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ORTHOGONAL POLYNOMIAL

SYSTEMS AND SOME APPLICATIONS

Gradimir V. Milovanović

Abstract. Orthogonal polynomial systems on the real line, the unit circle, the unit
semicircle and a circular arc with respect to a given positive definite or to a non-
Hermitian inner product are considered. The basic properties, recurrence relations,
distributions of zeros and other characterizations of such polynomials are included.
The classical and non-classical orthogonal polynomials on the real line, as well as
some Sobolev type orthogonal polynomials are considered. An interpretation of s-
orthogonality is also treated. Finally, some applications in numerical integration,

numerical differentiation, moment-preserving spline approximation and summation
of slowly convergent series are done.

1. Introduction and basic definitions

The theory of inner product spaces enables an introduction of orthogonal systems
which play an important role in many branches of mathematics, physics and other
applied and computational sciences. We start with the following definition:

Definition 1.1. Given a real linear space of functions X , an inner product (f, g)
defined is a mapping of X2 into R such that

(a) (f + g, h) = (f, h) + (g, h) (Linearity),

(b) (αf, g) = α(f, g) (Homogeneity),

(c) (f, g) = (g, f) (Symmetry),

(d) (f, f) > 0, (f, f) = 0 ⇔ f = 0 (Positivity),

where f, g, h ∈ X and α is a real parameter. The space X will be called an inner

product space.

A similar definition can be done for complex spaces. Namely, if X is a complex
linear space, then the inner product (f, g):X2 → C is such that the condition (c)
is replaced by

(c′) (f, g) = (g, f) (Hermitian Symmetry).

The bar in the above line designates the complex conjugate.

1991 Mathematics Subject Classification. Primary 33C45, 33C55; Secondary 30C10, 30C15,
41A55, 65D25, 65D30.

This work was supported in part by the Serbian Scientific Foundation, grant number 04M03.

Typeset by AMS-TEX

1



Definition 1.2. A system S of elements of an inner product space is called orthog-

onal if (f, g) = 0 for every f 6= g (f, g ∈ S). If (f, f) = 1 for each f ∈ S, then the
system is called orthonormal .

Starting from a linearly independent system of elements of an inner product space
and using the well-known Gram-Schmidt orthogonalizing process we can construct
the corresponding orthogonal (orthonormal) system. In this survey we consider
only orthogonal (orthonormal) polynomial systems with respect to different inner
product spaces.

Definition 1.3. A system of polynomials {πk}, where

(1.1)
πk(t) = bkt

k + ckt
k−1 + lower degree terms, bk > 0,

(πk, πm) = δkm, k,m ≥ 0,

is called a system of orthonormal polynomials with respect to the inner product
( . , . ).

Orthogonal polynomial systems are very useful in many problems in the approx-
imation theory, mathematical and numerical analysis, and their applications (for
example, Gaussian quadrature processes, least square approximation of functions,
differential and difference equations, Fourier series, etc.).

This paper is organized as follows. In Section 2 we consider the orthogonality
on the real line, with several classes of orthogonal polynomials such as classical,
semi-classical and non-classical polynomials, as well as orthogonal polynomials with
a Sobolev inner product. Also, an interpretation of s-orthogonality is included.
Section 3 is devoted to some important applications of orthogonal polynomials on
the real line as Gauss-Christoffel quadrature formulas, moment-preserving spline
approximation and summation of slowly convergent series. The case of orthogonality
on the unit circle is considered in Section 4, and the cases on the semicircle and a
circular arc in Section 5. Finally, in Section 6 we deal with some applications of
polynomials orthogonal on the semicircle.

2. Orthogonality on the real line

Let λ:R → R be a fixed non-decreasing function with infinitely many points of
increase for which all moments µk =

∫

R
tk dλ(t), k = 0, 1, . . . , exist and are finite.

Then the improper Stieltjes integral
∫

R
P (t) dλ(t) exists for every polynomial P .

By the application of the Lebesgue-Stieltjes integral
∫

R
f(t) dλ(t) to characteristic

functions of sets, the function λ engenders a Lebesgue-Stieltjes measure dλ(t), which
is known also as m-distribution (cf. Freud [26]). Moreover, if t 7→ λ(t) is an
absolutely continuous function, then we say that λ′(t) = w(t) is a weight function.
In that case, the measure dλ can be express as dλ(t) = w(t) dt, where the weight
function t 7→ w(t) is a non-negative and measurable in Lebesgue’s sense for which
all moments exists and µ0 =

∫

R
w(t) dt > 0.
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In the general case the function λ can be written in the form λ = λac + λs + λj,
where λac is absolutely continuous, λs is singular, and λj is a jump function.

The support of the measure, i.e., the set of points of increase of t 7→ λ(t) we
denote by supp(dλ). It is always an infinite and closed set. If supp(dλ) is bounded,
then the smallest closed interval containing supp(dλ) we will denote by ∆(dλ). For
example, if ∆(dλ) = [a, b] then we say that dλ(t) lies in [a, b]. In that case we have
λ(t) = λ(−∞) for t < a and λ(t) = λ(+∞) for t > b. In addition, if t 7→ λ(t) is
absolutely continuous, then the weight function t 7→ w(t) vanishes outside of [a, b],
or more generally, outside of supp(dλ).

2.1. General properties. For any m-distribution dλ(t) there exists a unique
system of orthonormal polynomials πk(·) = πk( · ; dλ), k = 0, 1, . . . , defined by
(1.1), where bk = bk(dλ), ck = ck(dλ) and the inner product is given by

(2.1.1) (f, g) =

∫

R

f(t)g(t) dλ(t)
(

f, g ∈ X = L2(R) ≡ L2(R; dλ)
)

.

If we have an absolutely continuous function t 7→ λ(t), then instead of πk( · ; dλ),
bk(dλ), supp(dλ), . . . , we usually write πk( · ;w), bk(w), supp(w), . . . , respectively,
where λ′(t) = w(t).

If we have supp(w) = [a, b], where −∞ < a < b < +∞, we say that {πk} is a
system of orthonormal polynomials in a finite interval [a, b]. For (a, b) we say that
it is an interval of orthogonality.

Now we give a few basic properties of orthogonal polynomials:

Theorem 2.1.1. The system of orthonormal polynomials {πk}, associated with the

distribution dλ(t), satisfy a three-term recurrence relation

(2.1.2) tπk(t) = uk+1πk+1(t) + vkπk(t) + ukπk−1(t) (k ≥ 0),

where π−1(t) = 0 and the coefficients uk = uk(dλ) and vk = vk(dλ) are given by

uk =
bk−1

bk
and vk =

∫

R

tπk(t)
2 dλ(t).

Since π0(t) = b0 = 1/
√
µ0 and bk−1 = ukbk we have that bk = b0/(u1u2 · · ·uk).

Notice that uk > 0 for each k.

Contrary, for two given real sequences {uk}k∈N and {vk}k∈N0
, where uk > 0

for each k ∈ N, one can construct a sequence of polynomials using the three-term
recurrence relation (2.1.2), starting with initial values π−1(t) = 0 and π0(t) = 1.
It is well-known by Favard’s theorem (cf. Chihara [20]) that there exists a positive
measure dσ(t) on R such that

∫

R

πk(t)πm(t) dσ(t) = δkm, k,m ≥ 0.
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The measure dσ(t) is not unique which depends of the fact whether or not the
Hamburger moment problem is determined. A sufficient condition for a unique

measure is the Carleman’s condition given by
+∞
∑

k=1

(1/uk) = +∞. Evidently, it holds

if {uk}k∈N is a bounded sequence.

In many considerations and applications we use the monic orthogonal polyno-
mials π̂k(t) = πk(t)/bk = tk + lower degree terms. Such polynomials satisfy the
following three-term recurrence relation

(2.1.3) π̂k+1(t) = (t− αk)π̂k(t)− βkπ̂k−1(t), k = 0, 1, 2, . . . ,

where αk = vk and βk = u2k > 0.

Because of orthogonality, we have that

αk =
(tπ̂k, π̂k)

(π̂k, π̂k)
(k ≥ 0), βk =

(π̂k, π̂k)

(π̂k−1, π̂k−1)
(k ≥ 1).

The coefficient β0, which multiplies π̂−1 = 0 in three-term recurrence relation may
be arbitrary. Sometimes, it is convenient to define it by β0 = µ0 =

∫

R
dλ(t). Then

the norm of π̂k can be express in the form

(2.1.4) ‖π̂k‖ =
√

(π̂k, π̂k) =
√

β0β1 · · ·βk .

We mention that the existence of a three-term recurrence relation for orthogonal
polynomials is a consequence of the property (tf, g) = (f, tg) of the inner product
(2.1.1).

Theorem 2.1.2. All zeros of t 7→ πn(t; dλ), n ≥ 1, are real and distinct and are

located in the interior of the interval ∆(dλ).

Let τ
(n)
k , k = 1, . . . , n, denote the zeros of πn(t; dλ) in increasing order

τ
(n)
1 < τ

(n)
2 < · · · < τ (n)n .

Theorem 2.1.3. The zeros of πn(t; dλ) and πn+1(t; dλ) interlace, i.e.,

τ
(n+1)
k < τ

(n)
k < τ

(n+1)
k+1 (k = 1, . . . , n; n ∈ N).

Taking k = 0, 1, . . . , n − 1 in (2.1.2), one can obtain the following system of
equations

tpn(t) = Jn(dλ)pn(t) + unπn(t)en,
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where

Jn(dλ) =















v0 u1 O
u1 v1 u2

u2 v2
. . .

. . .
. . . un−1

O un−1 vn−1















, pn(t) =















π0(t)

π1(t)

π2(t)
...

πn−1(t)















, en =















0

0

0
...

1















.

The tridiagonal matrix Jn = Jn(dλ) is known as the Jacobi matrix . It is clear that

πn(t) = 0 if and only if tpn(t) = Jnpn(t), i.e., the zeros τ
(n)
k of πn(t) are the same

as the eigenvalues of the Jacobi matrix Jn. Also, notice that the monic polynomial
π̂n(t) can be expressed in the following determinant form

π̂n(t) = det(tIn − Jn),

where In is the identity matrix of the order n.

Define the function (t, x) 7→ Kn(t, x) by

(2.1.5) Kn(t, x) =

n−1
∑

ν=0

πν(t)πν (x) (n ≥ 1),

which plays a fundamental role in the integral representation of partial sums of the
orthogonal expansions. Namely, Kn(t, x) represents the kernel of the n-th partial
sum. Notice that Kn(t, x) = Kn(x, t). Using the three-term recurrence relation
from Theorem 2.1.1 we can prove:

Theorem 2.1.4. Let Kn(t, x) be defined by (2.1.5). Then we have

(2.1.6) Kn(t, x) = un+1
πn(t)πn−1(x)− πn−1(t)πn(x)

t− x
,

where un+1 is defined in Theorem 2.1.1.

Letting t→ x we find

Kn(x, x) = un+1(π
′
n(x)πn−1(x) − π′

n−1(x)πn(x)).

Formula (2.1.6) is known as the Christoffel-Darboux identity.

We mention now an important extremal problem for monic polynomials (cf. [101,
pp. 416–417]): Among all polynomials of degree n, with leading coefficient unity, find

the polynomial which deviates least from zero in L2-norm

‖P‖ =
√

(P, P ) =

(
∫

R

|P (t)|2 dλ(t)
)1/2

.

The solution is given in the following theorem:
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Theorem 2.1.5. Let P (t) =
n
∑

ν=0
aνt

ν , with an = 1, be an arbitrary monic polyno-

mial of degree n. Then

‖P‖ ≥ ‖π̂n‖ = b−1
n ,

with equality only if P (t) = π̂n(t) = πn(t)/bn, where π̂n is the monic polynomial

orthogonal with respect to the measure dλ(t) on R.

A survey on characterization theorems for orthogonal polynomials on the real
line was given recently by Al-Salam [6]. In next subsection we consider a special
class of orthogonal polynomials so-called classical orthogonal polynomials . For some
extensions of this polynomial class see Andrews and Askey [8], Askey and Wilson
[9], and Atakishiyev and Suslov [10].

2.2. Classical orthogonal polynomials. A very important class of orthogonal
polynomials on an interval of orthogonality (a, b) ∈ R is constituted by so-called
the classical orthogonal polynomials . They are distinguished by several particular
properties.

Let Pn be the set of all algebraic polynomials P (6≡ 0) of degree at most n and
the inner product is given by

(2.2.1) (f, g)w =

∫ b

a

w(t)f(t)g(t) dt.

Since every interval (a, b) can be transformed by a linear transformation to one of
following intervals: (−1, 1), (0,+∞), (−∞,+∞), we will restrict our consideration
(without loss of generality) only to these three intervals.

Definition 2.2.1. The orthogonal polynomials {Qk} on (a, b) with respect to the
inner product (2.2.1) are called the classical orthogonal polynomials if their weight
functions t 7→ w(t) satisfy the differential equation

d

dt
(A(t)w(t)) = B(t)w(t),

where

A(t) =











1− t2, if (a, b) = (−1, 1),

t, if (a, b) = (0,+∞),

1, if (a, b) = (−∞,+∞),

and B(t) is a polynomial of the first degree. For such classical weights we will write
w ∈ CW .

We note that if w ∈ CW , then w ∈ C1(a, b), and also the following property:
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Theorem 2.2.1. If w ∈ CW then for each m = 0, 1, . . . we have

lim
t→a+

tmA(t)w(t) = 0 and lim
t→b−

tmA(t)w(t) = 0.

Based on the above definition, the classical orthogonal polynomials {Qk} on (a, b)

can be specificated as the Jacobi polynomials P
(α,β)
k (t) (α, β > −1) on (−1, 1),

the generalized Laguerre polynomials Ls
k(t) (s > −1) on (0,+∞), and finally as

the Hermite polynomials Hk(t) on (−∞,+∞). Their weight functions and the
corresponding polynomials A(t) and B(t) are given in Table 2.2.1.

Table 2.2.1

The Classification of the Classical Orthogonal Polynomials

(a, b) w(t) A(t) B(t) λk

(−1, 1) (1− t)α(1 + t)β 1− t2 β − α− (α+ β + 2)t k(k + α+ β + 1)

(0,+∞) tse−t t s+ 1− t k

(−∞,+∞) e−t2 1 −2t 2k

Special cases of the Jacobi polynomials are:

1◦ The Legendre polynomials Pk(t) (for α = β = 0);

2◦ The Chebyshev polynomials of the first kind Tk(t) (for α = β = −1/2);

3◦ The Chebyshev polynomials of the second kind Sk(t) (for α = β = 1/2);

4◦ The Chebyshev polynomials of the third kind Uk(t) (for α = −β = −1/2);

5◦ The Chebyshev polynomials of the fourth kind Vk(t) (for α = −β = 1/2);

6◦ The Gegenbauer or ultraspherical polynomials Cλ
k (t) (for α = β = λ−1/2).

If s = 0, the generalized Laguerre polynomials reduces to the standard Laguerre
polynomials Lk(t).

There are many characterizations of the classical orthogonal polynomials. In
sequel we give the basic common properties of these polynomials (cf. [101]).

Theorem 2.2.2. The derivatives of the classical orthogonal polynomials {Qk}k∈N0

form also a sequence of the classical orthogonal polynomials.

Applying the induction method we can prove a more general result:

Theorem 2.2.3. The sequence {Q(m)
k }k=m,m+1,... is a classical orthogonal polyno-

mial sequence on (a, b) with respect to the weight function t 7→ wm(t) = A(t)mw(t).
The differential equation for this weight is (A(t)wm(t))′ = Bm(t)wm(t), where

Bm(t) = mA′(t) +B(t).
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Theorem 2.2.4. The classical orthogonal polynomial t 7→ Qk(t) is a particular

solution of the second order linear differential equation of hyphergeometric type

(2.2.2) L[y] = A(t)y′′ + B(t)y′ + λky = 0,

where

(2.2.3) λk = −k
(

1
2 (k − 1)A′′(0) +B′(0)

)

.

The equation (2.2.2) can be written in the Sturm-Liouville form

(2.2.4)
d

dt

(

A(t)w(t)
dy

dt

)

+ λkw(t)y = 0.

The coefficients λk are also displayed in Table 2.2.1.

Similarly, the m-th derivative of Qk satisfies the differential equation

d

dt

(

A(t)wm(t)
dy

dt

)

+ λk,mwm(t)y = 0,

where λk,m = −(k−m)
(

1
2 (k +m− 1)A′′(0) +B′(0)

)

. We note that this expression
for λk,m reduces to (2.2.3) for m = 0, i.e., λk,0 = λk.

Remark 2.2.1. The characterization of the classical orthogonal polynomials by differ-
ential equation (2.2.2), i.e. (2.2.4), was proved by Lesky [76], and conjectured by Aczél
[2] (see also Bochner [15]). Such a differential equation appears in many mathematical
models in atomic physics, electrodynamics and acoustics. As an example we mention the
well-known Schrödinger equation.

The classical orthogonal polynomials possess a Rodrigues’ type formula (cf. Bate-
man and Erdélyi [11], Tricomi [125], and Suetin [121]).

Theorem 2.2.5. The classical orthogonal polynomial Qk(t) can be expressed in the

form

(2.2.5) Qk(t) =
Ck

w(t)
· d

k

dtk
(

A(t)kw(t)
)

,

where Ck are constants different from zero.

Using the Cauchy formula for k-th derivative of a regular function, (2.2.5) can
be represented in the following integral form

(2.2.6) Qk(t) =
Ck

w(t)
· k!
2πi

∮

Γ

A(z)kw(z)

(z − t)k+1
dz,

where Γ is a closed contour such that t ∈ intΓ .
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The constants Ck in (2.2.5) and (2.2.6) can be chosen in different way (for ex-
ample, Qk to be monic, orthonormal, etc.). A historical reason leads to

Ck =















(−1)k

2kk!
for P

(α,β)
k (t),

1 for Ls
k(t),

(−1)k for Hk(t).

In addition, the Gegenbauer and the Chebyshev polynomials need

Cλ
k (t) =

(2λ)k
(

λ+ 1
2

)

k

P
(α,α)
k (t) (α = λ− 1/2),

Tk(t) =
k!

(

1
2

)

k

P
(−1/2,−1/2)
k (t),

Sk(t) =
(k + 1)!
(

3
2

)

k

P
(1/2,1/2)
k (t),

where (s)k is the standard notation for Pochhammer’s symbol

(s)k = s(s+ 1) · · · (s+ k − 1) =
Γ(s+ k)

Γ(s)
(Γ is the gamma function).

For such defined polynomials Qk(t) = ak
(

tk + rkt
k−1 + · · ·

)

, we give the leading
coefficient ak, the coefficient rk, and the norm ‖Qk‖.

1◦ Jacobi case:

ak =
(k + α+ β + 1)k

2kk!
, rk =

k(α− β)

2k + α+ β
,

‖P (α,β)
k ‖2 = 2α+β+1Γ(k + α+ 1)Γ(k + β + 1)

k!(2k + α+ β + 1)Γ(k + α+ β + 1)
;

2◦ Gegenbauer case:

ak =
2k

k!
(λ)k, rk = 0, ‖Cλ

k ‖2 =
√
π
(2λ)kΓ(λ+ 1/2)

(k + λ)k!Γ(λ)
;

3◦ Legendre case:

ak =
(2k)!

2k(k!)2
, rk = 0, ‖Pk‖2 =

2

2k + 1
;

4◦ Chebyshev case of the first kind :

ak = 2k−1, rk = 0, ‖T0‖2 = π, ‖Tk‖2 =
π

2
(k 6= 0);
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5◦ Chebyshev case of the second kind :

ak = 2k, rk = 0, ‖Sk‖2 =
π

2
;

5◦ Generalized Laguerre case:

ak = (−1)k, rk = −k(k + s), ‖Ls
k‖2 = k!Γ(k + s+ 1);

6◦ Hermite case:

ak = 2k, rk = 0, ‖Hk‖2 = 2kk!
√
π .

Putting t = cos θ, −1 ≤ t ≤ 1, Chebyshev polynomials of the first and second
kind can be expressed in the forms

Tk(x) = Tk(cos θ) = cos kθ and Sk(x) = Sk(cos θ) =
sin(k + 1)θ

sin θ
,

respectively. Thus, trigonometric representations of these polynomials are

Tk(t) = cos(k arccos t) and Sk(x) =
sin

(

(k + 1) arccos t
)

√
1− t2

.

Similarly to the well-known Landau inequality (see Landau [72]) for continuously-
differentiable functions and other generalizations (cf. Djordjević and Milovanović
[22], Gorny [59], Hille [64], Kolmogoroff [69], Milovanović [90], Schoenberg [115],
Steckhin [119]), Agarwal and Milovanović [3] stated the following characterization
of the classical orthogonal polynomials:

Theorem 2.2.6. Let ‖f‖2 = (f, f)w, where w ∈ CW . For all P ∈ Pn the inequal-

ity

(2.2.7) (2λn +B′(0))‖
√
AP ′‖2 ≤ λ2n‖P‖2 + ‖AP ′′‖2

holds, with equality if only if P (t) = cQn(t), where Qn(t) is the classical orthogonal

polynomial on (a, b) with respect to the weight function t 7→ w(t), and c is an

arbitrary real constant. λn, A(t) and B(t) are given in Table 2.2.1.

The equality case in (2.2.7) gives a characterization of the classical orthogonal

polynomials. For w(t) = e−t2 on (−∞,+∞), the inequality (2.2.7) reduces to
Varma’s result [127]

‖P ′‖2 ≤ 1

2(2n− 1)
‖P ′′‖2 + 2n2

2n− 1
‖P‖2.

10



Recently, Guessab and Milovanović [62] have considered a weighted L2 analogues
of the well-known Bernstein’s inequality, which can be stated in the following form
(cf. [101]):

(2.2.8) ‖
√

1− t2P ′(t)‖∞ ≤ n‖P‖∞ (P ∈ Pn),

where ‖f‖∞ = max
−1≤x≤1

|f(t)|. Using the norm ‖f‖2 = (f, f)w, w ∈ CW , they have

considered the following problem connected with the Bernstein’s inequality (2.2.8):
Determine the best constant Cn,m(w) (1 ≤ m ≤ n) such that the inequality

(2.2.9) ‖Am/2P (m)‖w ≤ Cn,m(w)‖P‖w

holds for all P ∈ Pn.

Theorem 2.2.7. For all P ∈ Pn the inequality (2.2.9) holds with the best constant

(2.2.10) Cn,m(w) =
√

λn,0λn,1 · · ·λn,m−1,

where λn,k = −(n − k)
(

1
2 (n+ k − 1)A′′(0) +B′(0)

)

. The equality is attained in

(2.2.10) if and only if P (t) is a constant multiple of the classical polynomial Qn(t)
orthogonal with respect to the weight function w ∈ CW on (a, b).

We list now the coefficients αk (k ≥ 0) and βk (k ≥ 1) in the three-term recur-

rence relation for the monic classical orthogonal polynomials Q̂k(t) on (a, b),

(2.2.11)
Q̂k+1(t) = (t− αk)Q̂k(t)− βkQ̂k−1(t) (k ≥ 0),

Q̂1(t) = 0, Q̂0(t) = 1.

The coefficients uk and vk in the corresponding recurrence relation for orthonormal
polynomials (see (2.1.3)) are given by uk =

√
βk and vk = αk.

Also, we give the moment µ0 =
∫ b

a w(t) dt (w ∈ CW ).

1◦ Jacobi case: P̂
(α,β)
k (t) = 2kk!/

(

(k + α+ β + 1)k
)

P
(α,β)
k (t),

µ0 =
2α+β+1Γ(α+ 1)Γ(β + 1)

Γ(α+ β + 2)
,

αk =
β2 − α2

(2k + α+ β)(2k + α+ β + 2)
,

βk =
4k(k + α)(k + β)(k + α+ β)

(2k + α+ β)2
(

(2k + α+ β)2 − 1
) .

2◦ Gegenbauer case: Ĉλ
k (t) = k!/

(

2k(λ)k
)

Cλ
k (t),

µ0 =

√
πΓ(λ+ 1/2)

Γ(λ+ 1)
, αk = 0, βk =

k(k + 2λ− 1)

4(k + λ)(k + λ− 1)
.
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3◦ Legendre case: P̂k(t) = 2k(k!)2/
(

(2k)!
)

Pk(t),

µ0 = 2, αk = 0, βk =
k2

4k2 − 1
.

4◦ Chebyshev case of the first kind : T̂0(t) = 1, T̂k(t) = 21−kTk(t),

µ0 = π, αk = 0, β1 =
1

2
, βk =

1

4
(k ≥ 2).

5◦ Chebyshev case of the second kind : Ŝk(t) = 2−kSk(t),

µ0 =
π

2
, αk = 0, βk =

1

4
(k ≥ 1).

5◦ Generalized Laguerre case: L̂s
k(t) = (−1)kLs

k(t),

µ0 = Γ(s+ 1), αk = 2k + s+ 1, βk = k(k + s).

6◦ Hermite case: Ĥk(t) = 2−kHk(t),

µ0 =
√
π , αk = 0, βk =

k

2
.

The norm of monic orthogonal polynomials can be calculated using (2.1.4).

In the case of classical orthogonal polynomials one can express Q′
k(t) in terms of

Qk(t) and Qk−1(t). Such a formula for the monic orthogonal polynomials is

(2.2.12) A(t)
d

dt
Q̂k(t) = (ekt+ fk)Q̂k(t) + ωkβkQ̂k−1(t),

where A(t) is given in Table 2.2.1 and the coefficient βk is the same as in the
three-term recurrence relation (2.2.11).

In the Jacobi case we have

ek = −k, fk =
k(α− β)

2k + α+ β
, ωk = 2k + α+ β + 1.

In the generalized Laguerre case and the Hermite case, formula (2.2.12) reduces
to

t
d

dt
L̂s
k(t) = kL̂s

k(t) + k(k + s)L̂s
k−1(t) and

d

dt
Ĥk(t) = kĤk−1(t),

respectively.
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2.3. Non-classical orthogonal polynomials. As we have seen in the previous
subsection the monic Chebyshev polynomials of the second kind

Ŝk(t) =
1

2k
· sin(k + 1)θ

sin θ
, t = cos θ,

have a very simple three-term recurrence relation (2.2.11) with αk = 0 and βk = 1/4.
A system of orthogonal polynomials for which the recursion coefficients satisfy

(2.3.1) lim
k→+∞

αk = 0 and lim
k→+∞

βk =
1

4

will be said to be a perturbation of the polynomials Ŝk(t). Similarly, one can
consider orthogonal polynomials with such coefficients that

lim
k→+∞

αk = a and lim
k→+∞

βk =
b2

4
> 0,

where a, b ∈ R. These polynomials are perturbations of t 7→ bkŜk((t−a)/b) and are
said to belong to the class N (a, b), which was introduced and considered in detail
by Nevai [106]1). Evidently, (2.3.1) holds for polynomials from the class N (0, 1).

There are several classes of orthogonal polynomials which are in certain sense
close to the classical orthogonal polynomials. For example, when the weight t 7→
W (t) is the product of a classical weight t 7→ w(t) times a polynomial, Ronveaux
[112] found the second-order differential equation for the corresponding orthogonal
polynomials. Ronveaux and Thiry [114] developed a REDUCE package giving such
differential equations. The following cases have been studied by Ronveaux and
Marcellán [113]:

1◦ Rational Case. W (t) = R(t)w(t), where R is a rational function with poles
and zeros outside the support of w;

2◦ δ Dirac distribution.

W (t) = w(t) +
m
∑

k=1

λkδ(t− tk),

where the positive mass λk is located at tk (tk outside or inside the support of w).

In both cases, orthogonal polynomials are semi-classical (see Maroni [85]).

A nice survey about orthogonal polynomials and spectral theory was given by
Everitt and Littlejohn [24].

In many applications of orthogonal polynomials it is very important to know the
recursion coefficients αk and βk. If dλ(t) is one of the classical measures, then αk

1)Originally, Nevai defined this class for orthonormal polynomials.
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and βk are known explicitly. Furthermore, there are certain non-classical measures
when we know also these coefficients. In sequel we mention only a few of them:

1◦ Generalized Gegenbauer weight w(t) = |t|µ(1 − t2)α, µ, α > −1, on [−1, 1].

The (monic) generalized Gegenbauer polynomialsW
(α,β)
k (t), β = (µ−1)/2, were in-

troduced by Lascenov [74] (see, also, Chihara [20, pp. 155–156]). These polynomials
can be expressed in terms of the Jacobi polynomials,

W
(α,β)
2k (t) =

k!

(k + α+ β + 1)k
P

α,β)
k (2t2 − 1),

W
(α,β)
2k+1 (t) =

k!

(k + α+ β + 2)k
xP

α,β+1)
k (2t2 − 1).

Notice that W
(α,β)
2k+1 (t) = tW

(α,β+1)
2k (t). Their three-term recurrence relation is

W
(α,β)
k+1 (t) = tW

(α,β)
k (t)− βkW

(α,β)
k−1 (t), k = 0, 1, . . . ,

W
(α,β)
−1 (t) = 0, W

(α,β)
0 (t) = 1,

where

β2k =
k(k + α)

(2k + α+ β)(2k + α+ β + 1)
, β2k−1 =

(k + β)(k + α+ β)

(2k + α+ β − 1)(2k + α+ β)
,

for k = 1, 2, . . . , except when α + β = −1; then β1 = (β + 1)/(α + β + 2). Some
applications of these polynomials in numerical quadratures and least square approx-
imation with constraint were given in [70] and [98], respectively.

2◦ The hyperbolic weight w(t) = 1/ cosh t on (−∞,+∞). The coefficients in
three-term recurrence relation are given by

αk = 0, β0 = π, βk =
π2k2

4
(k ≥ 1).

For details and generalizations see Chihara [20, pp. 191–193].

3◦ The logistic weight w(t) = e−t/(1 + e−t)2 on (−∞,+∞). Here we have

αk = 0, β0 = 1, βk =
π2k4

4k2 − 1
(k ≥ 1).

A system of orthogonal polynomials for which the recursion coefficients are not
known explicitly will be said to be strong non-classical orthogonal polynomials. In
such cases there are a few known approaches to compute the first n coefficients αk,
βk, k = 0, 1, . . . , n− 1. These then allow us to compute all orthogonal polynomials
of degree ≤ n by a straightforward application of the three-term recurrence relation
(2.2.11).
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One of approaches for numerical construction of the monic orthogonal polynomi-
als {π̂k} is the method of moments , or precisely, Chebyshev or modified Chebyshev

algorithm.

The second method makes use of explicit representations

αk =
(tπ̂k, π̂k)

(π̂k, π̂k)
(k ≥ 0), β0 = (π̂0, π̂0), βk =

(π̂k, π̂k)

(π̂k−1, π̂k−1)
(k ≥ 1),

in terms of the inner product ( . , . ). The method is known as the Stieltjes procedure.
Using a discretization of the inner product by some appropriate quadrature

(f, g) ≈ (f, g)N =

N
∑

k=1

wkf(xk)g(xk), wk > 0,

the corresponding method is called the discretized Stieltjes procedure.

For details in numerical construction of orthogonal polynomials see papers of
Gautschi [32], [39], [41], [44]. In Section 3 we will mention a few non-classical
weights for which the recursion coefficients were constructed numerically as well as
the corresponding Gaussian formulas.

2.4. On s-orthogonal polynomials. In this subsection we give a short account
of so-called s-orthogonal polynomials which are connected with Gauss-Turán quad-
rature formulas (see Turán [126]).

2.4.1. Turán quadratures and s-orthogonal polynomials. In 1950 P. Turán inves-
tigated numerical quadratures with multiple nodes,

(2.4.1)

∫ 1

−1

f(t) dt =
n
∑

ν=1

k−1
∑

i=0

Ai,νf
(i)(τν) +Rn,k(f),

where

Ai,ν =

∫ 1

−1

ℓν,i(t) dt (ν = 1, . . . , n; i = 0, 1, . . . , k − 1)

and ℓν,i(t) are the fundamental functions of Hermite interpolation. The Ai,ν are
Cotes number of higher order. This formula is exact if f is a polynomial at most
kn− 1 and the points −1 ≤ τ1 < τ2 < · · · < τn ≤ 1 are arbitrary.

For k = 1 this formula can be exact for all polynomials of degree ≤ 2n − 1 if
the nodes τν are the zeros of the Legendre polynomial Pn. That is the well-known
Gauss-Legendre quadrature.

Because of the theorem of Gauss it is natural to ask whether knots τν can be
chosen so that the quadrature formula (2.4.1) will be exact for polynomials of degree
not exceeding (k+1)n−1. Turán [126] showed that the answer is negative for k = 2,
and for k = 3 it is positive. He proved that the knots τν should be chosen as the
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zeros of the monic polynomial π∗(t) = tn + · · · , which minimizes the following
integral

∫ 1

−1

πn(t)
4 dt,

where πn(t) = tn + an−1t
n−1 + · · ·+ a1t+ a0.

More generally, the answer is negative for even, and positive for odd k, and then
τν are the zeros of the polynomial minimizing

(2.4.2)

∫ 1

−1

πn(t)
k+1 dt.

For k = 1, π∗
n is the monic Legendre polynomial P̂n.

Because of the above, we put k = 2s + 1. Instead of (2.4.1) it is interesting
to investigate the analogous formula with some positive measure dλ(t) on the real
line R,

(2.4.3)

∫

R

f(t) dλ(t) =

2s
∑

i=0

n
∑

ν=1

Ai,νf
(i)(τν) +R(f),

which must be exact for all polynomials of degree at most 2(s+ 1)n− 1. The role
of the integral (2.4.2) is taken over

Fs =

∫

R

πn(t)
2s+2 dλ(t),

where Fs ≡ Fs(a0, . . . , an−1), πn(t) =
n
∑

k=0

akt
k, an = 1. In order to minimize Fs we

must have

(2.4.4)

∫

R

πn(t)
2s+1tk dλ(t) = 0, k = 0, 1, . . . , n− 1.

Usually, instead of πn(t) we write Pn,s(t).

The case dλ(t) = w(t) dt on [a, b] has been considered by the Italian mathe-
maticians Ossicini [109], Ghizzetti and Ossicini [55], Guerra [60–61]. Is known that
there exists a unique polynomial Pn,s ∈ Pn satisfying the conditions (2.4.4), and
whose zeros are real, distinct and located in the support interval of the measure
dλ(t). These polynomials are known as s-orthogonal (or s-self associated) polyno-

mials with respect to the measure dλ(t) on R.

For s = 0 we have the standard case of orthogonal polynomials on the real line
and the generalized Gauss-Turán formula (2.4.3) reduces to the Gauss-Christoffel
quadrature (cf. Section 3).
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In the case of the Chebyshev measure dλ(t) = (1− t2)−1/2 dt on (−1, 1), in 1930

Bernstein [14] showed that the monic Chebyshev polynomial T̂n(t) = 21−nTn(t)
minimizes the integral Fs for any s ≥ 0. Therefore, in this case, the nodes in (2.4.3)
are the Chebyshev points τν = cos[(2ν − 1)π/2n], ν = 1, . . . , n, for any s ≥ 0. For
other measures the case when s > 0 is very difficult.

2.4.2. Construction of s-orthogonal polynomials. G. Vincenti [128] has consid-
ered an iterative process to compute the coefficients of s-orthogonal polynomials in
a special case when dλ(t) = w(t) dt with an even weight function on a symmetric
interval, say [−b, b]. Then Pn,s(−t) = (−1)nPn,s(t). Vincenti applied his process
to the Legendre case. When n and s increase, the process becomes ill-conditioned.
A stable procedure for such a purpose was given by Milovanović [91]. The main
idea was an interpretation of the “orthogonality conditions” (2.4.4) as orthogonal-
ity with respect to the positive measure dµ(t) = dµn,s(t) = (πn,s

n (t))2s dλ(t). Thus,
these conditions can be interpreted as

∫

R

πn,s
ν (t)ti dµ(t) = 0, i = 0, 1, . . . , ν − 1,

where {πn,s
ν } is a sequence of monic orthogonal polynomials with respect to the

new measure dµ(t). Of course, Pn,s( · ) = πn,s
n ( · ). As we can see, the polynomials

πn,s
ν , ν = 0, 1, . . . , are implicitly defined, because the measure dµ(t) depends of
πn,s
n (t)

(

= πn(t)
)

. The general class of such polynomials was introduced by H.
Engels (see [23, pp. 214–226]).

We will write only πν instead of πn,s
ν (·). These polynomials satisfy a three-term

recurrence relation

πν+1(t) = (t− αν)πν(t)− βνπν−1(t), ν = 0, 1, . . . ,

π−1(t) = 0, π0(t) = 1,

where, because of orthogonality,

αν = αν(n, s) =
(tπν , πν)

(πν , πν)
=

∫

R
tπ2

ν(t) dµ(t)
∫

R
π2
ν(t) dµ(t)

,

βν = βν(n, s) =
(πν , πν)

(πν−1, πν−1)
=

∫

R
tπ2

ν(t) dµ(t)
∫

R
π2
ν−1(t) dµ(t)

,

and, for example, β0 =
∫

R
dµ(t).

Finding the coefficients αν , βν (ν = 0, 1, . . . , n − 1) gives us access to the first
n + 1 orthogonal polynomials π0, π1, . . . , πn. Of course, we are interested only
in the last of them, i.e., πn ≡ πn,s

n . Thus, for n = 0, 1, . . . , the diagonal (boxed)
elements in Table 2.4.1 are our s-orthogonal polynomials πn,s

n .

Table 2.4.1
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n dµn,s(t) Orthogonal Polynomials

0 (π0,s
0 (t))2s dλ(t) π0,s

0

1 (π1,s
1 (t))2s dλ(t) π1,s

0 π1,s
1

2 (π2,s
2 (t))2s dλ(t) π2,s

0 π2,s
1 π2,s

2

3 (π3,s
3 (t))2s dλ(t) π3,s

0 π3,s
1 π3,s

2 π3,s
3

...

A stable scheme, based on Stieltjes’ procedure, that computes πn,s
n in an iterative

fashion, was developed by Milovanović [91].

2.5. Sobolev type orthogonal polynomials. Sobolev type orthogonal polyno-
mials appeared in works of Lewis [77], Althammer [7], Brenner [16], and others. In
general, the inner product can be introduced by

(2.5.1) 〈f, g〉 =
m
∑

k=0

∫

R

f (k)(t)g(k)(t) dλk(t),

where dλk(t), k = 0, 1, . . . ,m are given positive measures on R.

Let {sn} denote a set of polynomials orthogonal with respect to the inner product
(2.5.1). In the case m = 0, i.e., when 〈f, g〉 reduces to the inner product (f, g) =
∫

R
f(t)g(t) dλ0(t), let {πk} be the corresponding set of orthogonal polynomials. It

is clear that the all zeros of πn(t) lie in the interior of the interval ∆(dλ0) (see
Theorem 2.1.2).

Althammer [7] pointed out that the position of the zeros of sn(t) can be different
from those of πn(t). For example for m = 1, if dλ0(t) is the Legendre measure,
then the measure dλ1(t) on (−1, 1) can be chosen in such a way that sn(t) has a
zero outside (−1, 1). Brenner [16] also obtained a similar result for m = 1 and
the Laguerre measure dλ0(t) = exp(−t) dt on (0,+∞). However, in both cases the
measure dλ1(t) can be chosen that sn(t) has all simple zeros inside of interval of
orthogonality. Zero distribution and behaviour of orthogonal polynomials in such
cases were considered by Cohen [21].

Recently several authors ([4], [67–68], [81–82], [84], [86–88]) studied polynomials
orthogonal with respect to the inner product (2.5.1), where the measures dλk(t),
k ≥ 1, are concentrated in one point t = c (discrete Sobolev inner product),

(2.5.2) 〈f, g〉 =
∫

R

f(t)g(t) dλ(t) +
m
∑

k=0

Mkf
(k)(c)g(k)(c),
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where Mk ≥ 0, k = 0, 1, . . . ,m. Taking dλ(t) =
(

tα exp(−t)/Γ(α+ 1)
)

dt, α > −1,
on (0,+∞) R. Koekoek [67] proved that the coefficients Ak, k = 0, 1, . . . ,m + 1,

can be chosen in such a way that the polynomials
{

Lα,M0,M1,... ,Mm
n (t)

}+∞

n=0
, defined

by

Lα,M0,M1,... ,Mm
n (t) =

m+1
∑

k=0

AkD
kL(α)

n (t),

are orthogonal with respect to the inner product (2.5.2). These polynomials satisfy
a (2m+ 3)-terms recurrence relation of the form

tm+1Lα,M0,M1,... ,Mm

n (t) =

n+m+1
∑

k=n−m−1

E
(n)
k Lα,M0,M1,... ,Mm

k (t).

Also some cases of two symmetric points t = ±c were investigated by Bavinck
and Meijer [12–13].

For more details see papers [4], [65], [81–82], [110], as well as a survey of the
results and a complete list of references [80].

3. Some applications of orthogonal polynomials on the real line

This section is devoted to some important applications of orthogonal polynomials
on the real line as Gauss-Christoffel quadrature formulas, moment-preserving spline
approximation and summation of slowly convergent series.

3.1. Gaussian type of quadratures. One of the important uses of orthogonal
polynomials is in the construction of quadrature formulas of maximum, or nearly
maximum, algebraic degree of exactness for integrals involving a positive measure
dλ(t).

The n-point Gaussian quadrature formula

(3.1.1)

∫

R

f(t)dλ(t) =
n
∑

ν=1

λ(n)ν f(τ (n)ν ) +Rn(f)

has maximum algebraic degree of exactness 2n− 1, in the sense that Rn(f) = 0 for

all f ∈ P2n−1. In formula (3.1.1), τν = τ
(n)
ν are the Gauss nodes , and λν = λ

(n)
ν

the Gauss weights or Christoffel numbers . This formula is also known as Gauss-

Christoffel quadrature formula. A nice survey on that was given by Gautschi [31].

The nodes τν are the zeros of the n-th orthogonal polynomial πn(·, dλ), and
the weights λν , which are all positive, can be also expressed in terms of the same
orthogonal polynomials. As we have seen in 2.1, the nodes τν are the eigenvalues
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of the n-th order Jacobi matrix

Jn(dλ) =

















α0

√
β1 O√

β1 α1

√
β2

√
β2 α2

. . .
. . .

. . .
√

βn−1

O
√

βn−1 αn−1

















,

where αν and βν are the coefficients in three-term recurrence relation for the monic
orthogonal polynomials πn(·, dλ). The weights λν are given by

λν = β0v
2
ν,1, ν = 1, . . . , n,

where β0 =
∫

R
dλ(t) and vν,1 is the first component of the normalized eigenvector

vν corresponding to the eigenvalue τν (cf. Golub and Welsch [56], and Gautschi
[29]),

Jn(dλ)vν = τνvν , v
T
ν vν = 1, ν = 1, . . . , n.

There are well-known and efficient algorithms, such as the QR algorithm with shifts,
to compute eigenvalues and eigenvectors of symmetric tridiagonal matrices (cf. the
routine GAUSS in the package ORTHPOL given by Gautschi [44]). There are many
methods for estimating the remainder term Rn(f) in (3.1.1). Error bounds in the
class of analytic functions were investigated by Gautschi and Varga [50].

A simple modification of the previous method can be applied to the construction
of Gauss-Radau and Gauss-Lobatto quadrature formulas.

In sequel we mention a few non-classical measures dλ(t) = w(t) dt for which
recursion coefficients αk(dλ), βk(dλ), k = 0, 1, . . . , n − 1, have been tabulated in
the literature and used in the construction of Gaussian quadratures.

1◦ One-side Hermite weight w(t) = exp(−t2) on [0, c], 0 < c ≤ +∞. This
distribution w(t) dλ(t) is known as the Maxwell (velocity) distribution. The cases
c = 1, n = 10 and c = +∞, n = 15 were considered by Steen, Byrne and Gelbard
[120] (see also Gautschi [41]).

2◦ Logarithmic weight w(t) = tα log(1/t), λ > −1 on (0, 1). Piessens and Bran-
ders [111] considered cases when α = 0,±1/2,±1/3,−1/4,−1/5 (see also Gautschi
[39]).

3◦ Airy weight w(t) = exp(−t3/3) on (0,+∞). The inhomogeneous Airy func-
tions Hi(x) and Gi(x), arise in theoretical chemistry (e.g. in harmonic oscillator
models for large quantum numbers) and their integral representations (see Lee [75])
are given by

Hi(x) =
1

π

∫ +∞

0

w(t)etx dt,

Gi(x) = − 1

π

∫ +∞

0

w(t)e−tx/2 cos
(

√
3

2
tx+

2π

3

)

dt.
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These functions can be effectively evaluated by Gaussian quadrature relative to
the Airy weight w(t). It needs orthogonal polynomials with respect to this weight.
Gautschi [35] computed the recursion coefficients for n = 15 with 16 decimal digits
after the decimal point (D).

3◦ Reciprocal gamma function w(t) = 1/Γ(t) on (0,+∞). Gautschi [34] deter-
mined the recursion coefficients for n = 40 with 20 significant decimal digits (S).
This function could be useful as a probability density function in reliability theory
(see Fransén [25]).

4◦ Einstein’s and Fermi’s weight functions on (0,+∞),

(3.1.2) w1(t) = ε(t) =
t

et − 1
and w2(t) = ϕ(t) =

1

et + 1
.

These functions arise in solid state physics. Integrals with respect to the measure
dλ(t) = ε(t)r dt, r = 1 and r = 2, are widely used in phonon statistics and lattice
specific heats and occur also in the study of radiative recombination processes.
Similarly, integrals with ϕ(t) are encountered in the dynamics of electrons in metals.
For w1(t), w2(t), w3(t) = ε(t)2 and w4(t) = ϕ(t)2, Gautschi and Milovanović [46]
determined the recursion coefficients αk and βk, for n = 40 with 25 S, and gave
an application of the corresponding Gauss-Christoffel quadratures to summation of
slowly convergent series.

5◦ The hyperbolic weights on (0,+∞),

(3.1.3) w1(t) =
1

cosh2 t
and w2(t) =

sinh t

cosh2 t
.

The recursion coefficients αk, βk, for n = 40 with 30 S, were obtained by Milovanović
[95]. The discretization was based on the Gauss-Laguerre quadrature rule.

3.2. Moment-preserving spline approximation. In this subsection we give
some applications of orthogonal polynomials and Gauss-Christoffel and generalized
Gauss-Turán quadratures to the moment-preserving spline approximation of func-
tions. Such a problem of approximation was appeared in physics (see Laframboise
and Stauffer [71] and Calder and Laframboise [18]). Namely, it was the problem
of finding splines that reproduce as many as possible of the initial moments of a
given spherically symmetric function t 7→ f(t), t = ‖x‖, 0 ≤ t < ∞, in Rd, d ≥ 1.
Gautschi [36] solved this problem of approximating by a piecewise constant function

t 7→ sn(t) =

n
∑

ν=1

aνH(τν − t) (aν ∈ R, 0 < τ1 < · · · < τn < +∞),

where H is the Heaviside step function. Also, he considered an approximation by a
linear combination of Dirac delta functions. The approximation was to preserve as
many moments of f as possible. This work was extended to spline approximation
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of arbitrary degree by Gautschi and Milovanović [49]. Namely, they considered a
spline function of degree m ≥ 0 on [0,+∞), vanishing at t = +∞, with n ≥ 1
positive knots τν (ν = 1, . . . , n), which can be written in the form

(3.2.1) sn,m(t) =

n
∑

ν=1

aν(τν − t)m+ (aν ∈ R, 0 ≤ t < +∞),

where the plus sign on the right is the cutoff symbol, u+ = u if u > 0 and u+ = 0
if u ≤ 0. Given a function t 7→ f(t) on [0,+∞), they determined sn,m such that

(3.2.2)

∫ +∞

0

sn,m(t)tj dV =

∫ +∞

0

f(t)tj dV (j = 0, 1, . . . , 2n− 1),

where dV is the volume element depending on the geometry of the problem. (For
example, dV = Ctd−1 dt if d > 1, where C is some constant, and dV = dt if d = 1
were used in [49]. For some details see Gautschi [40].) In any case, the spline sn,m is
such to faithfully reproduce the first 2n moments of f . Under suitable assumptions
on f , it was shown that the problem has a unique solution if and only if certain
Gauss-Christoffel quadratures exist corresponding to a moment functional or weight
distribution depending on f . Existence, uniqueness and pointwise convergence of
such approximation were analyzed. We mention two main results (Gautschi and
Milovanović [49]) in the case when dV = dt.

Theorem 3.2.1. Let f ∈ Cm+1[0,+∞] and

∫ +∞

0

t2n+m+1|f (m+1)(t)| dt < +∞ .

Then a spline function sn,m of the form (3.2.1) with positive knots τν , that satisfies
(3.2.2), exists and is unique if and only if the measure

(3.2.3) dλ(t) =
(−1)m+1

m!
tm+1f (m+1)(t) dt on [0,+∞)

admits an n-point Gauss-Christoffel quadrature formula

(3.2.4)

∫ +∞

0

g(t) dλ(t) =

n
∑

ν=1

λ(n)ν g(τ (n)ν ) +Rn(g; dλ),

with distinct positive nodes τ
(n)
ν , where Rn(g; dλ) = 0 for all g ∈ P2n−1. In that

event, the knots τν and weights aν in (3.2.1) are given by

τν = τ (n)ν , aν = τ−(m+1)
ν λ(n)ν (ν = 1, . . . , n).
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Theorem 3.2.2. Given f as in Theorem 3.2.2, assume that the measure dλ in

(3.2.3) admits the n-point Gauss-Christoffel quadrature formula (3.2.4) with distinct

positive nodes τν = τ
(n)
ν and the remainder term Rn(g; dλ). Define

σt(x) = x−(m+1)(x− t)m+ .

Then, for any t > 0, we have for the error of the spline approximation (3.2.1),
(3.2.2),

f(t)− sn,m(t) = Rn(σt; dλ).

For example, if f is completely monotonic on [0,+∞) then dλ(t) in (3.2.3) is a
positive measure for every m and the Gauss-Christoffel quadrature formula exists

uniquely, with n distinct and positive nodes τ
(n)
ν . Theorem 3.2.2 shows that sn,m

converges pointwise to f as n → +∞ if the Gauss-Christoffel quadrature formula
(3.2.4) converges for the particular function x 7→ g(x) = σt(x) (x > 0).

Similarly, we can consider an approximation of a given function t 7→ f(t) on
[0,+∞) by defective splines. A spline function of degree m ≥ 2 and defect k on
the interval 0 ≤ t < +∞, vanishing at t = +∞, with n ≥ 1 positive knots τν
(ν = 1, . . . , n), can be written in the form

(3.2.5) sn,m(t) =
n
∑

ν=1

m
∑

i=m−k+1

ai,ν(τν − t)i+

where ai,ν are real numbers.

Under suitable assumptions on f and k = 2s+1, Milovanović and Kovačević [99–
100] showed that the approximation problem has a unique solution if and only if
certain generalized Turán quadratures exist corresponding to a measure depending
on f (cf. Subsection 2.4).

Theorem 3.2.3. Let f ∈ Cm+1[0,+∞] and

∫ +∞

0

t2(s+1)n+m+1|f (m+1)(t)| dt < +∞ .

Then a spline function sn,m of the form (3.2.5) with k = 2s+ 1 and positive knots

τν , that satisfies (3.2.2), with j = 0, 1, . . . , 2(s+1)n− 1, exists and is unique if and

only if the measure

dλ(t) =
(−1)m+1

m!
tm+1f (m+1)(t) dt on [0,+∞)

admits a generalized Gauss-Turán quadrature formula

(3.2.6)

∫ +∞

0

g(t) dλ(t) =

n
∑

ν=1

2s
∑

i=0

A
(n)
i,ν g

(i)(τ (n)ν ) +RG
n (g; dλ),
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with distinct positive nodes τ
(n)
ν , where RG

n (g; dλ) = 0 for all g ∈ P2(s+1)n−1. The

knots τν in (3.2.5) are given by τν = τ
(n)
ν , and coefficients ai,ν by the following

triangular system

A
(n)
i,ν =

2s
∑

j=i

(m− j)!

m!

(

j

i

)

[

Dj−itm+1
]

t=τν
am−j,ν (i = 0, 1, . . . , 2s),

where D is the standard differentiation operator.

Theorem 3.2.4. Given f as in Theorem 3.2.3, assume that the measure dλ(t)
admits the n-point generalized Gauss-Turán quadrature formula (3.2.6) with distinct

positive nodes τν = τ
(n)
ν and the remainder term RG

n (g; dλ). Then the error of the

spline approximation is given by

f(t)− sn,m(t) = RG
n (σt; dλ) (t > 0),

where x 7→ σt(x) = x−(m+1)(x− t)m+ .

Again, if f is completely monotonic on [0,+∞) then dλ(t) is a positive measure
for every m and the generalized Gauss-Turán quadrature formula exists uniquely,

with n distinct and positive nodes τ
(n)
ν .

Frontini, Gautschi and Milovanović [27] and Frontini and Milovanović [28] consid-
ered analogous problems on an arbitrary finite interval, which can be standardized
to [a, b] = [0, 1]. If the approximations exist, they can be represented in terms of
generalized Gauss-Lobatto and Gauss-Radau quadrature formulas relative to ap-
propriate measures depending on f , when the defect k = 1. Using defective splines
with odd defect k = 2s + 1, approximation problems reduce to certain general-
ized Gauss-Turán-Lobatto and Gauss-Turán-Radau quadrature formulas. A more
general case with variable defects was considered by Gori and Santi [57]. In that
case, approximation problems reduce to Gauss-Turán-Stancu type of quadratures
and σ-orthogonal polynomials (cf. Gautschi [31], Gori, Lo Cascio and Milovanović
[58]).

Further extensions of the moment-preserving spline approximation on [0, 1] are
given by Micchelli [89]. He relates this approximation to the theory of the monos-
plines.

3.3. Summation of slowly convergent series. We consider convergent series
of the type

(3.3.1) T =
+∞
∑

k=1

ak and S =
+∞
∑

k=1

(−1)kak

and introduce the notation: T = T (m−1) + T
(∞)
m , S = S(m−1) + S

(∞)
m ,

T (n)
m =

n
∑

k=m

ak, S(n)
m =

n
∑

k=m

(−1)kak,

24



where T (m−1) and S(m−1) are the corresponding partial sums of (3.3.1).

Some methods of summation these series can be found, for example, in the books
of Henrici [63], Lindelöf [78], and Mitrinović and Kečkić [104].

Recently, a few new summation/integration procedures for slowly convergent
series are developed (see [46], [42–43], [95–97]). Here we give a short account of
these methods.

3.3.1. Laplace transform method. Suppose that the general term of T (and S)
is expressible in terms of the derivative of a Laplace transform, or in terms of the
Laplace transform itself. Namely, let ak = F ′(k), where

F (p) =

∫ +∞

0

e−ptf(t) dt, Re p ≥ 1.

Then
+∞
∑

k=1

F ′(k) = −
+∞
∑

k=1

∫ +∞

0

te−ktf(t) dt = −
∫ +∞

0

t

et − 1
f(t) dt.

Similarly, for “alternating” series, one obtains

+∞
∑

k=1

(−1)kF ′(k) =

∫ +∞

0

t

et + 1
f(t) dt

and
+∞
∑

k=1

(−1)kF (k) = −
∫ +∞

0

1

et + 1
f(t) dt.

In a joint paper with Gautschi [46] we considered the construction of Gaussian
quadrature formulas on (0,+∞),

(3.3.2)

∫ +∞

0

g(t)w(t) dt =

n
∑

ν=1

λνg(τν) +Rn(g),

with respect to the weight functions given by (3.1.2). If the series T and S are
slowly convergent and the respective function f on the right of the equalities above
is smooth, then low-order Gaussian quadrature (3.3.2) applied to the integrals on
the right, provides a possible summation procedure. Numerical examples show
fast convergence of this procedure (see [46, §4]). A problem which arises with this
procedure (Laplace transform method) is the determination of the original function
f for a given series. For some other applications see [42–43].
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3.3.2. Contour Integration Over a Rectangle. Suppose now that ak = f(k),
where z 7→ f(z) is a holomorphic function in the region

Gm =
{

z ∈ C
∣

∣ Re z ≥ α, m− 1 < α < m
}

, m ∈ N.

In [95] we derived an alternative summation/integrationmethod for the series (3.3.1)
which requires the indefinite integral F of f chosen so as to satisfy the following
decay conditions:

(C1) F is a holomorphic function in the region Gm;

(C2) lim
|t|→+∞

e−c|t|F (x+ it/π) = 0, uniformly for x ≥ α;

(C3) lim
x→+∞

∫ +∞

−∞ e−c|t|
∣

∣F (x+ it/π)
∣

∣ dt = 0,

where c = 2 or c = 1, when we consider T
(n)
m or S

(n)
m , respectively.

Namely, taking Γ = ∂G and

G =
{

z ∈ C | α ≤ Re z ≤ β, | Im z| ≤ δ

π

}

,

where m− 1 < α < m, n < β < n+ 1 (m,n ∈ Z,m ≤ n), we obtain that

T (n)
m =

1

2πi

∮

Γ

f(z)
π

tanπz
dz and S(n)

m =
1

2πi

∮

Γ

f(z)
π

sinπz
dz.

After integration by parts, these formulas reduce to

(3.3.3) T (n)
m =

1

2πi

∮

Γ

( π

sinπz

)2

F (z) dz

and

(3.3.4) S(n)
m =

1

2πi

∮

Γ

( π

sinπz

)2

cosπz F (z) dz,

where z 7→ F (z) is an integral of z 7→ f(z).

Taking α = αm = m−1/2, β = βn = n+1/2, and letting δ → +∞ and n→ +∞,
under conditions (C1) – (C3), the integrals in (3.3.3) and (3.3.4) over Γ reduce to
integrals along the line z = αm + iy (−∞ < y < +∞).

After some calculations, we reduce T and S to a problem of quadrature on
(0,+∞) with respect to the hyperbolic weight functions given by (3.1.3). Thus,

T = T (m−1) +

∫ +∞

0

Φ (αm, t/π)w1(t) dt
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and

S = S(m−1) +

∫ +∞

0

Ψ(αm, t/π)w2(t) dt,

where w1 and w2 are defined in (3.1.3) and

Φ(x, y) = −1

2
[F (x+ iy) + F (x− iy)] ,

Ψ(x, y) =
(−1)m

2i
[F (x+ iy)− F (x− iy)] .

Numerical experiments shows that is enough to use only the quadrature with
respect to the first weight w1(t) = 1/ cosh2 t. Namely, in the series S we can
include the hyperbolic sine as a factor in the corresponding integrand so that

S = S(m−1) +

∫ +∞

0

Ψ(αm, t/π) sinh(t)w1(t) dt.

Using this approach we gave an appropriate method for calculating values of the

Riemann zeta function ζ(z) =
+∞
∑

k=1

k−z, which can be transformed to a weighted in-

tegral on (0,+∞) of the function t 7→ exp
(

−(z/2) log(1+β2
mt

2)
)

cos(z arctan(βmt)),

βm = 2/((2m + 1)π), m ∈ N0, involving the hyperbolic weight w(t) = 1/ cosh2 t
(see [96]).

Also some other methods for series with irrational terms were given in [97].

4. Orthogonality on the unit circle

Another type of orthogonality is orthogonality on the unit circle. The polynomi-
als orthogonal on the unit circle with respect to a given weight function have been
introduced and studied by Szegő [122–123] and Smirnov [116–117]. A more general
case was considered by Achieser and Krĕın [1], Geronimus [51–52], P. Nevai [107–
108], Alfaro and Marcellán [5], Marcellán and Sansigre [83], etc. These polynomials
are linked with many questions in the theory of time series, digital filters, statistics,
image processing, scattering theory, control theory and so on.

In the next three sections we give some basic definitions and properties of poly-
nomials orthogonal on the unit circle.

4.1. Basic definitions and properties of orthogonal polynomials. Let an
inner product defined by

(4.1.1) (f, g) =
1

2π

∫ 2π

0

f(eiθ)g(eiθ) dµ(θ),
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where dµ(θ) is a finite positive measure on the interval [0, 2π] whose support is
an infinite set. In that case there is a unique system of orthonormal polynomials
{ϕk}k∈N0

such that

(4.1.2) (ϕk, ϕm) = δkm, ϕk(z) = bkz
k + · · · , bk > 0 (k = 0, 1, . . . ).

If θ 7→ µ(θ) is an absolutely continuous function on [0, 2π], then we say that µ′(θ) =
w(θ) is a weight function.

The monic polynomials orthogonal on the unit circle with respect to the inner
product (4.1.1) we will denote by φk(z). According to (4.1.2) we have that φk(z) =
ϕk(z)/bk.

Theorem 4.1.1. The monic orthogonal polynomials {φk} on the unit circle |z| = 1
satisfy the recurrence relations

(4.1.3) φk+1(z) = zφk(z) + φk+1(0)φ
∗
k(z), φ∗k+1(z) = φ∗k(z) + φk+1(0)zφ

∗
k(z),

for k = 0, 1, . . . , where φ∗k(z) = zkφ̄k(1/z).

In order to prove the first recurrence relation in (4.1.3) we put

(4.1.4)
φk(z)− zk

zk−1
=

n−1
∑

ν=0

c(k)ν φ̄ν(1/z).

Multiplying this equality by φm(z), where 0 ≤ m ≤ k − 1, putting z = eiθ and
integrating, we obtain

1

2π

∫ 2π

0

φk(e
iθ)
φm(eiθ)

ei(k−1)θ
dµ(θ) − 1

2π

∫ 2π

0

eiθφm(eiθ) dµ(θ) = c(k)m ‖φm‖2,

where

‖φm‖2 =
1

2π

∫ 2π

0

φν(e
iθ)φm(eiθ) dµ(θ).

Because of orthogonality, the first integral on the left hand side in the previous
equality vanish, and we have

c(k)m =
1

2π‖φm‖2
∫ 2π

0

eiθφm(eiθ) dµ(θ) (m = 0, 1, . . . , n− 1).

We note that c
(k)
m does not depend on k and therefore we write c

(k)
m = cm. Using

(4.1.4) we have

φk(z) = zk + zk−1
n−1
∑

ν=0

cν φ̄ν(1/z),
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wherefrom we obtain

(4.1.5) φk+1(z) = zφk(z) + zkckφ̄k(1/z) = zφk(z) + ckφ
∗
k(z).

Since φ∗k(0) = 1, setting z = 0 we find ck = φk+1(0). Thus, (4.1.5) reduces to the
first relation in (4.1.3).

As we can see recurrence relations (4.1.3) are not three-term relations like (2.3).
The values φk(0) are called reflection parameters or Szegő parameters. Defining a

sequence of parameters {ak} by ak = −φk+1(0), k = 0, 1, . . . , and using (4.1.3),
Geronimus [53, Chapter VIII] derived the following three-term recurrence relations:

āk−1φk+1(z) = (āk−1z + āk)φk(z)− ākz(1− |ak−1|2)φk−1(z),

ak−1φ
∗
k+1(z) = (ak−1z + ak)φ

∗
k(z)− akz(1− |ak−1|2)φ∗k−1(z),

where k = 1, 2, . . . , and φ0(z) = 1, φ1(z) = z − ā0.

There is a relation between parameters {ak} and moments {ck}, defined by

ck =
1

2π

∫ 2π

0

e−ikθ dµ(θ), k = 0, 1, . . . .

Introducing Toeplitz determinants ∆k = |ci−j |k0 , c−k = c̄k, k = 0, 1, . . . , then one
can express φk(z) in the explicit form

φk(z) =
1

∆k−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

c0 c−1 c−2 . . . c−k

c1 c0 c−1 c−k+1

...
ck−1 ck−2 ck−3 c−1

1 z z2 zk

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= zk + lower degree terms,

where k = 0, 1, . . . and ∆−1 = 1. According to the previous relations, one can get
the following relation

(4.1.6)
∆k

∆k−1
= c0

k−1
∏

ν=0

(

1− |aν |2
)

(n ∈ N).

For a given sequence {ak} such that

(4.1.7) |ak| < 1 (k ∈ N0),

one can construct a sequence of (monic) polynomials {φk(z)} and determine a non-
decreasing bounded function µ(θ) with infinitely many points of increase (see Geron-
imus [53]). Namely, (4.1.7) is equivalent to the condition ∆k > 0 for every k ∈ N0,
which is the necessary and sufficient condition for the existence of µ(θ).
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For orthonormal polynomials defined in (4.1.2) one can introduce the kernel

polynomial

Kn(z, w) =

n
∑

ν=0

ϕν(z)ϕν(w),

which can be expressed in the form

Kn(z, w) =
ϕ∗
n+1(z)ϕ

∗
n+1(w) − ϕn+1(z)ϕn+1(w)

1− z̄w
.

This analogue of the Christoffel-Darboux formula was proved by Szegő (cf. Freud
[26, p. 196]). Some characteristic values of Kn(z, w) are

Kn(0, z) = bnϕ
∗
n(z), Kn(0, 0) = b2n = ∆n−1/∆n,

where bn is the coefficient of zn in ϕ(z).

4.2. Extremal properties of orthogonal polynomials. An analogue of Theo-
rem 2.1.5 is the following result:

Theorem 4.2.1. Let P (z) =
n
∑

ν=0
aνz

ν, with an = 1, be an arbitrary monic polyno-

mial of degree n. Then

1

2π

∫ 2π

0

|P (z)|2 dµ(θ) ≥ ‖φn‖2 = b−2
n =

∆n

∆n−1
, z = eiθ,

with equality only if P (z) = φn(z) = ϕn(z)/bn. The ratio ∆n/∆n−1 is given by

(4.1.6).

We also mention the following statement (cf. Szegő [124, p. 290]):

Theorem 4.2.2. Let P ∈ Pn and

1

2π

∫ 2π

0

|P (z)|2 dµ(θ) = 1, z = eiθ.

For a fixed value of a, the maximum of |P (a)|2 is attained if

P (z) =
εKn(a, z)
√

Kn(a, a)
, |ε| = 1.

This maximum is given by Kn(a, a).

4.3. Zeros of orthogonal polynomials. For the zeros of orthogonal polynomials
on the unit circle one can prove the following result:
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Theorem 4.3.1. For n ≥ 1, all the zeros of φn(z) lie in |z| < 1.

A short proof of this theorem can be given in the following way (see Landau
[73]): Let γ be an arbitrary zero of φn(z), so that φn(z) = (z − γ)Qn−1(z), or

(4.3.1) φn(z) + γQn−1(z) = zQn−1(z),

with some Qn−1 ∈ Pn−1. Then, since φn is orthogonal to Pn−1, on taking norms
in (4.3.1) and using the fact that (zf, zg) = (f, g) we find

‖φn‖2 + |γ|2‖Qn−1‖2 = ‖zQn−1‖2 = ‖Qn−1‖2,

whence 1− |γ|2 = ‖φn‖2/‖Qn−1‖2 > 0, as required.

For zeros of the kernel polynomials z 7→ Kn(a, z) we have (see Szegő [124, p. 292]):

Theorem 4.3.2. For |a| < 1 the zeros of Kn(a, z) lie in |z| > 1, for |a| > 1 in

|z| < 1, and for |a| = 1 on |z| = 1.

At the end of this section, we mention that classical and semiclassical orthogonal
polynomials on the unit circle can also be considered (cf. Marcellán [79]). Similarly,
orthogonal polynomials on a rectifiable curve or arc lying in the complex plane can
be considered (cf. Geronimus [53], Szegő [124]).

5. Orthogonality on the semicircle and a circular arc

Polynomials orthogonal on the semicircle Γ0 = {z ∈ C | z = eiθ, 0 ≤ θ ≤ π} have
been introduced by Gautschi and Milovanović [47–48]. The inner product is given
by

(f, g) =

∫

Γ

f(z)g(z)(iz)−1 dz,

where Γ is the semicircle Γ = {z ∈ C | z = eiθ, 0 ≤ θ ≤ π}. Alternatively,

(f, g) =

∫ π

0

f(eiθ)g(eiθ) dθ.

This inner product is not Hermitian, but the corresponding (monic) orthogonal
polynomials {πk} exist uniquely and satisfy a three-term recurrence relation of the
form

πk+1(z) = (z − iαk)πk(z)− βkπk−1(z), k = 0, 1, 2, . . . ,

π−1(z) = 0, π0(z) = 1.

Notice that the inner product possesses the property (zf, g) = (f, zg).

The general case of complex polynomials orthogonal with respect to a complex

weight function was considered by Gautschi, Landau and Milovanović [45]. A gen-
eralization of such polynomials on a circular arc was given by M.G. de Bruin [17],
and further investigations were done by Milovanović and Rajković [103].
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5.1. Orthogonality on the semicircle. Let w: (−1, 1) 7→ R+ be a weight
function which can be extended to a function w(z) holomorphic in the half disc
D+ = {z ∈ C | |z| < 1, Im z > 0}, and

(5.1.1) (f, g) =

∫

Γ

f(z)g(z)w(z)(iz)−1 dz =

∫ π

0

f(eiθ)g(eiθ)w(eiθ) dθ.

Together with (5.1.1) consider the inner product

(5.1.2) [f, g] =

∫ 1

−1

f(x)g(x)w(x) dx,

which is positive definite and therefore generates a unique set of real (monic) or-
thogonal polynomials {pk}:

[pk, pm] = 0 for k 6= m and [pk, pm] > 0 for k = m (k,m ∈ N0).

On the other hand, the inner product (5.1.1) is not Hermitian; the second factor g
is not conjugated and the integration is not with respect to the measure |w(eiθ)| dθ.
The existence of corresponding orthogonal polynomials, therefore, is not guaranteed.

We call a system of complex polynomials {πk} orthogonal on the semicircle if

(πk, πm) = 0 for k 6= m and (πk, πm) > 0 for k = m (k,m ∈ N0).

where we assume that πk is monic of degree k.

The existence of the orthogonal polynomials {πk} can be established assuming
only that

(5.1.3) Re(1, 1) = Re

∫ π

0

w(eiθ) dθ 6= 0.

5.1.1. Existence and representation of πk. Assume that the weight function w
is positive on (−1, 1), holomorphic in D+ and such that the integrals in (5.1.1) and
(5.1.2) exist for smooth f and g (possibly) as improper integrals. We also assume
that the condition (5.1.3) is satisfied.

Let Cε, ε > 0, denote the boundary of D+ with small circular parts of radius
ε and centres at ±1 spared out and let P be the set of all algebraic polynomials.
Then, by Cauchy’s theorem, for any g ∈ P we have

0 =

∫

Cε

g(z)w(z)dz(5.1.4)

=

(

∫

Γε

+

∫

Cε,−1

+

∫

Cε,+1

)

g(z)w(z) dz +

∫ 1−ε

−1+ε
g(x)w(x)dx,
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where Γε and Cε,±1 are the circular parts of Cε (with radii 1 and ε respectively).
We assume that w is such that for all g ∈ P,

(5.1.5) lim
ε→0

∫

Cε,±1

g(z)w(z) dz = 0.

Then, if ε→ 0 in (5.1.4), we obtain

(5.1.6) 0 =

∫

C

g(z)w(z) dz =

∫

Γ

g(z)w(z) dz +

∫ 1

−1

g(x)w(x) dx, g ∈ P.

The (monic, real) polynomials {pk}, orthogonal with respect to the inner product
(5.1.2), as well as the associated polynomials of the second kind,

qk(z) =

∫ 1

−1

pk(z)− pk(x)

z − x
w(x) dx (k = 0, 1, 2, . . . ),

are known to satisfy a three-term recurrence relation of the form

(5.1.7) yk+1 = (z − ak)yk − bkyk−1 (k = 0, 1, 2, . . . ),

where

(5.1.8) y−1 = 0, y0 = 1 for {pk} and y−1 = −1, y0 = 0 for {qk}.

Denote by mk and µk the moments associated with the inner products (5.1.1) and
(5.1.2), respectively,

µk = (zk, 1), mk = [xk, 1], k ≥ 0,

where, in view of (5.1.8), b0 = m0.

In [45], Gautschi, Landau and Milovanović proved the following result:

Theorem 5.1.1. Let w be a weight function, positive on (−1, 1), holomorphic in

D+ = {z ∈ C | |z| < 1, Im z > 0}, and such that (5.1.5) is satisfied and the integrals

in (5.1.6) exist (possibly) as improper integrals. Assume in addition that

Re(1, 1) = Re

∫ π

0

w(eiθ) dθ 6= 0.

Then there exists a unique system of (monic, complex ) orthogonal polynomials {πk}
relative to the inner product (5.1.1). Denoting by {pk} the (monic, real) orthogonal
polynomials relative to the inner product (5.1.2), we have

(5.1.9) πk(z) = pk(z)− iθk−1pk−1(z) (k = 0, 1, 2, . . . ),
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where

(5.1.10) θk−1 =
µ0pk(0) + iqk(0)

iµ0pk−1(0)− qk−1(0)
(k = 0, 1, 2, . . . ).

Alternatively,

(5.1.11) θk = iak +
bk
θk−1

(k = 0, 1, 2, . . . ); θ−1 = µ0,

where ak, bk are the recursion coefficients in (5.1.7) and µ0 = (1, 1). In particular,

all θk are real (in fact, positive) if ak = 0 for all k ≥ 0. Finally,

(5.1.12) (πk, πk) = θk−1[pk−1, pk−1] 6= 0 (k = 1, 2, . . . ), (π0, π0) = µ0.

As we can see, relation (5.1.9), with (5.1.10), gives a connection between orthog-
onal polynomials on the semicircle and the standard polynomials orthogonal on
[−1, 1] with respect to the same weight function w. The norms of these polynomials
are in relation (5.1.12).

We mention now two interesting examples from [45]:

Example 5.1.1. Let w(z) = 1+z. Since µ0 = (1, 1) = π+2i, Reµ0 6= 0, the orthogonal

polynomials {πk} exist. Furthermore, b0 = m0 = 2, ak = (2k + 1)−1(2k + 3)−1 for k ≥ 0,

and bk = k(k + 1)(2k + 1)−2 for k ≥ 1, so that by (5.1.11),

θ0 =
π − 4i

3(2− iπ)
, θ1 =

3π + 8i

5(4 + iπ)
, . . . .

Then, from (5.1.7) and (5.1.8), we find

p0(z) = 1, p1(z) = z −
1

3
, p2(z) = z2 −

2

3
z −

1

5
, . . . ,

and by (5.1.9),

π0(z) = 1, π1(z) = z −
2

2− iπ
, π2 = z2 −

iπ

4 + iπ
z −

4

3(4 + iπ)
, . . . .

Example 5.1.2. Consider now w(z) = z2. Here µ0 =
∫ π
0 e2iθ dθ = 0 so that (5.1.3)

is violated and thus the polynomials {πk} do not exist, even though w(x) ≥ 0 on [−1, 1]
and the polynomials {pk} do exist. It is easily seen that qk(0) = 0 when k is even, so that
θk−1 is zero for k even, and undefined for k odd. For an explanation of this example see
Theorem 5.1.3.

5.1.2. Three-term recurrence relation for πk(z). We assume that

(5.1.13) Re (1, 1) = Re

∫ π

0

w(eiθ) dθ 6= 0,

so that orthogonal polynomials {πk} exist. Since (zf, g) = (f, zg), it is known that
they must satisfy a three-term recurrence relation

(5.1.14)
πk+1(z) = (z − iαk)πk(z)− βkπk−1(z), k = 0, 1, 2, . . . ,

π−1(z) = 0, π0(z) = 1.

Using the representation (5.1.9), we can find a connection between the coefficients
in (5.1.14) and the corresponding coefficients in the three-term recurrence relation
(5.1.7) for polynomials {pk} (see [45]):
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Theorem 5.1.2. Under the assumption (5.1.13), the (monic, complex ) polynomi-

als {πk} orthogonal with respect to the inner product (5.1.1) satisfy the recurrence

relation (5.1.14), where the coefficients αk, βk are given by

αk = θk − θk−1 − iak, βk =
θk−1

θk−2
bk−1 = θk−1(θk−1 − iak−1),

for k ≥ 1 and α0 = θ0 − ia0, with the θk defined in Theorem 5.1.1.

Alternatively, the coefficients αk can be expressed in the form

αk = −θk−1 +
bk
θk−1

, k ≥ 1, α0 =
b0
θ−1

=
m0

µ0
.

5.1.3. Distribution of zeros. It follows from (5.1.14) that the zeros of πn(z) are
the eigenvalues of the (complex, tridiagonal) matrix

(5.1.15) Jn =















iα0 1 O
β1 iα1 1

β2 iα2
. . .

. . .
. . . 1

O βn−1 iαn−1















,

where αk and βk are given in Theorem 5.1.2.

If the weight w is symmetric, i.e.,

(5.1.16) w(−z) = w(z), w(0) > 0,

then µ0 = (1, 1) = πw(0) > 0, ak = 0, θk > 0, for all k ≥ 0, and

α0 = θ0, αk = θk − θk−1, βk = θ2k−1, k ≥ 1.

In that case Jn can be transformed into a real nonsymmetric tridiagonal matrix

An = −iD−1
n JnDn =















α0 θ0 O
−θ0 α1 θ1

−θ1 α2
. . .

. . .
. . . θn−2

O −θn−2 αn−1















,

where Dn = diag(1, iθ0, i
2θ0θ1, i

3θ0θ1θ2, . . . ) ∈ Cn×n. The eigenvalues ην , ν =
1, . . . , n, of An can be calculated using the EISPACK subroutine HQR (see [118]).
Then all the zeros ζν , ν = 1, . . . , n, of πn(z) are given by ζν = iην , ν = 1, . . . , n.

In [45] we proved the following result for a symmetric weight (5.1.16):
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Theorem 5.1.3. All zeros of πn are located symmetrically with respect to the imag-

inary axis and contained in D+ = {z ∈ C | |z| < 1, Im z > 0}, with the possible

exception of a single (simple) zero on the positive imaginary axis.

If we define the half strip S+ = {z ∈ C | Im z > 0, −ξn ≤ Re z ≤ ξn}, where ξn
is the largest zero of the real polynomial pn, then we can prove that all zeros of πn
are also in S+ (see [45] and [48]). Thus, all zeros are contained in D+ ∩ S+.

For the Gegenbauer weight w(z) = (1 − z2)λ−1/2, λ > −1/2, the exceptional
case from Theorem 5.1.3 can only arise if n = 1 and −1/2 < λ ≤ 0. Likewise,
no exceptional cases seem to occur for Jacobi weights w(z) = (1 − z)α(1 + z)β,
α, β > −1, if n ≥ 2, as was observed by several numerical computations (see [45]).
However, in a general case, Gautschi [38] exhibited symmetric functions w for which
πn( · ;w), for arbitrary fixed n, has a zero iy with y ≥ 1.

5.2. Orthogonality on a circular arc. Recently M. G. de Bruin [17] considered
the polynomials {πR

k } orthogonal on a circular arc with respect to the complex inner
product

(5.2.1) (f, g) =

∫ π−ϕ

ϕ

f1(θ)g1(θ)w1(θ) dθ,

where ϕ ∈ (0, π/2), and for f(z) the function f1(θ) is defined by

f1(θ) = f
(

−iR+ eiθ
√

R2 + 1
)

, R = tanϕ.

Alternatively, the inner product (5.2.1) can be expressed in the form

(5.2.2) (f, g) =

∫

ΓR

f(z)g(z)w(z)(iz −R)−1 dz,

where ΓR = {z ∈ C | z = −iR+ eiθ
√
R2 + 1, ϕ ≤ θ ≤ π − ϕ, tanϕ = R}.

Under suitable integrability conditions on the weight function w, which is positive
on (−1, 1) and is holomorphic in the moon-shaped region

M+ =
{

z ∈ C
∣

∣ |z + iR| <
√

R2 + 1, Im z > 0
}

,

where R > 0, the polynomials {πR
k } orthogonal on the circular arc ΓR with respect

to the complex inner product (5.2.1) always exist and have similar properties like
polynomials orthogonal on the semicircle.

For R = 0 the arc ΓR reduces to the semicircle Γ , and polynomials {πR
k } to {πk}.

It is easy to prove that the condition

Re

∫

ΓR

w(z)(iz −R)−1 dz = Re

∫ π−ϕ

ϕ

w1(θ) dθ 6= 0
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is automatically satisfied for R > 0 in contrast to the case R = 0 (see condition
(5.1.13)).

Quite analogous results to Theorems 5.1.1–5.1.4 were proved by de Bruin [17].
For example, for polynomials {πk} (the upper index R is omitted) equalities (5.1.9)
and (5.1.12), as well as the three-term recurrence relation (5.1.14) hold, where now
the θk is given by

θk = −R+ iak +
bk
θk−1

(k = 0, 1, 2, . . . ); θ−1 = µ0,

instead of (5.1.11). Also, for the symmetric weight, w(z) = w(−z), all zeros of πn
are contained in M+ with the possible exception of just one simple zero situated on
the positive imaginary axis.

5.2.1. Dual orthogonal polynomials. Let {πn} be the set of polynomials orthog-
onal on the circular arc ΓR, with respect to the inner product (5.2.1), i.e., (5.2.2).
Milovanović and Rajković [103] introduced the polynomials {π∗

n} orthogonal on the
symmetric down circular arc Γ ∗

R with respect to the inner product defined by

(5.2.3) (f, g)∗ =

∫

Γ∗
R

f(z)g(z)w(z)(iz +R)−1 dz,

where Γ ∗
R = {z ∈ C | z = iR + e−iθ

√
R2 + 1, ϕ ≤ θ ≤ π − ϕ, tanϕ = R}. Such

polynomials are called dual orthogonal polynomials with respect to polynomials
{πn}.

Let M be a lentil-shaped region with the boundary ∂M = ΓR ∪ Γ ∗
R, i.e.,

M =
{

z ∈ C | |z ± iR| <
√

R2 + 1
}

,

where R > 0.

We assume that w is a weight function, positive on (−1, 1), holomorphic in M ,
and such that the integrals in (5.2.2), (5.2.3), and (5.1.2) exist for smooth functions
f and g (possibly) as improper integrals. Under the same additional conditions on
w and f , like previous, we have

0 =

∫

Γ

f(z)w(z) dz +

∫ 1

−1

f(x)w(x) dx,

where Γ = ΓR or Γ ∗
R. Then both systems of the orthogonal polynomials {πn} and

{π∗
n} exist uniquely.

The inner products in (5.2.2) and (5.2.3) define the moment functionals

Lzk = µk, µk = (zk, 1) =

∫

ΓR

zkw(z)(iz −R)−1 dz
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and

L∗zk = µ∗
k, µ∗

k = (zk, 1)∗ =

∫

Γ∗
R

zkw(z)(iz +R)−1 dz,

respectively. Using the moment determinants, we can express the (monic) polyno-
mials πk and π∗

k as

πk(z) =
1

∆k

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

µ0 µ1 · · · µk

µ1 µ2 µk+1

...
µk−1 µk µ2k−1

1 z zk

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, π∗
k(z) =

1

∆∗
k

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

µ∗
0 µ∗

1 · · · µ∗
k

µ∗
1 µ∗

2 µ∗
k+1

...
µ∗
k−1 µ∗

k µ∗
2k−1

1 z zk

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

respectively, where

∆k =

∣

∣

∣

∣

∣

∣

∣

∣

µ0 µ1 · · · µk−1

µ1 µ2 µk
...

µk−1 µk µ2k−2

∣

∣

∣

∣

∣

∣

∣

∣

, ∆∗
k =

∣

∣

∣

∣

∣

∣

∣

∣

∣

µ∗
0 µ∗

1 · · · µ∗
k−1

µ∗
1 µ∗

2 µ∗
k

...
µ∗
k−1 µ∗

k µ∗
2k−2

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

In [103] we proved that π∗
k(z) = πk(z), as well as the relation

π∗
k(z) = pk(z)− iθ∗k−1pk−1(z), k = 0, 1, 2, . . . ,

where

θ∗k−1 =
(π∗

k, π
∗
k)

∗

[pk−1, pk−1]
, k = 1, 2, . . . , θ∗−1 = µ∗

0.

Here, θ∗k−1 = −θk−1, where θk−1 is the corresponding coefficient in the polynomial
πk.

Also, the following theorem holds:

Theorem 5.2.1. The dual (monic) orthogonal polynomials {π∗
k} satisfy the three-

term recurrence relation

π∗
k+1(z) = (z − iα∗

k)π
∗
k(z)− β∗

kπ
∗
k−1(z), k = 0, 1, 2, . . . ,

π∗
−1(z) = 0, π∗

0(z) = 1,

with α∗
k = −αk and β∗

k = βk, where αk and βk are the coefficients in the corre-

sponding recurrence relation for the polynomials {πk}.

Using dual polynomials we can give a short proof of the following result stated
in [17]:
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Theorem 5.2.2. Let w(z) = w(−z). Then θk−1 > 0, for k ≥ 0.

Namely, since (πk, πk) = θk−1[pk−1, pk−1] it is enough to prove that (πk, πk) > 0.
In this symmetric case, θk−1 is real and we have θ∗k−1 = −θk−1 and

(πk, πk) = (πk, π
∗
k) =

∫

ΓR

G(z)w(z)(iz −R)−1 dz = −
∫ 1

−1

G(x)
w(x)

ix −R
dx,

where G(z) = pk(z)
2 + θ2k−1pk−1(z)

2. Then

(πk, πk) = R

∫ 1

−1

G(x)
w(x)

R2 + x2
dx+ i

∫ 1

−1

xG(x)
w(x)

R2 + x2
dx.

Since x 7→ G(x) is an even positive function, the second integral on the right-hand
side vanishes and (πk, πk) > 0.

5.2.2. Differential equation for the Jacobi weight. We consider the Jacobi weight
function

w(z) = wα,β(z) = (1− z)α(1 + z)β , α, β > −1,

where fractional powers are understood in terms of their principal branches.

The corresponding (monic) polynomials {πR
k } orthogonal on the circular arc ΓR,

with respect to the inner product (5.2.1), i.e., (5.2.2), where w(z) = wα,β(z), can
be expressed in the form

πR
k (z) = πk(z) = pk(z)− iθk−1pk−1(z),

where pk(z) = P̂α,β
k (z) are the monic Jacobi polynomials and θk−1 = θα,βk−1 is given

by

θk−1 =
1

i

̺k(−iR)
̺k−1(−iR)

, k ≥ 1,

where

̺k(z) =

∫ 1

−1

pk(x)

z − x
w(x) dx, k ≥ 0.

The monic polynomials pk(z) satisfy Jacobi’s differential equation

A(z)u′′ +B(z)u′ + λku = 0 (cf. (2.2.2))

and differentiation formula

A(z)p′k(z) = [(k + α+ β + 1)z + vk]pk(z)− (2k + α+ β + 1)pk+1(z),

where (see Table 2.2.1)

A(z) = 1− z2, B(z) = β − α− (α+ β + 2)z, λk = k(k + α+ β + 1)

and

vk = (α− β)
k + α+ β + 1

2k + α+ β + 2
.

Solving the problem: Find a function z 7→ Ω(z) in the form

(5.2.4) Ω(z) = (z − 1)rk−itk(z + 1)sk+itk (rk, sk, tk ∈ R),

such that (z2 − 1)[Ω(z)u(z)]′ = Ω(z)v(z), for u(z) = pn−1(z) and v(z) = γkπ
R
k (z),

where γk is a constant , Milovanović and Rajković [103] proved the following result:
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Theorem 5.2.3. The polynomial πR
k (z) satisfies the differential equation

(5.2.5) P (z)y′′ +Q(z)y′ +R(z)y = 0,

with polynomial coefficients

(5.2.6)

P (z) = −A(z)2Ω(z)b(z),
Q(z) = A(z)2Ω(z)

(

b′(z)− a(z)b(z)
)

,

R(z) = A(z)
[

A(z)Ω(z)
(

a(z)b′(z)− a′(z)b(z)
)

+Ω(z)2b(z)2
]

,

where Ω(z) defined by (5.2.4) with parameters

rk =
1

2
(k + α+ β + vk−1) , sk =

1

2
(k + α+ β − vk−1) , tk =

1

2
(2k+α+β−1)θk−1,

and a(z) and b(z) are given by

(5.2.7)

a(z) =
1

A(z)
(g(z) +B(z)−A′(z)),

b(z) = − 1

A(z)Ω(z)

(

(λk−1 + g′(z))A(z) + g(z)(g(z) +B(z)−A′(z))
)

,

and g(z) = (k + α+ β)z + ck−1, ck−1 = vk−1 − i(2k + α+ β − 1)θk−1.

Notice that all coefficients in (5.2.6) have the factor A(z)Ω(z), but it is because
of this factor that the coefficients turn out to be polynomials.

Using (5.2.6) and (5.2.7) we find P (z) = (1 − z2)C(z), where z 7→ C(z) is the
following polynomial of the first degree

C(z) = k(k + α+ β) + (β − α+ ck−1)ck−1 − i(2k + α+ β)(2k + α+ β − 1)θk−1z,

where

ck−1 = (α− β)
k + α+ β

2k + α+ β
− i(2k + α+ β − 1)θk−1.

After some calculation, C(z) can be expressed in the form

(5.2.8) C(z) = γ0 + iγ1θk−1 + γ2θ
2
k−1 − ηkz,

where

γ0 =
4k(k + α)(k + β)(k + α+ β)

(2k + α+ β)2
, γ1 = (β2 − α2)

2k + α+ β − 1

2k + α+ β
,

γ2 = −(2k + α+ β − 1)2, ηk = (2k + α+ β)(2k + α+ β − 1)iθk−1.
40



We remark that the differential equation (5.2.5) has regular singular points at 1,
−1, ∞, and an additional regular singular point ζk which depends on k and is given
by

ζk =
γ1 − i(γ2θk−1 + γ0/θk−1)

(2k + α+ β)(2k + α+ β − 1)
.

The polynomials P , Q, and R in (5.2.6) can be expressed by the coefficients A(z),
B(z), and λk in differential equation (2.2.2). Namely,

(5.2.9)

P (z) = A(z)C(z),

Q(z) = B(z)C(z) +A(z)ηk,

R(z) = λkC(z) +A(z)a(z)ηk,

where

a(z) =
1

A(z)

(

kz +
k(β − α)

2k + α+ β
− i(2k + α+ β − 1)θk−1

)

and C(z) is given by (5.2.8).

We can see that Q and R are the complex polynomials of degree two and one,
respectively.

When α = β = λ − 1/2 (λ > −1/2) we obtain the Gegenbauer case, which is
considered for R = 0 by Gautschi, Landau and Milovanović in [45].

It is interesting to consider a case when R → +∞, i.e., when ΓR reduces to the
interval [−1, 1]. Since lim

R→+∞
θk−1 = 0, we have

lim
R→+∞

ηk = 0, lim
R→+∞

C(z) = γ0, lim
R→+∞

a(z) =
1

A(z)

(

kz +
k(β − α)

2k + α+ β

)

.

Thus, the limit case of (5.2.9) gives

lim
R→+∞

P (z) = γ0A(z), lim
R→+∞

Q(z) = γ0B(z), lim
R→+∞

R(z) = γ0λk.

In that case, dividing (5.2.5) by γ0 we obtain Jacobi’s differential equation, which
is, in fact, the result expected.

5.2.3. Functions of the second kind and some associated polynomials. Let the
inner product (·, ·) be given by (5.2.1), i.e., (5.2.2). In connection with polynomi-
als {πR

k } orthogonal with respect to (·, ·) on ΓR, Milovanović and Rajković [103]
introduced the functions, so-called functions of the second kind ,

(5.2.10) ̺Rk (z) =

∫

ΓR

πR
k (ζ)

z − ζ
· w(ζ)

iζ −R
dζ, k = 0, 1, 2, . . . .
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It is easily seen that they also satisfy the same recurrence relation as the poly-
nomials πR

k . Indeed, from the recurrence relation

(5.2.10) πR
k+1(z) = (z − iαk)π

R
k (z)− βkπ

R
k−1(z), k = 0, 1, 2, . . . ,

for z = ζ, multiplying by w(ζ)/((iζ −R)(z − ζ)) and integrating, we obtain

̺Rk+1(z) = (z − iαk)̺
R
k (z)−

∫

ΓR

πR
k (ζ)

w(ζ)

iζ −R
dζ − βk̺

R
k−1(z).

By orthogonality, the integral on the right side in the above equality vanishes if
k ≥ 1, and equals µ0 if k = 0. If we define ̺R−1(z) = 1 (and β0 = µ0), we have

(5.2.12) ̺Rk+1(z) = (z − iαk)̺
R
k (z)− βk̺

R
k−1(z), k = 0, 1, 2, . . . .

For |z| sufficiently large, we can prove (see [103])

̺Rk (z) =
‖πR

k ‖2
zk+1

(

1 +O
(1

z

)

)

,

where ‖πR
k ‖2 = (πR

k , π
R
k ). Based on an idea by Stieltjes (see Monegato [105],

Gautschi [31]), Milovanović and Rajković [103] considered an expansion of 1/̺Rk (z)
into descending powers of z, and obtained

1

̺Rk (z)
=

zk+1

‖πR
k ‖2

(

1 + c1z
−1 + c2z

−2 + · · ·
)

= ER
k+1(z) + d1z

−1 + d2z
−2 + · · · ,

where

ER
k+1(z) =

1

‖πR
k ‖2

(

zk+1 + c1z
k + · · ·+ ck+1

)

and dk = ck+k+1/‖πR
k ‖2, k = 1, 2, . . . . We call ER

k+1 the Stieltjes polynomial

associated with polynomials {πR
k } orthogonal with respect to (·, ·) on ΓR. By a

residue calculation, this polynomial of exact degree k + 1, can be expressed in the
form

ER
k+1(z) =

1

2πi

∮

C

dζ

(ζ − z)̺Rk (ζ)
,

where C is a sufficiently large contour with z in its interior.

Theorem 5.2.4. Stieltjes’ polynomial ER
k+1 is orthogonal to all lower-degree poly-

nomials with respect to the complex measure dλ(z) = πR
k (z)w(z)(iz −R)−1dz, i.e.,

∫

ΓR

ER
k+1(z)p(z)π

R
k (z)

w(z)

iz −R
dz = 0

(

p ∈ Pk

)

,
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where Pk is the set of all polynomials of degree at most k.

The quantities ̺Rk (z)/π
R
k (z), |z| > 1, are important in getting error bounds for

Gaussian quadrature formulas over ΓR, applied to analytic functions (cf. Gautschi
and Varga [50]). Stieltjes’ polynomials appear in quadrature formulas of Gauss-
Kronrod’s type (cf. [37]).

We can also introduce the polynomials

σR
k (z) =

∫

ΓR

πR
k (z)− πR

k (ζ)

z − ζ
· w(ζ)

iζ −R
dζ, k = 0, 1, 2, . . . ,

which are called the polynomials associated with the orthogonal polynomials πR
k . It

is easy to see that
̺Rk (z) = πR

k (z)̺
R
0 (z)− σR

k (z).

The polynomials {σR
k } satisfy the same three-term recurrence relation

(5.2.13) σR
k+1(z) = (z − iαk)σ

R
k (z)− βkσ

R
k−1(z), k = 0, 1, 2, . . . ,

where σR
0 (z) = 0, σR

1 (z) = µ0. If we define σR
−1(z) = −1 and β0 = µ0, we can note

that (5.2.13) also holds for k = 0 (see Gautschi [30]).

Using the recurrence relations for {πR
k }, {̺Rk }, and {σR

k } ((5.2.11), (5.2.12), and
(5.2.13), respectively), where

1◦ πR
−1(z) = 0, πR

0 (z) = 1 ;

2◦ ̺R−1(z) = 1, ̺R0 (z) = F (z) (defined by (5.2.10));

3◦ σR
−1(z) = −1, σR

0 (z) = 0 ,

Milovanović and Rajković [103] proved the following identity of Christoffel-Darboux
type:

Theorem 5.2.5. Let {fk} and {gk} satisfy the three-term recurrence relation of

the form (5.2.13), and Sk(z, w) = fk+1(z)gk(w)− gk+1(w)fk(z). Then the identity

(z − w)

n
∑

k=0

fk(z)gk(w)

β0β1 · · ·βk
=

Sn(z, w)

β0β1 · · ·βn
− S−1(z, w)

holds, where βk (k = 0, 1, 2, . . . ) are the recursion coefficients in (5.2.13). Under

conditions 1◦– 3◦, we have the following special cases

(a) fk := πR
k , gk := πR

k , S−1 = 0 ;

(b) fk := πR
k , gk := ̺Rk , S−1 = 1 ;

(c) fk := πR
k , gk := σR

k , S−1 = −1 ;

(d) fk := ̺Rk , gk := ̺Rk , S−1 = F (z)− F (w) ;

(e) fk := ̺Rk , gk := σR
k , S−1 = −F (z) ;

(f) fk := σR
k , gk := σR

k , S−1 = 0 .
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5.2.4. Geronimus’ version of orthogonality on a contour. In the paper [66], J. W.
Jayne considered the Geronimus’ concept of orthogonality for recursively generated
polynomials. Ya. L. Geronimus proved that a sequence of polynomials {pk}, which
is orthogonal on a finite interval on real line, is also orthogonal in the sense that
there is a weight function z 7→ χ(z) having one or more singularities inside a simple
curve C and such that

(5.2.14) 〈pk, pm〉 = 1

2πi

∮

C

pk(z)pm(z)χ(z) dz =

{

0, k 6= m,

hm, k = m.

Following Geronimus [54] and Jayne [66], Milovanović and Rajković [102] deter-
mined such a complex weight function z 7→ χ(z), for (monic) polynomials {πk}
orthogonal on the semicircle Γ , and also for the corresponding polynomials {πR

k }
orthogonal on the circular arc ΓR (R > 0).

Denoting by C any positively oriented simple closed contour surrounding some
circle |z| = r > 1, we assume that

(5.2.15) χ(z) =

∞
∑

k=1

ωkz
−k, ω1 = 1,

for |z| > 1, and express zn as a linear combination of the monic polynomials πm,
m = 0, 1, . . . , n, which are orthogonal on the semicircle Γ , with respect to the inner
product (5.1.1). Thus,

(5.2.16) zn =

n
∑

m=0

γn,mπm(z),

where (zn, πm) = γn,m(πm, πm), m = 0, 1, . . . , n. Using the inner product (5.2.14)
and the representation (5.2.15), we obtain

〈zn, 1〉 = 1

2πi

∮

C

znχ(z) dz =
1

2πi

∮

C

∞
∑

k=1

ωkz
n−k dz = ωn+1.

On the other hand, because of (5.2.16) and the orthogonality condition (5.2.14),
we find

〈zn, 1〉 = 〈
n
∑

m=0

γn,mπm(z), 1〉 =
n
∑

m=0

γn,m〈πm, 1〉,

i.e., 〈zn, 1〉 = γn,0〈π0, π0〉 = γn,0h0. Thus, we have wn+1 = γn,0h0 = γn,0, because
h0 = ω1 = 1.

Finally, using the moments µn = (zn, 1), we obtain ωn+1 = µn/µ0, n ≥ 0, and

(5.2.17) χ(z) =
1

µ0

∞
∑

k=1

µk−1z
−k, |z| > 1,
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where we need the convergence of this series for |z| > r > 1.

Suppose that w be a weight function, nonnegative on (−1, 1), holomorphic in
D+ = {z ∈ C | |z| < 1, Im z > 0}, integrable over ∂D+, and such that (5.1.13) is
satisfied. Then the moments µk can be expressed in the form

µ0 =

∫

Γ

w(z)(iz)−1 dz =
1

i

(

iπw(0)− v.p.

∫ 1

−1

w(x)

x
dx

)

and

µk =

∫

Γ

zkw(z)(iz)−1 dz = i

∫ 1

−1

xk−1w(x) dx, k ≥ 1.

These moments are included in the series (5.2.17).

Supposing that the weight function w has such moments µk, which provide the
convergence of the series (5.2.17), for all z outside some circle |z| = r > 1 lying
interior to C, Milovanović and Rajković [102] proved:

Theorem 5.2.6. The monic polynomials {πk}, which are orthogonal on the semi-

circle Γ with respect to the inner product (5.1.1), are also orthogonal in the sense

of (5.2.14), where

χ(z) =
1

z

(

1 +
i

µ0

∫ 1

−1

w(x)

z − x
dx

)

, |z| > r > 1,

and

µ0 = πw(0) + i v.p.

∫ 1

−1

w(x)

x
dx.

In Gegenbauer case they obtained the following result:

Corollary 5.2.7. Let w(z) = (1 − z2)λ−1/2, λ > −1/2. The monic polynomials

{πk}, which are orthogonal on the unit semicircle with respect to the inner product

(5.1.1), are also orthogonal in the sense of (5.2.14), where

χ(z) =
1

z
+

i√
π z2

· Γ(λ + 1
2 )

Γ(λ+ 1)
F
(

1,
1

2
, λ+ 1;

1

z2

)

,

where F is the Gauss hypergeometric series and Γ is the gamma function.

Example 5.2.1. In Legendre case (λ = 1/2) we have

χ(z) =
1

z
+

i

πz
log

z + 1

z − 1
,

where the interval from −1 to 1 on the real axis is considered as a branch cut.

The corresponding complex weight for polynomials {πR
k } (R > 0) orthogonal on

the circular arc ΓR was also derived in [102] in the form

χ(z) =
1

µ0

∫ 1

−1

(R + ix)w(x)

(R2 + x2)(z − x)
dx, |z| > r > 1,

where

µ0 =

∫ 1

−1

R + ix

R2 + x2
w(x) dx.

45



6. Some applications of orthogonality on the semicircle

Several interesting properties of such polynomials and applications in numerical
analysis, especially for Gegenbauer weight, were given in [48] and [93]. Also, dif-
ferentiation formulas for higher derivatives of analytic functions, using quadratures
on the semicircle, were considered in [19].

6.1. Gaussian quadratures. In this section we consider Gauss-Christoffel quad-
rature formula over the semicircle Γ = {z ∈ C | z = eiθ, 0 ≤ θ ≤ π},

(6.1.1)

∫ π

0

f(eiθ)w(eiθ) dθ =

n
∑

ν=1

σνf(ζν) +Rn(f),

with Gegenbauer weight w(z) = (1 − z2)λ−1/2, λ > −1/2, which is exact for all
algebraic polynomials of degree at most 2n− 1.

In this case, (5.1.13) reduces to Re(1, 1) = π 6= 0, so that the corresponding or-
thogonal polynomials exist and they can be expressed in terms of monic Gegenbauer
polynomials Ĉλ

k (z),

πk(z) = Ĉλ
k (z)− iθk−1Ĉ

λ
k−1(z),

where the sequence {θk} is given by

θk =
1

λ+ k
· Γ((k + 2)/2)Γ(λ+ (k + 1)/2)

Γ((k + 1)/2)Γ(λ+ k/2)
, k ≥ 0.

It was shown [45, Sect. 6.3] that all zeros of πn(z), n ≥ 2, are simple and contained

in the upper unit half disc D+ = {z ∈ C | |z| < 1, Im z > 0}. The nodes ζν = ζ
(n)
ν

in (6.1.1) are precisely the zeros of the polynomial πn, i.e., the eigenvalues of the

Jacobi matrix Jn given by (5.1.15). The weights σν = σ
(n)
ν can be obtained by an

adaptation of the procedure of Golub and Welsch [56] (see [31] and [33]).

Following [50], we gave error bounds for the Gaussian quadratures (6.1.1), applied
to analytic functions, using a contour integral representation of the remainder term
(see [94]).

The Gaussian quadrature (6.1.1) can be applied to calculation of the Cauchy
principal value integral

Iλ(ξ; f) = v.p.

∫ 1

−1

w(t)f(t)

t− ξ
dt,

where −1 < ξ < 1 and w(t) = (1 − t2)λ−1/2, λ > −1/2. Firstly, using the linear
fractional transformation t = (x+ ξ)/(xξ + 1) we find

Iλ(ξ; f) = w(ξ) v.p.

∫ 1

−1

w(x)
g(ξ;x)

x
dx,
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where g(ξ;x) = f
( x+ ξ

xξ + 1

)

/(xξ + 1)2λ.

Let f be a meromorphic function with poles pν , ν = 1, . . . ,m, in D+ and ψ(z) =
w(z)g(ξ; z)/z. In [93] we proved that

Iλ(ξ; f) ≈ w(ξ) Im

{ n
∑

ν=1

σνg(ξ; ζν)− 2π

m
∑

ν=1

Res
z=pν

ψ(z)

}

.

6.2. Numerical differentiation. Let f be an analytic function on some domain
containing the point a and a circular neighborhood of a with radius r. Using the
central difference operator δh defined by

δhf(a) =
1

h

(

f
(

a+
h

2

)

− f
(

a−
h

2

))

,

we can find δmh f(a) = δh
(

δm−1
h f(a)

)

, i.e.,

(6.2.1) δmh f(a) =
1

hm

m
∑

k=0

(−1)k
(m

k

)

f
(

a+
m− 2k

2
h
)

.

Putting heiθ instead of h, where h is such that |a + mh
2 eiθ| < r, and integrating

(6.2.1) over the semicircle, we obtain

(6.2.2)

∫ π

0

δmheiθf(a)w(e
iθ) dθ = πf (m)(a).

Applying the Gauss-Christoffel quadrature formula on the semicircle (6.1.1) to
the integral on the left side in (6.2.2), we obtain the following differentiation formula
to higher derivatives

f (m)(a) ≈ Dm
n,hf(a) =

1

π

n
∑

ν=1

σνδ
m
hζνf(a) ,

i.e.,

(6.2.3) Dm
n,hf(a) =

1

πhm

n
∑

ν=1

σν
ζmν

m
∑

k=0

(−1)k
(m

k

)

f
(

a+
m− 2k

2
hζν
)

.

Regarding to the truncation error we can give the following result (see [19]):

Theorem 6.2.1. The error of the differentiation formula (6.2.3) for analytical

functions is given by

Rm
n,hf(a) = f (m)(a)−Dm

n,hf(a) =
1

π

∞
∑

p=n

f (m+2p)(a)

(m+ 2p)!
S
(m)
m+2pRn(z

2p)h2p,
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where

S
(m)
j =

m
∑

k=0

(−1)k
(m

k

)(m− 2k

2

)j

and Rn(z
2p) is defined by (6.1.1). The dominant error term is

S
(m)
m+2n

π(m+ 2n)!

(

Γ ((n+ 1)/2)Γ (λ+ n/2)

Γ(λ+ n)

)2

f (m+2n)(a)h2n.

Some considerations for n = 2 and m = 1 regarding to λ are given in [93].
For real-valued analytic functions the formula (6.2.3) can be simplified. Namely,

when n is even and Re ζν > 0, for ν = 1, 2, . . . , n/2, one finds

(6.2.4) Dm
n,hf(a) =

2

πhm

n/2
∑

ν=1

Re

{

σν
ζmν

m
∑

k=0

(−1)k
(m

k

)

f
(

a+
m− 2k

2
hζν

)

}

.

In the simplest case when n = 2, we have

ζ1,2 =
1

4

(

±
√
3 + i

)

, σ1,2 =
π

2

(

1± i

√
3

3

)

.

Then, the corresponding differentiation formula (6.2.4) reduces to

Dm
2,hf(a) =

2

πhm
Re

{

σ1
ζm1

m
∑

k=0

(−1)k
(m

k

)

f
(

a+
m− 2k

2
hζ1

)

}

.

Its error is O(h4).

The formula (6.2.3) for real-valued analytic functions can be improved with a
little change. Namely, if we put heiα instead of h in (6.2.2), where α is an arbitrary
real parameter, and applying again Gauss-Christoffel formula (6.1.1), we obtain the
following differentiation formula

f (m)(a) ≈ Dm
n,h,αf(a) =

1

π

n
∑

ν=1

σνδ
m
heiαζν

f(a).

Similar to the above investigation we find an expression for the error, depending on
the real parameter α

Rm
n,h,αf(a) = f (m)(a)−Dm

n,h,αf(a) =
1

π

∞
∑

p=n

f (m+2p)(a)

(m+ 2p)!
S
(m)
m+2pRn(z

2p)ei2pαh2p.

Since the derivative f (m)(a) is real for real a and real-valued functions the param-
eter α can be chosen such that the dominant error term in the last expressions be
purely imaginary. Then, for such functions, the dominant error term in Rm

n,h,αf(a),
i.e.,

1

π(m+ 2n)!
f (m+2n)(a)S

(m)
m+2nRn(z

2n)ei2nαh2n ,

becomes purely imaginary. This can be achieved for α = π/4n. In that case, the
dominant error term for real-valued functions becomes the real part of the term in
Rm

n,h,αf(a) for p = n+ 1. So we have the following result:
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Theorem 6.2.2. The dominant error term of the differentiation formula

f (m)(a) ≈ Re
{

Dm
n,h,π/4nf(a)

}

, a ∈ R,

for real-valued analytic functions is given by

(6.2.5) − sin(π/2n)

π(m+ 2n+ 2)!
S
(m)
m+2n+2Rn(z

2n+2)f (m+2n+2)(a)h2n+2,

where Rn(g) is defined in (6.1.1).

Remark 6.2.1. With α = 3π/4n we also obtain a rule of degree precision 2n + 2.
Then, in the dominant error term (6.2.5), the factor − sin(π/2n) should be replaced by
sin(3π/2n).

Several numerical experiments were done in [19], [48], and [92–93].
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[100] G.V. Milovanović and M.A. Kovačević, Moment-preserving spline approximation and quad-

ratures, Facta Univ. Ser. Math. Inform. 7 (1992), 85–98.
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[107] P. Nevai, Géza Freud, orthogonal polynomials and Christoffel functions, A case study, J.
Approx. Theory 48 (1986), 3–167.

[108] P. Nevai, Orthogonal polynomials, measures and recurrence relations on the unit circle,
Trans. Amer. Math. Soc. 300 (1987), 175–189.

[109] A. Ossicini, Construzione di formule di quadratura di tipo Gaussiano, Ann. Mat. Pura Appl.
(4) 72 (1966), 213–238.

53
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