1)z + 33a2

)
.
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20 For ν = 1/2 and p = 3/2:

F3/2(z) = F3/2(z; 1/2, a) =
2

a

(√
z

z + a
− 1

)
.

30 For ν = 2/3 and p = 1:

F1(z) = F1(z; 2/3, a)

=
1

a1/3

{
c
(
arctan

−1 + 2w

c
− π

2

)
− 1

2
log

(1 + w)2

1 − w + w2

}
,

where w = (z/a)1/3 and c =
√

3.

40 For ν = 3/4 and p = 1:

F1(z) = F1(z; 3/4, a) =
c

a1/4

{
−π +

1

2
log

1 − cw + w2

1 + cw + w2

+ arctan(−1 + cw) + arctan(1 + cw)

}
,

where w = (z/a)1/4 and c =
√

2.

3. Riemann Zeta Function

The well-known Riemann ζ-function is defined as

ζ(z) =
+∞∑

k=1

1

kz
, (3.1)

and the Dirichlet series of (3.1) converges for any z with Re z > 1, uniformly, for
any fixed σ > 1, in any subset of Re z ≥ σ, which establishes that ζ(z) is an analytic
function in Re z > 1. By means of analytic continuation, it is known that ζ(z) is
analytic for any complex z, except for z = 1, which is a simple pole of ζ(z) with
residue 1. This function satisfies the functional equation

ζ(z) = 2zπz−1 sin
πz

2
Γ(1 − z)ζ(1 − z).

As we mentioned before, in our notation, ζ(z) = T1(1, 0, z). Using (1.4) and
(1.5), after some calculations we can express the Riemann function in the integral
form

ζ(z + 1) =
m∑

k=1

1

kz+1
+

1

z

(
m +

1

2

)−z
∫ +∞

0
f(βmt; z)w(t) dt, (3.2)

for Re z > 0, where

f(t; z) = exp
(
−z

2
log(1 + t2)

)
cos(z arctan t), w(t) =

1

cosh2 t
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and βm = 2/((2m+1)π), m ∈ N0. However, (3.2) holds for every z 6= 0 as an analytic
continuation of the Riemann zeta function. Formula (3.2) suggests an application
of a Gaussian formula with respect to the hyperbolic weight w(t), i.e.,

ζ(z + 1) =
m∑

k=1

1

kz+1
+

1

z

(
m +

1

2

)−z
n∑

ν=1

λνf(βmτν ; z) + Rn(f), (3.3)

where τν = τ
(n)
ν and λν = λ

(n)
ν , ν = 1, . . . , n, are the corresponding nodes and

weights, and Rn(f) is the remainder term.

4. Numerical Examples

In this section we illustrate the previous method taking the series

T1(ν, a, p) =
+∞∑

k=1

kν−1

(k + a)p
and S1(ν, a, p) =

+∞∑

k=1

(−1)kkν−1

(k + a)p
,

with a = αeiθ, where θ = 0, π/4, π/2 and α = αk = 2k−1, k = 0(1)7. The parameters
ν and p are taken as in 10–40 (cf. Section §2).

Thus,

T1(ν, a, p) =
m−1∑

k=1

kν−1

(k + a)p
+

n∑

ν=1

λνΦ+(m − 1
2 , 1

π τν) + Rn(Φ̃+)

and

S1(ν, a, p) =
m−1∑

k=1

(−1)kkν−1

(k + a)p
+

n∑

ν=1

λνΦ−(m − 1
2 , 1

π τν) sinh(τν) + Rn(Φ̃−),

where

t 7→ Φ̃+(t) = Φ+(m − 1
2 , 1

π t) and t 7→ Φ̃(t) = Φ−(m − 1
2 , 1

π t) sinh(t),

and Φ± defined by (1.5) and (1.6). In each example we calculate the relative errors
in Gaussian approximations for n = 5(5)40 and m = 1(1)5. Some of these results are
presented below. All computations were done in Q-arithmetic on the MICROVAX
3400 computer (machine precision, m.p.≈ 1.93 × 10−34).

Example 4.1. Consider T1(1/2, a, p) and S1(1/2, a, p), for p = 1, 2, 3, 4 (see 10 in
§2). These series were calculated by Gautschi [2, §5], using the Laplace transform
method for a = α and a = iα, and α = .5, 1., 2., 4., 8., 16., and 32. In this case,
the function g0 in (1.3) includes Dawson’s integral (for a = α) and the Fresnel
integrals C(x) and S(x) (for a = iα). As α increases, the convergence of the Gauss
quadrature formula slows down considerably. In order to achieve better accuracy,
when α is large, Gautschi [2] used “stratified” summation.

In [7, Example 4.3] we showed that our method applied to T1(1/2, α, 1) is very
efficient. Moreover, its convergence is slightly faster if the parameter α is larger.
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Now, as typical results, we present the relative errors in the real and imaginary part
of Gaussian approximations for T1(1/2, iα, 1) and S1(1/2, iα, 1), α = 16, in Tables
4.1 and 4.2, respectively. (Numbers in parentheses indicate decimal exponents.)

Table 4.1

Relative errors in the real and imaginary part

of Gaussian approximations for T1(1/2, 16i, 1) for m = 1(1)3

n m = 1 m = 2 m = 3

5 2.1(−9) 1.1(−7) 8.0(−12) 6.8(−10) 3.4(−13) 4.3(−11)
10 8.3(−12) 5.9(−9) 8.6(−16) 3.0(−13) 2.0(−18) 4.5(−16)
15 9.2(−14) 1.2(−10) 9.3(−19) 3.6(−16) 1.0(−23) 4.1(−20)
20 3.6(−15) 4.8(−12) 1.5(−21) 1.4(−19) 2.4(−26) 2.5(−23)
25 2.5(−16) 2.5(−13) 2.1(−23) 1.2(−20) 1.2(−28) 1.1(−25)
30 1.5(−17) 6.8(−15) 8.5(−26) 1.4(−22) 1.0(−30) 4.5(−28)
35 1.3(−19) 1.3(−15) 1.2(−27) 1.1(−24) 1.0(−33) 1.1(−30)
40 1.5(−19) 2.5(−16) 6.3(−29) 1.1(−27) m.p. 2.2(−32)

Table 4.2

Relative errors in the real and imaginary part

of Gaussian approximations for S1(1/2, 16i, 1) for m = 1(1)3

n m = 1 m = 2 m = 3

5 1.2(−3) 4.1(−4) 1.5(−3) 3.6(−4) 1.7(−3) 3.2(−4)
10 8.2(−8) 5.6(−8) 9.1(−8) 1.3(−8) 1.0(−7) 1.2(−8)
15 3.5(−11) 1.5(−9) 4.1(−12) 3.6(−13) 4.4(−12) 3.2(−13)
20 1.4(−12) 5.8(−11) 2.2(−16) 5.0(−18) 1.9(−16) 6.2(−18)
25 9.3(−14) 3.0(−12) 1.5(−20) 1.5(−19) 5.5(−21) 1.8(−22)
30 5.6(−15) 7.8(−14) 1.4(−21) 1.7(−21) 1.3(−23) 3.6(−24)
35 2.6(−17) 1.7(−14) 2.4(−22) 1.6(−23) 3.1(−24) 1.3(−25)
40 5.6(−17) 3.0(−15) 5.6(−23) 2.5(−25) 2.5(−25) 1.4(−26)

The exact sums T1(1/2, iα, 1) and S1(1/2, iα, 1) (to 30 significant digits), as
determined by Gaussian quadrature, are displayed in Table 4.3.
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Table 4.3

The exact sums T1(1/2, iα, 1) and S1(1/2, iα, 1)

α T1(1/2, iα, 1) S1(1/2, iα, 1)

.5 2.38218132285517168293219750154 −.582079786301423235365352138324
−.564259325220868304889671910237 .338110539603959602586479899888

1. 2.00615265522741426943990244484 −.321696087820582063066802787444
−.796488123569848024094617162065 .397496528358426542759110792784

2. 1.51823159036615358301817491511 −.996674437594510445982040541314(−1)
−.843981047697016698224970096828 .280778894386228345581585952165

4. 1.09769377440948456934743336729 −.241419214499407532578726608840(−1)
−.746034828113382049992022090543 .149250106093894534117805659620

8. .782147849842074916389853404102 −.596113829087205052311025580173(−2)
−.602903762409124688555263922786 .753774764488118538608632391861(−1)

16. .554548181560536872526970512645 −.148613304672817493421470839158(−2)
−.464094436687592600912173354279 .377770978852174330308560815223(−1)

32. .392496059681886633426329988765 −.371280005762258430868412111802(−3)
−.347063781177494565588440145478 .188994578847469906657407815682(−1)

64. .277629429654309514631715402268 −.928042642476049919541914832021(−4)
−.254862241657214681245901510531 .945108848236422013980825274104(−2)

As we can see from Tables 4.1 an 4.2, the convergence in the second case is slightly
slower. Very similar results are obtained for p = 2, 3, 4 in both cases Tp(1/2, a, 1)
and Sp(1/2, a, 1), where a = αeiθ.

Example 4.2. Consider

T1(
1
2 , a, 3

2) =
+∞∑

k=1

1

k1/2(k + a)3/2
and S1(

1
2 , a, 3

2) =
+∞∑

k=1

(−1)k

k1/2(k + a)3/2
.

This is a case when p is not an integer. Here, f(x) = 1/
√

x(x + a)3, and F (z) =
F3/2(z) is given by 20 in §2.

In Table 4.4 we show only the results for a = 2; those for other a are similar. We
can see a rapidly increasing of convergence of the summation process as m increases.

Table 4.4

Relative errors in Gaussian approximations

of T1(1/2, a, 3/2) and S1(1/2, a, 3/2), a = 2, for m = 1(1)3

a = 2 T1(1/2, a, 3/2) S1(1/2, a, 3/2)

n m = 1 m = 2 m = 3 m = 1 m = 2 m = 3

5 7.1(−7) 4.2(−9) 2.5(−10) 1.2(−4) 9.9(−5) 8.1(−5)
10 3.0(−8) 1.5(−12) 2.4(−15) 1.1(−7) 1.5(−9) 1.4(−9)
15 5.9(−10) 1.8(−15) 2.0(−19) 2.3(−9) 2.9(−14) 2.2(−14)
20 2.4(−11) 5.5(−19) 1.2(−22) 9.3(−11) 4.8(−18) 3.3(−19)
25 1.2(−12) 6.2(−20) 5.4(−25) 4.8(−12) 2.3(−19) 7.2(−24)
30 3.4(−14) 7.0(−22) 2.3(−27) 1.3(−13) 2.8(−21) 8.2(−27)
35 6.5(−15) 5.3(−24) 5.2(−30) 2.6(−14) 2.4(−23) 2.4(−29)
40 1.2(−15) 1.0(−26) 1.1(−31) 4.8(−15) 2.7(−26) 4.0(−31)
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Example 4.3. For series

T1(
2
3 , 4, 1) =

+∞∑

k=1

1

k1/3(k + 4)
and S1(

2
3 , 4, 1) =

+∞∑

k=1

(−1)k

k1/3(k + 4)

the indefinte integral is given by 30 in §2. As to accuracy, a similar situation prevails
as in the previous examples. For instance, with m = 3 and n = 30 we obtain the
sums with the relative errors 1.9(−28) and 3.8(−27), respectively.

Example 4.4. Using (3.3) we can calculate the Riemann zeta function ζ(z) in any
complex z 6= 1. In Table 4.6 we present the results for z = 1 + i0.01, when we take
m = 0 and n = 5(5)40. In each entry the first digit in error is underlined.

Table 4.6

Gaussian approximations of ζ(1 + i0.01) and relative errors
for m = 0 and n = 5(5)30

n Real part Rel. err. Imaginary part Rel. err.

5 .57720648 1.7(−5) −99.99927240 5.6(−9)
10 .577215862 5.0(−7) −99.9992718501 8.9(−11)
15 .57721615679 1.3(−8) −99.99927184094 2.6(−12)
20 .577216149117 5.3(−10) −99.9992718412114 1.1(−13)
25 .577216149434 2.3(−11) −99.999271841202430 4.3(−15)
30 .577216149420742 1.4(−13) −99.9992718412028429 1.5(−16)

The exact values (to 30 significant digits), as determined by Gaussian quadra-
ture, are

Re ζ(1 + i0.01) = 0.577216149420661408748004242512,

Im ζ(1 + i0.01) = −99.9992718412028581571383971188.

Taking m > 0 the summation process becomes more efective, giving full accuracy
(30 decimals) with only n = 20 when m = 5. Table 4.7 shows the corresponding
relative errors for m = 1(1)3.

Table 4.1

Relative errors in the real and imaginary part

of Gaussian approximations of ζ(1 + i0.01) for m = 1(1)3

n m = 1 m = 2 m = 3

5 1.4(−8) 5.9(−13) 1.8(−9) 1.8(−13) 6.7(−11) 6.6(−15)
10 1.9(−11) 2.8(−15) 2.4(−14) 3.1(−18) 1.1(−17) 1.7(−21)
15 2.3(−14) 3.5(−18) 3.7(−18) 6.8(−22) 4.9(−21) 8.0(−25)
20 5.0(−17) 1.3(−20) 2.9(−21) 5.9(−25) 5.1(−25) 4.1(−29)
25 9.7(−19) 1.6(−22) 9.8(−24) 1.8(−27) 6.7(−28) 8.8(−32)
30 1.6(−20) 3.3(−24) 3.1(−26) 4.7(−30) 6.9(−31) 1.6(−33)

We mention also that for z = −2 (a trivial zero of the Riemann function) this
method, for n = 2 and m = 0, gives the machine zero.
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