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Abstract

In this paper we give an account on summation/integration methods for the
computation of slowly convergent series and finite sums. The methods are based on
Gauss-Christoffel quadrature rules with respect to some nonclassical weight func-
tions over R or R+. For constructing such rules we use the recent progress in
symbolic computation and variable-precision arithmetic, as well as our Mathe-

matica package OrthogonalPolynomials [4, 26]. Together with our own results,
we are also taking into consideration the use of other known results, especially the
classical summation formulae of Euler-Maclaurin and Abel-Plana, in order to apply
them afterwards in the computational techniques that we have developed recently.
We present the Laplace transform method [15] and the contour integration method
[21, 23], and give several numerical examples in order to illustrate the efficiency of
different summation/integration methods.
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§1. Introduction

For slowly convergent series and finite sums, which appear in many problems in mathematics, physics
and other sciences, there are several numerical methods based on linear and nonlinear transformations.
In general, starting from the sequence of partial sums of the series, these transformations give other
sequences with a faster convergence to the sum of the series. There is a rich literature on this subject
(cf. references in Mastroianni and Milovanović [19]).

In this paper we give an account on some summation processes for series (n = ∞) and finite sums,

n∑

k=1

(±1)kf(k), (1.1)

with a given function z 7→ f(z) with certain properties with respect to the variable z, based on
ideas related to Gauss-Christoffel quadratures. In a general case, the function f can depend on other
parameters, e.g., f(z;x, . . .), so that these summation processes can be applied also to some classes of
functional series, not only to numerical series.

The basic idea in our methods is to transform the sum (1.1) to an integral with respect to some
measure dµ on R (or R+), and then to approximate this integral by a finite quadrature sum,

n∑

k=1

(±1)kf(k) =

∫

R

g(t)dµ(t) ≈
N∑

ν=1

Aνg(xν), (1.2)

where the function g is connected with f in some way, and the weights Aν ≡ A
(n)
ν and abscissae

xν ≡ x
(n)
ν , ν = 1, . . . , N , are chosen in such a way as to approximate closely the sum (1.1) for a

large class of functions with a relatively small number N ≪ n. In our approach we take the Gaussian
quadrature sums as the sum on the right-hand side in (1.2). Together with our own results, we also
consider some other known results, in particular the classical summation formulae of Euler-Maclaurin
and Abel-Plana, in order to combine them with the computational techniques that we have developed
recently.

For the construction of Gaussian quadratures with respect to nonstandard measures dµ on R or
R+ we use the recent progress in symbolic computation and variable-precision arithmetic and our
Mathematica package OrthogonalPolynomials [4, 26]. The approach enables us to overcome the
numerical instability in generating coefficients of the three-term recurrence relation for the correspon-
ding orthogonal polynomials with respect to the measure dµ.

The paper is organized as follows. Section 2 is devoted to the classical summation formulae of
Euler-Maclaurin and Abel-Plana. Recurrence coefficients for some orthogonal polynomial systems on
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R and R+ are studied in Section 3. For some of them, these coefficients can be expressed in an explicit
form. In Sections 4 and 5 we present the Laplace transform method and the contour integration
method, respectively. Finally, in order to illustrate the efficiency of different summation/integration
methods we give a few numerical examples in Section 6.

§2. Summation formulae of Euler-Maclaurin and Abel-Plana

The first result on summation/integration methods was the well-known Euler-Maclaurin formula,
discovered by Leonard Euler (1707–1783) in 1732 in connection with the so-called Basel problem (or
in modern terminology, for the Riemann zeta function, with determining ζ(2)),

n∑

k=m

f(k) =

∫ n

m

f(x)dx +
1

2
(f(m) + f(n)) +

r∑

j=1

B2j

(2j)!

[
f (2j−1)(n)− f (2j−1)(m)

]
+ Er(f), (2.1)

which holds for any m ∈ N0, n, r ∈ N, m < n, and f ∈ C2r [m,n], where B2j are the Bernoulli
numbers. This formula was also found independently by Colin Maclaurin (1698–1746) in 1738, who
used (2.1) for calculating integrals. Bernoulli numbers are defined by the generating function

t

et − 1
=

∞∑

j=0

Bjt
j

j!
.

For example, B0 = 1, B1 = −1/2, B2 = 1/6, B3 = 0, B4 = −1/30, B5 = 0, B6 = 1/42, etc.
The error term Er(f) in (2.1) can be expressed in different forms (cf. [24]); e.g., if f ∈ C2r+2[m,n]

then there exists η ∈ (m,n) such that

Er(f) = (n−m)
B2r+2

(2r + 2)!
f (2r+2)(η). (2.2)

A history of this formula was given by Barnes [2], and some details can be found in [28, 1, 12, 13,
3, 24].

Alternatively, the Euler-Maclaurin summation formula (2.1) is related to the so-called composite
trapezoidal rule,

Tm,nf :=

n∑

k=m

′′

f(k) =
1

2
f(m) +

n−1∑

k=m+1

f(k) +
1

2
f(n).
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Namely, the error of this rule can be expressed in terms of the Euler-Maclaurin formula (2.1),

Tm,nf −
∫ n

m

f(x)dx =

r∑

j=1

B2j

(2j)!

[
f (2j−1)(n)− f (2j−1)(m)

]
+ ET

r (f). (2.3)

In other words, it means that the trapezoial sum Tm,nf can be improved by values of derivatives at
the end points of the interval of integration, through corrections terms in the form presented on the
right hand side in (2.3). The Euler-Maclaurin summation formula is a standard formula and it is
implemented in the package Mathematica as the function NSum with option Method -> Integrate.

There is also another summation formula, the Abel-Plana formula, which is not so well known like
the Euler-Maclaurin formula. In 1820 Giovanni (Antonio Amedeo) Plana (1781–1864) obtained the
summation formula

+∞∑

k=0

f(k)−
∫ +∞

0

f(x)dx =
1

2
f(0) + i

∫ +∞

0

f(iy)− f(−iy)
e2πy − 1

dy, (2.4)

which holds for analytic functions, f in Ω =
{
z ∈ C : ℜz ≥ 0

}
, that satisfy the conditions:

lim
|y|→+∞

e−|2πy||f(x± iy)| = 0,

uniformly in x on every finite interval, and such that

∫ +∞

0

|f(x+ iy)− f(x− iy)|e−|2πy|dy

exists for every x ≥ 0 and tends to zero when x→ +∞. This formula was also proved by Niels Henrik
Abel (1802–1829) in 1823. In addition, Abel also proved an interesting “alternating series version”,
under the same conditions, namely,

+∞∑

k=0

(−1)kf(k) =
1

2
f(0) + i

∫ +∞

0

f(iy)− f(−iy)
2 sinhπy

dy. (2.5)

For the finite sum Sn,mf =

n∑

k=m

(−1)kf(k), it becomes

Sn,mf =
1

2

[
(−1)mf(m) + (−1)nf(n+ 1)

]
+

∫ +∞

−∞

[
ψn+1(y)− ψm(y)

]
wA(y)dy, (2.6)
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where the Abel weight on R, ωA(x), and the function ψm(y) are given by

wA(x) =
x

2 sinhπx
and ψm(y) = (−1)m

f(m+ iy)− f(m− iy)

2iy
. (2.7)

Let m,n ∈ N, m < n, and C(ε) be a closed rectangular contour with vertices at m ± ib, n ± ib,
b > 0 (see Figure 1), and with semicircular indentations of radius ε around m and n. Let f be an
analytic function in the strip Ωm,n =

{
z ∈ C : m ≤ ℜz ≤ n

}
and suppose that for every m ≤ x ≤ n,

lim
|y|→+∞

e−|2πy||f(x± iy)| = 0 uniformly in x,

and that ∫ +∞

0

|f(x+ iy)− f(x− iy)|e−|2πy|dy

exists.
The integral ∫

C(ε)

f(z)

e−i2πz − 1
dz,

with ε→ 0 and b→ +∞, leads to the Abel-Plana formula in the form

Tm,nf −
∫ n

m

f(x)dx =

∫ +∞

−∞

(
φn(y)− φm(y)

)
wP (y)dy, (2.8)

where

φm(y) =
f(m+ iy)− f(m− iy)

2iy
and wP (y) =

|y|
e|2πy| − 1

. (2.9)

Practically, the Abel-Plana formula (2.8) gives the error of the composite trapezoidal formula (like
the Euler-Maclaurin formula).

In order to find the moments of the Plana weight function x 7→ wP (x) on R, we note first that if
k is odd, the moments are zero, i.e.,

µk(w
P ) =

∫

R

xkwP (x)dx =

∫

R

xk
|x|

e|2πx| − 1
dx = 0.

For even k, we have

µk(w
P ) = 2

∫ +∞

0

xk+1

e2πx − 1
dx =

2

(2π)k+2

∫ +∞

0

tk+1

et − 1
dt,
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Figure 1: Rectangular contour C(ε)

which can be exactly expressed in terms of the Riemann zeta function ζ(s),

µk(w
P ) =

2(k + 1)!ζ(k + 2)

(2π)k+2
= (−1)k/2

Bk+2

k + 2
,

because the number k + 2 is even.
Thus, in terms of Bernoulli numbers, the moments are

µk(w
P ) =





0, k is odd,

(−1)k/2
Bk+2

k + 2
, k is even.

(2.10)

Now, by the Taylor expansion for φm(y) (and φn(y)) on the right-hand side in (2.8),

φm(y) =
f(m+ iy)− f(m− iy)

2iy
=

+∞∑

j=1

(−1)j−1y2j−2

(2j − 1)!
f (2j−1)(m),

and using the moments (2.10), the Abel-Plana formula (2.8) reduces to the Euler-Maclaurin formula,

Tm,nf −
∫ n

m

f(x)dx =
+∞∑

j=1

(−1)j−1

(2j − 1)!
µ2j−2(w

P )
(
f (2j−1)(n)− f (2j−1)(m)

)
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=

+∞∑

j=1

B2j

(2j)!

(
f (2j−1)(n)− f (2j−1)(m)

)
,

because of µ2j−2(w
P ) = (−1)j−1B2j/(2j) (for more details see Dahlquist [5, 6, 7]).

A similar summation formula is the so-called midpoint summation formula. It can be obtained by
combining two Plana formulas for f(z − 1/2) and f((z +m− 1)/2). Namely,

Tm,2n−m+2f
(z +m− 1

2

)
− Tm,n+1f

(
z − 1

2

)
=

n∑

k=m

f(k),

i.e.,
n∑

k=m

f(k)−
∫ n+1/2

m−1/2

f(x)dx =

∫ +∞

−∞

[
φm−1/2(y)− φn+1/2(y)

]
wM (y)dy,

where the midpoint weight function is given by

wM (x) = wP (x)− wP (2x) =
|x|

e|2πx| + 1

and φm−1/2 and φn+1/2 are defined in (2.9), taking m := m− 1/2 and m := n+ 1/2, respectively.

There are also several other summation formulas. For example, the Lindelöf formula for alternating
series is

+∞∑

k=m

(−1)kf(k) = (−1)m
∫ +∞

−∞

f(m− 1/2 + iy)
dy

2 coshπy
,

where the Lindelöf weight function is given by

wL(x) =
1

2 coshπy
=

1

eπx + e−πx
.

All these weights are even functions on R. As we mentioned in Section 1, a summation problem
can be also transformed into the integration with respect to a weight function defined on the half
line R+.

In the sequel we present some of the most important weight functions on R and R+, including
their moments. The recursion coefficients βk for the weights on R are also presented.
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§3. Recurrence coefficients for some orthogonal polynomial

systems on R and R+

We denote the space of all algebraic polynomials defined on R by P, and by PN ⊂ P the space of
polynomials of degree at most N (N ∈ N). Suppose that for a given weight function w all moments
µk =

∫
R
xkw(x)dx, k ≥ 0, exist, are finite and µ0 > 0. Then, for each N ∈ N, there exists the N -point

Gauss-Christoffel quadrature rule

∫

R

f(x)w(x)dx =

N∑

ν=1

A(N)
ν f(x(N)

ν ) +RN (f), (3.1)

which is exact for all polynomials of degree ≤ 2N − 1 (f ∈ P2N−1).
The Gauss-Christoffel quadrature formula (3.1) can be characterized as an interpolatory formula

for which its node polynomial πN (x) =
∏N

ν=1

(
x − x

(N)
ν

)
is orthogonal to PN−1 with respect to the

inner product defined by

(p, q) =

∫

R

p(x)q(x)w(x)dx (p, q ∈ P).

Because of the property (xp, q) = (p, xq), these (monic) orthogonal polynomials πk satisfy the
fundamental three–term recurrence relation

πk+1(x) = (x− αk)πk(x) − βkπk−1(x), k = 0, 1, . . . , (3.2)

with π0(x) = 1 and π−1(x) = 0, where {αk} = {αk(w)} and {βk} = {βk(w)} are sequences of recursion
coefficients which depend on the weight w. The coefficient β0 may be arbitrary, but is conveniently
defined by β0 = µ0 =

∫
R
w(x)dx.

For even weights on R, the coefficients αk are zero, so that the recurrence relation (3.2) becomes

πk+1(x) = xπk(x)− βkπk−1(x), k = 0, 1, . . . (3.3)

The quadrature nodes x
(N)
ν , ν = 1, . . . , N , are eigenvalues of the Jacobi matrix

Jn(w) =




α0

√
β1 0√

β1 α1

√
β2

√
β2 α2

. . .

. . .
. . .

√
βN−1

0
√
βN−1 αN−1




,



Methods for the computation of slowly convergent series and finite sums 45

and the first components of the corresponding normalized eigenvectors vν = [vν,1 . . . vν,N ]T (with

vT
ν vν = 1) give the Christoffel numbers, A

(N)
ν = λN,ν = β0v

2
ν,1, ν = 1, . . . , N .

Unfortunately, the recursion coefficients are known explicitly only for some narrow classes of or-
thogonal polynomials, as e.g. for the classical orthogonal polynomials (Jacobi, the generalized La-
guerre, and Hermite polynomials). However, for a large class of the so-called strongly non-classical
polynomials these coefficients can be constructed numerically. Basic procedures for generating these
coefficients are the method of (modified) moments, the discretized Stieltjes–Gautschi procedure and
the Lanczos algorithm, and they play a central role in the so-called constructive theory of orthogonal
polynomials, which was developed by Walter Gautschi in the eighties on the last century. In [9] he
starts with an arbitrary positive measure dµ(t), which is given explicitly, or implicitly via moment
information, and considers the basic computational problem: for a given measure dµ and for a given
n ∈ N, generate the first n coefficients αk(dµ) and βk(dµ) for k = 0, 1, . . . , n− 1. The problem is very
sensitive with respect to small perturbations in the data. The basic references are [9, 11, 19, 25].

Recent progress in symbolic computation and variable-precision arithmetic now makes possible to
generate the recurrence coefficients αk and βk directly by using the original Chebyshev method of
moments in sufficiently high precision. The corresponding software for such a purpose, as well as
many other calculations with orthogonal polynomials and different quadrature rules, is now available:
Gautschi’s package SOPQ in Matlab, and our Mathematica package OrthogonalPolynomials (see
[4] and [26]). These packages are downloadable from the web sites http://www.cs.purdue.edu/

archives/2002/wxg/codes/ and http://www.mi.sanu.ac.rs/∼gvm/, respectively. Thus, all that
is required is a procedure for the symbolic calculation of moments or their calculation in variable-
precision arithmetic.

3.1. The weight functions on R

In this part we give an account of some of the most important (even) weight functions on R, including
their moments and the coefficients βk in the three-term recurrence relation (3.3) for the correspon-
ding orthogonal polynomials. For a given sequence of moments (mom), our Mathematica package
OrthogonalPolynomials enables us to get recurrence coefficients {al,be} in a symbolic form,

{al,be}=aChebyshevAlgorithm[mom, Algorithm -> Symbolic];

Graphics of these weight functions are displayed in figures 2 and 3.
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Sonin-Markov weight: wSM (x) = |x|β exp(−x2), β > −1

The corresponding orthogonal polynomials {πk}+∞
k=0 are known as the Sonin-Markov or generalized

Hermite polynomials. They can be expressed in terms of the generalized (monic) Laguerre polyno-
mials,

π2k(x) = L̂α
k (x

2), π2k+1(x) = xL̂α+1
k (x2) (α = (β − 1)/2).

Using [19, p. 102, theorems 2.2.11 and 2.2.12], we have the following equations for the coefficients βk
in (3.3),

β2k + β2k+1 = α
(1)
k = 2k + α+ 1, β2k−1β2k = β

(1)
k = k(k + α)

and

β2k+1 + β2k+2 = α
(2)
k = 2k + α+ 2, β2kβ2k+1 = β

(2)
k = k(k + α+ 1),

where α
(ν)
k and β

(ν)
k , ν = 1, 2, are the recurrence coefficients for the generalized monic Laguerre

polynomials L̂α
k and L̂α+1

k , respectively. From the previous equations we get

βk =





k + β

2
, k odd,

k

2
, k even,

and β0 = µ0 =
∫
R
wSM (x)dx = Γ((β + 1)/2).

In the special case β = 0, this weight function reduces to the well-known Hermite weight wH(x) =
exp(−x2). This is the most popular (classical) weight function on the real line. The recurrence
coefficients of the classical Hermite polynomials orthogonal with respect to this weight function on R

are

β0 =
√
π, βk =

k

2
, k = 1, 2, . . .

Remark 3.1. There are several generalizations of the Sonin-Markov weight function. For example,
the Freud weight is defined by wF (x) = exp(−|x|α), α ≥ 1, or, in general, w(x) = exp(−2Q(x)), where
Q is a function (e.g., a polynomial in a special case) with some properties.



Methods for the computation of slowly convergent series and finite sums 47
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Figure 2: Weight functions on R: Cases 1◦– 4◦

Abel weight: wA(x) = x/(2 sinh(πx))

The moments for this weight are

µk =





0, k odd,

(
2k+2 − 1

) (−1)k/2Bk+2

k + 2
, k even
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wP HPlanaL

-2 -1 1 2

0.05

0.10

0.15

wM HmidpointL

-2 -1 1 2

0.01

0.02

0.03

0.04

w7

-3 -2 -1 1 2 3

0.02

0.04

0.06

0.08

0.10

w8

-6 -4 -2 2 4 6

0.05

0.10

0.15

0.20

Figure 3: Weight functions on R: Cases 5◦– 8◦

and the coefficients in the three-term recurrence relation (3.3) for the corresponding orthogonal poly-
nomials are known explicitly (see [19, p. 159]),

β0 = µ0 =
1

4
, βk =

k(k + 1)

4
, k = 1, 2, . . .
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Lindelöf weight: wL(x) = 1/(2 cosh(πx))

The moments for this weight are

µk =

{
0, k odd,

2(4π)−k−1k!
[
ζ
(
k + 1, 14

)
− ζ

(
k + 1, 34

)]
, k even,

where ζ(s, a) is the generalized Riemann zeta function, defined by

ζ(s, a) =
+∞∑

ν=0

(ν + a)−s.

The recurrence coefficients are known explicitly (see [19, p. 159]),

β0 = µ0 =
1

2
, βk =

k2

4
, k = 1, 2, . . .

Logistic weight: wlog(x) = e−πx/(1 + e−πx)2 = 1/(2 cosh(πx/2))2 = [wL(x/2)]2

The moments for this weight are

µk =





0, k odd,

2

π
(−1)k/2−1

(
2k−1 − 1

)
Bk, k even

and the coefficients in the three-term recurrence relation (3.3) for the corresponding orthogonal poly-
nomials are also known explicitly (see [19, p. 159]),

β0 = µ0 =
1

π
, βk =

k4

4k2 − 1
, k = 1, 2, . . .

Plana weight: wP (x) = |x|/(e|2πx| − 1)

The moments for this weight function are given in (2.10), and our package OrthogonalPolynomials
gives the sequence of recurrence coefficients {βk}k≥0 in the rational form:

{
1

12
,
1

10
,
79

210
,
1205

1659
,
262445

209429
,
33461119209

18089284070
,
361969913862291

137627660760070
,
85170013927511392430

24523312685049374477
,
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1064327215185988443814288995130

236155262756390921151239121153
,
286789982254764757195675003870137955697117

51246435664921031688705695412342990647850
,

15227625889136643989610717434803027240375634452808081047

2212147521291103911193549528920437912200375980011300650
,

587943441754746283972138649821948554273878447469233852697401814148410885

71529318090286333175985287358122471724664434392542372273400541405857921
, . . .

}
.

Midpoint weight: wM (x) = |x|/(e|2πx| + 1)

The moments for this weight are given by

µk =





0, k is odd,

(−1)k/2(1− 2−(k+1))
Bk+2

k + 2
, k is even.

The sequence {βk}k≥0 in rational form is

{
1

24
,
7

40
,
2071

5880
,
999245

1217748
,
21959166635

18211040276
,
108481778600414331

55169934195679160
,
2083852396915648173441543

813782894744588335008520
,

25698543837390957571411809266308135

7116536885169433586426285918882662
,
202221739836050724659312728605015618097349555485

45788344599633183797631374444694817538967629598
, . . .

}
.

The weight w7(x) =
x2e−πx

(1− e−πx)2
=
( x

2 sinh(πx/2)

)2
=

1

4
[wA(x/2)]2

In this case the moments are

µk =





0, k is odd,

(−1)k/22k+2Bk+2

π
, k is even.

For the corresponding sequence {βk}k≥0 we obtain

{
2

3π
,
4

5
,
72

35
,
80

21
,
200

33
,
1260

143
,
784

65
,
1344

85
,
6480

323
,
3300

133
,
4840

161
,
20592

575
,
9464

225
,
12740

261
,
50400

899
,
21760

341
, . . .

}
.
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After some experiments, we conjectured and proved that

β0 = µ0 =
2

3π
, βk =

k(k + 1)2(k + 2)

(2k + 1)(2k + 3)
, k ∈ N.

The weight w8(x) = x2
eπx/2 + e−πx/2

(eπx/2 − e−πx/2)2
= 2 cosh(πx/2)

( x

2 sinh(πx/2)

)2

In this case the moments are

µk =





0, k is odd,

2k+3

π
(2k+2 − 1)|Bk+2|, k is even.

Also, in this case we proved that

β0 = µ0 =
4

π
, βk =

{
(k + 1)2, k is odd,

k(k + 2), k is even.

3.2. Weight functions on R+

In this part we mention four important weight functions defined on R+.

Bose-Einstein and Fermi-Dirac weights: ε(t) =
t

et − 1
and ϕ(t) =

1

et + 1
, respectively

These functions and the corresponding quadratures with respect to them are widely used in solid state
physics.

The moments can be exactly calculated in terms of Riemann zeta function,

µk(ε) =

∫ +∞

0

tk+1

et − 1
dt = (k + 1)!ζ(k + 2), k ∈ N0,

and

µk(ϕ) =

∫ +∞

0

tk

et + 1
dt =

{
log 2, k = 0,

(1 − 2−k)k!ζ(k + 1), k > 0.
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Hyperbolic weights on R+

Consider the hyperbolic weights

w1(t) =
1

cosh2 t
and w2(t) =

sinh t

cosh2 t
. (3.4)

The moments for these weights can be expressed in the form:

µ
(1)
k =

+∞∫

0

tkw1(t)dt =





1, k = 0,

log 2, k = 1,

2k−1 − 1

4k−1
k!ζ(k), k ≥ 2

and

µ
(2)
k =

+∞∫

0

tkw2(t)dt=





1, k = 0,

k
(π
2

)k
|Ek−1|, k (odd) ≥ 1,

2k

4k
[
ψ(k−1)(14 )− ψ(k−1)(34 )

]
, k (even) ≥ 2,

respectively, where Ek are Euler’s numbers and ψ(z) is the so-called digamma function, i.e., the
logarithmic derivative of the gamma function, ψ(z) = Γ′(z)/Γ(z).

In the cases studied in this subsection, the recurrence coefficients αk and βk in (3.2) are not
rational numbers, so that the option Algorithm -> Symbolic in their construction (by the procedure
aChebyshevAlgorithm in our Mathematica package OrthogonalPolynomials) cannot be applied.
Therefore, in these cases, we use the variable-precision arithmetic to overcome the numerical instability
in the numerical construction of αk and βk, by setting WorkingPrecision to be sufficiently large. For
example, if we want to construct the first 50 recursion coefficients, with WorkingPrecision->80, we
only need to execute the following commands:

<< OrthogonalPolynomials‘

momBE=Table[(k+1)!Zeta[k+2],{k,0,199}];

{al,be}=aChebyshevAlgorithm[momBE, WorkingPrecision->80];

Taking larger WorkingPrecision, for example 100,

{al1,be1}=aChebyshevAlgorithm[momBE, WorkingPrecision->100];

N[Max[Abs[al/al1-1],Abs[be/be1-1]],3]

we get the maximal relative error in the previous recurrence coefficients {al,be} to be 1.61× 10−43.



Methods for the computation of slowly convergent series and finite sums 53

§4. Laplace transform method

Consider the two series

T =

+∞∑

k=1

ak and S =

+∞∑

k=1

(−1)kak. (4.1)

Suppose that the general term of the series in (4.1) is expressible in terms of the Laplace transform,
or its derivative, of a known function.

Let

f(s) =

∫ +∞

0

e−stg(t)dt, ℜs ≥ 1.

Then for ak = f(k), we have

T =

+∞∑

k=1

∫ +∞

0

e−ktg(t)dt =

∫ +∞

0

(
+∞∑

k=1

e−kt

)
g(t)dt =

∫ +∞

0

e−t

1− e−t
g(t)dt,

i.e.,

T =

+∞∑

k=1

f(k) =

∫ +∞

0

g(t)

t
· t

et − 1
dt. (4.2)

Similarly, for “alternating” series, we have

S =

+∞∑

k=1

(−1)kf(k) =

∫ +∞

0

(−g(t)) 1

et + 1
dt. (4.3)

Also, if ak = f ′(k), we can get

+∞∑

k=1

f ′(k) = −
+∞∑

k=1

∫ +∞

0

te−ktg(t)dt =

∫ +∞

0

(−g(t)) t

et − 1
dt

and
+∞∑

k=1

(−1)kf ′(k) =

+∞∑

k=1

(−1)k−1

∫ +∞

0

te−ktg(t)dt =

∫ +∞

0

(tg(t))
1

et + 1
dt.

Thus, the summation of series is now transformed to an equivalent integration problem.
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The first idea for the numerical integration of these integrals is the application of the Gauss-
Laguerre quadrature, but its convergence can be very slow because of the presence of poles on the
imaginary axis at the points ±2πi, ±4πi, . . . (in the case of integrals for T ) and ±πi, ±3πi, . . . (in
the case of integrals for S).

Another approach for the integration over (0,+∞),

∫ +∞

0

h(t)w(t)dt =

N∑

ν=1

Aνh(xν) +RN (h), (4.4)

with respect to the weight functions w(t) = ε(t) (Bose-Einstein weight) and w(t) = ϕ(t) (Fermi-Dirac
weight), was developed by Gautschi and Milovanović [15] (see also [10] and [23]).

§5. Contour integration method

An alternative summation/integration procedure for the series (4.1) with ak = f(k), when the function
f is analytic in the region {

z ∈ C
∣∣ ℜz ≥ α, m− 1 < α < m

}
(5.1)

was considered in [21] (see also [22] and [23]). This method requires the indefinite integral F of f
chosen so as to satisfy certain decay properties.

Here we consider a more general version of this method which can be applied also to finite sums.
In fact, we consider the series

Tm,n =
n∑

k=m

f(k) and Sm,n =
n∑

k=m

(−1)kf(k), (5.2)

with an analytic (holomorphic) function f in

G =
{
z ∈ C : α ≤ ℜz ≤ β, |ℑz| ≤ δ

π

}
,

where m,n ∈ Z, m < n ≤ +∞, and m− 1 < α < m, n < β < n+ 1, δ > 0, Γ = ∂G.
By contour integration of a product of functions z 7→ f(z)g(z) over the rectangle Γ in the complex

plane, where g(z) = π/ tanπz and g(z) = π/ sinπz, we are able to reduce the summation of the series
Tm,n and Sm,n to a problem of numerical integration with Gaussian quadrature rules on (0,+∞),
respectively, with respect to the first and second hyperbolic weight functions of (3.4). The moments
of these weights are given in subsection 3.2.
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For a holomorphic function f in G, by Cauchy’s residue theorem, we obtain

Tm,n =
1

2πi

∮

Γ

f(z)
π

tanπz
dz and Sm,n =

1

2πi

∮

Γ

f(z)
π

sinπz
dz.

After integration by parts, these formulas reduce to

Tm,n =
1

2πi

∮

Γ

( π

sinπz

)2
F (z)dz and Sm,n =

1

2πi

∮

Γ

( π

sinπz

)2
cosπz F (z)dz, (5.3)

where F is an integral of f .
Assume now the following conditions for the function F (cf. [18, p. 57]):

(C1) F is a holomorphic function in the region (5.1),

(C2) lim
|t|→+∞

e−c|t|F (x+ it/π) = 0, uniformly for x ≥ α,

(C3) lim
x→+∞

∫ +∞

−∞
e−c|t|

∣∣F (x+ it/π)
∣∣ dt = 0,

where c = 2 or c = 1, when we consider Tm,n or Sn,m, respectively.

Setting α = m − 1/2, β = n+ 1/2 and letting δ → +∞, we can prove that the integrals in (5.3)
over Γ reduce to integrals along the lines z = α+ iy and z = β + iy (−∞ < y < +∞). Namely, under
condition (C2), the integrals on the lines z = x± i(δ/π), α ≤ x ≤ β, tend to zero when δ → +∞. In
the case n = ∞, the condition (C3) implies that the integrals over the line z = β+ iy, when δ → +∞
and β → +∞, also tend to zero. Thus,

Tm,n =

∫ +∞

0

Φm,n(t)w1(t)dt and Sm,n =

∫ +∞

0

Ψm,n(t)w2(t)dt, (5.4)

where w1 and w2 are hyperbolic weight functions defined in (3.4) and the functions t 7→ Φm,n(t) and
t 7→ Ψm,n(t) can be expressed in terms of the real and imaginary parts of the function F (z).

Formulas (5.4) suggest to apply Gaussian quadrature to the integrals on the right, using the weight
functions w1 and w2, respectively, i.e.,

∫ +∞

0

g(t)ws(t)dt =

N∑

ν=1

AN
ν,sg(τ

N
ν,s) +RN,s(g) (s = 1, 2), (5.5)
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where AN
ν,s and τNν,s, ν = 1, . . . , N (s = 1, 2), are parameters of these quadratures and the remainders

RN,s(g) = 0 (s = 1, 2) for all g ∈ P2N−1. The required recursion coefficients for the corresponding
orthogonal polynomials (in the numerical construction of Gaussian quadratures (5.5)) can be computed
using the moments which are given in subsection 3.2 (last case).

In this way we obtain the following statements (cf. [21, 23]):

Theorem 5.1. Let F be an integral of f such that conditions (C1)–(C3) are satisfied with c = 2. If
AN

ν,1 and τNν,1, ν = 1, . . . , N , are the weights and nodes of the N -point Gaussian quadrature rule (5.5)

with respect to the weight function w1(t) = 1/ cosh2 t on R+, then

Tm,n =

n∑

k=m

f(k) =

N∑

ν=1

AN
ν,1Φm,n

(τNν,1
π

)
+RN,1(Φm,n),

where

Φm,n(t) = Φ
(
m− 1

2
,
t

π

)
− Φ

(
n+

1

2
,
t

π

)

and Φ(x, y) is defined by

Φ(x, y) = −1

2
[F (x+ iy) + F (x − iy)] = −ℜF (x+ iy).

Theorem 5.2. Let F be an integral of f such that conditions (C1)–(C3) are satisfied with c = 1. If
AN

ν,2 and τNν,2, ν = 1, . . . , N , are the weights and nodes of the N -point Gaussian quadrature rule (5.5)

with respect to the weight function w2(t) = sinh t/ cosh2 t on R+, then

Sm,n =

n∑

k=m

(−1)kf(k) =

N∑

ν=1

AN
ν,2Ψm,n

(τNν,2
π

)
+RN,2(Ψm,n),

where

Ψm,n(t) = (−1)mΨ
(
m− 1

2
,
t

π

)
+ (−1)nΨ

(
n+

1

2
,
t

π

)

and Ψ(x, y) is defined by

Ψ(x, y) =
1

2i
[F (x+ iy)− F (x− iy)] = ℑF (x + iy).
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At the end of this section we mention an integral representation of the well-known (generalized)
Mathieu series

Sm(r) =
∑

n≥1

2n

(n2 + r2)m+1
and S̃m(r) =

∑

n≥1

(−1)n−1 2n

(n2 + r2)m+1
,

obtained by applying the previous transformation [27]:

Theorem 5.3. For each m ∈ N and r > 0 we have

Sm(r) =
π

m

∞∫

0

[m/2]∑
j=0

(−1)j
(
m

2j

)(
r2 − x2 + 1

4

)m−2j
x2j

[(
x2 − r2 + 1

4

)2
+ r2

]m w1(πx)dx

and

S̃m(r) =
π

m

∞∫

0

[(m−1)/2]∑
j=0

(−1)j
(

m

2j + 1

)(
r2 − x2 + 1

4

)m−2j−1
x2j+1

[(
x2 − r2 + 1

4

)2
+ r2

]m w2(πx)dx,

where w1 and w2 are the hyperbolic weights given in (3.4).

By means of these newly established integral forms of generalized Mathieu series, we have also
obtained a new integral expression for the Bessel function of the first kind of half integer order Jm−1/2,
solving a related Fredholm integral equation of the first kind with nondegenerate kernel (see [27]).

The series S1(r) was introduced and studied for the first time by Émile Leonard Mathieu (1835–
1890) in his book devoted to the elasticity of solid bodies [20].

§6. Numerical examples

Example 6.1. Consider two simple series

T =
+∞∑

k=1

1

(k + 1)2
=
π2

6
− 1 and S =

+∞∑

k=1

(−1)k

(k + 1)2
=
π2

12
− 1.
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Summation of the series T

(a) Application of the Plana formula

We first apply the formula (2.8), with n = ∞, to the series T , using m as an integer parameter.
In that case we have

T =

+∞∑

k=1

f(k) =

m∑

k=1

f(k)− 1

2
f(m) + Tm,∞

=

m∑

k=1

f(k)− 1

2
f(m) +

∫ +∞

m

f(x)dx −
∫

R

φm(y)wP (x)dy

= Um(f)−
∫

R

φm(y)wP (x)dy,

where φm(y) and wP (x) are defined in (2.9),

Um(f) =

m∑

k=1

f(k)− 1

2
f(m) +

∫ +∞

m

f(x)dx

and f(x) = 1/(x+ 1)2.
For the integral I(φm) =

∫
R
φm(y)wP (x)dy, we construct the Gaussian quadratures with the Plana

weight wP (x), QN (φm) =
N∑

ν=1
A

(N)
ν φm(x

(N)
ν ), for N = 5(5)50 (that is to say for N from 5 to 50 with

step 5, we use this notation later with the same sense) and Precision->50, using our Mathematica

package:

<< orthogonalPolynomials‘

moments=Table[If[OddQ[k],0,(-1)^(k/2)BernoulliB[k+2]/(k+2)], {k,0,99}];

{al,be}=aChebyshevAlgorithm[moments, Algorithm -> Symbolic];

pq[n_]:=aGaussianNodesWeights[n,al,be,WorkingPrecision->55, Precision->50];

nw=Table[pq[n], {n,5,50,5}];

The corresponding nodes and weights are the elements of the list nw in the Mathematica code. For
example, for N = 15 the nodes are nw[[3]][[1]] and the weights are nw[[3]][[2]] (the lengths of
these lists are 15).
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N m = 1 m = 2 m = 3 m = 4 m = 5 m = 0 BEQ

5 2.0(−6) 2.4(−8) 8.1(−10) 5.4(−11) 5.7(−12) 1.1(−5) 3.0(−4)
10 2.7(−8) 4.4(−11) 2.5(−13 3.4(−15) 8.7(−17) 1.5(−8) 1.1(−8)
15 1.7(−9) 7.1(−13) 1.1(−15 4.5(−18) 3.6(−20) 3.4(−10) 3.2(−13)
20 2.2(−10) 3.3(−14) 1.9(−17) 3.0(−20) 9.5(−23) 1.9(−12) 8.0(−18)
25 4.4(−11) 2.9(−15) 7.5(−19) 5.3(−22) 7.9(−25) 3.1(−14) 1.8(−22)
30 1.2(−11) 3.9(−16) 5.1(−20) 1.8(−23) 1.4(−26) 2.1(−15) 3.9(−27)
35 3.7(−12) 6.9(−17) 5.1(−21) 1.0(−24) 4.7(−28) 6.8(−17) 8.2(−32)
40 1.4(−12) 1.5(−17) 6.9(−22) 8.4(−26) 2.3(−29) 2.6(−18) 1.7(−36)
45 5.7(−13) 4.0(−18) 1.1(−22) 9.1(−27) 1.6(−30) 8.6(−19) 3.3(−41)
50 2.6(−13) 1.2(−18) 2.3(−23) 1.2(−27) 1.4(−31) 1.2(−19) 6.5(−46)

Table 1: Applications of Plana formula and Laplace transform method to the series T . Relative errors
in the Gaussian approximation (numbers in parentheses indicate decimal exponents).

The relative errors in the Gaussian approximations T ≈ T (N,m) = Um(f)−QN (φm),

rN,m =

∣∣∣∣
T (N,m) − T

T

∣∣∣∣=
∣∣∣∣
I(φm)−QN (φm)

T

∣∣∣∣,

are given in Table 1 for N = 5(5)50 and m = 1(1)5. The rapid speed of convergence of the Gaussian
rule (with the Plana weight) as m increases is due to the poles ±i(m + 1) (second order!) of the
function

y 7→ φm(y) = − 2(m+ 1)

[(m+ 1)2 + y2]2

moving away from the real line.
This influence of the poles to the convergence can be also reduced if the integration is performed

only over the semiaxis R+. For example, if we apply the original Plana formula (2.4), where the
integration is over R+ (practically, with respect to the Bose-Einstein function), i.e.,

T =
+∞∑

k=1

f(k) =

∫ +∞

0

f(x)dx − 1

2
f(0)− 1

2π2

∫ +∞

0

φ0

( t

2π

)
· t

et − 1
dt,

the relative errors in the corresponding Gaussian approximation are presented in the penultimate
column of the same table (with m = 0).
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(b) Application of the Laplace transform method

In the last column of Table 1 (BEQ) we give the relative errors in N -point Gaussian approximation
(w.r.t. the Bose-Einsten weight) in the case of the Laplace transform method. In that case, for
f(s) = (s+ 1)−2 we have g(t) = te−t, so that, according to (4.2) and (4.4),

T =
+∞∑

k=1

1

(k + 1)2
=

∫ +∞

0

e−t t

et − 1
dt ≈

N∑

ν=1

Aν exp(−xν),

where xν and Aν , ν = 1, . . . , N , are nodes and weights in (4.4) when w(t) = ε(t) = t/(et − 1).
It is interesting to note that the previous trick of “moving m” with the Laplace transform method

does not lead to acceleration of convergence. For example, in this case we have that

T =

m−1∑

k=1

1

(k + 1)2
+

+∞∑

k=1

1

(k +m)2
=

m−1∑

k=1

1

(k + 1)2
+

∫ +∞

0

e−mt t

et − 1
dt.

The convergence of the corresponding quadrature process (as m increases) slows down considerably
(see [21]). The reason for this is the behavior of the function t 7→ e−mt, which tends to a discontinuous
function when m → +∞. On the other hand, the function is entire, which explains the ultimately
much better results for m = 1.

(c) Application of the contour integration method

We put

T =
m−1∑

k=1

1

(k + 1)2
+

+∞∑

k=m

1

(k + 1)2
=

m−1∑

k=1

1

(k + 1)2
+ Tm,∞,

where the first sum on the right-hand side for m = 1 is empty. We apply now the Gaussian rule with
respect to the hyperbolic weight w1(t) = 1/ cosh2 t to the second sum, Tm,∞,

Tm,∞ =

∫ +∞

0

w1(t)Φ
(
m− 1

2
,
t

π

)
dt ≈ QN,1(Φm,∞) =

N∑

ν=1

AN
ν,1Φ

(
m− 1

2
,
τNν,1
π

)
,

where f(z) = 1/(z + 1)2, F (z) = −1/(z + 1) (the integration constant being zero on account of the
condition (C3)), and

Φ(x, y) = −1

2
[F (x+ iy) + F (x − iy)] = ℜ

{ 1

z + 1

}
=

x+ 1

(x + 1)2 + y2
.

Notice that Φm,∞(t) = Φ(m− 1/2, t/π) because lim
n→+∞

Φ(n+ 1/2, t/π) = 0.
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N m = 1 m = 2 m = 3 m = 4 m = 5

5 1.3(−7) 5.4(−9) 1.9(−10) 8.6(−12) 3.7(−13)
10 1.1(−10) 1.1(−13) 1.7(−16) 7.9(−18) 2.0(−19)
15 1.1(−13) 3.8(−17) 3.7(−20) 1.1(−22) 3.8(−25)
20 1.4(−15) 4.0(−20) 1.2(−24) 1.9(−27) 2.3(−29)
25 6.2(−18) 1.1(−22) 2.0(−27) 2.6(−30) 2.5(−33)
30 2.6(−19) 1.4(−25) 1.1(−31) 2.0(−33) 8.1(−37)
35 5.6(−21) 3.2(−27) 2.3(−32) 2.3(−36) 2.5(−40)
40 1.3(−22) 3.6(−30) 1.5(−34) 3.8(−39) 1.6(−43)
45 4.2(−24) 4.0(−31) 6.5(−38) 4.2(−42) 3.4(−46)
50 1.9(−25) 6.5(−33) 6.6(−39) 2.8(−44) 1.2(−48)

Table 2: Application of the contour integration method to the series T . Relative errors in the Gaussian
approximation.

The relative errors in the Gaussian approximations,

T ≈ T (N,m) =
m−1∑

k=1

1

(k + 1)2
+QN,1(Φm,∞),

can be expressed in the form rN,m = |(T (N,m)−T )/T | and they are presented in Table 2 for N = 5(5)50
and m = 1(1)5. As we can see, the convergence is very fast!

Summation of the series S

According to (2.6) (for n = ∞), the series S can be expressed in the form

S =

+∞∑

k=1

(−1)kf(k) =

m−1∑

k=1

(−1)kf(k) +

+∞∑

k=1

(−1)kf(k)

=

m−1∑

k=1

(−1)kf(k) +
1

2
(−1)mf(m)−

∫

R

ψm(y)wA(y)dy,

where the function y 7→ ψm(y) and the Abel weight wA(y) are defined in (2.7). The recurrence
coefficients for the orthogonal polynomials in this case are known explicitly and given in subsection
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3.1 (Abel weight), so that we can calculate the parameters of the corresponding Gaussian formula in
the following way:

<< orthogonalPolynomials‘

al = Table[0, {k,0,49}]; be = Join[{1/4}, Table[k(k+1)/4, {k,1,49}]];

pq[n_]:=aGaussianNodesWeights[n,al,be,WorkingPrecision->55, Precision->50];

nw=Table[pq[n], {n,5,50,5}];

Relative errors in Gaussian approximations for N = 5(5)50 and m = 1, m = 2, and m = 3, are
presented in Table 3.

Applying the Gaussian quadrature rule with respect to the Fermi-Dirac weight function ϕ(t) =
1/(et+1) to the integral on the right side in (4.3), we obtain approximations with relative errors given
also in Table 3 (FDQ-column).

Gauss-Abel formula (2.6) Eq. (4.3) Theorem 5.2
N

m = 1 m = 2 m = 3 FDQ m = 1 m = 2 m = 3 m = 4 m = 5

5 1.9(−3) 5.7(−5) 3.4(−6) 1.2(−3) 1.1(−4) 1.9(−6) 2.2(−7) 1.5(−8) 4.5(−10)
10 2.3(−4) 2.3(−6) 4.7(−8) 6.5(−8) 3.5(−7) 1.9(−9) 2.3(−12) 1.0(−12) 1.1(−14)
15 6.0(−5) 2.9(−7) 3.0(−9) 2.1(−12) 5.0(−9) 8.1(−13) 1.9(−15) 3.2(−16) 9.2(−18)
20 2.2(−5) 6.5(−8) 3.9(−10) 5.5(−17) 8.9(−11) 6.6(−14) 1.1(−16) 6.2(−19) 7.6(−21)
25 1.0(−5) 1.9(−8) 7.7(−11) 1.3(−21) 3.4(−12) 6.2(−16) 6.8(−19) 2.5(−21) 1.3(−23)
30 5.3(−6) 7.2(−9) 2.0(−11) 3.0(−26) 2.4(−13) 2.4(−18) 9.7(−21) 1.2(−24) 1.3(−26)
35 3.0(−6) 3.1(−9) 6.5(−12) 6.4(−31) 2.0(−14) 1.1(−19) 4.3(−23) 1.3(−25) 2.1(−28)
40 1.9(−6) 1.5(−9) 2.4(−12) 1.3(−35) 1.5(−15) 5.6(−21) 1.3(−24) 1.1(−27) 9.8(−31)
45 1.2(−6) 7.6(−10) 9.9(−13) 2.7(−40) 4.2(−17) 8.3(−23) 6.7(−26) 3.8(−30) 2.0(−32)
50 8.2(−7) 4.2(−10) 4.5(−13) 5.4(−45) 1.1(−17) 1.7(−23) 2.6(−27) 4.1(−31) 8.9(−35)

Table 3: Application of summation/integration methods to the series S. Relative errors in Gaussian
approximation.

Finally, applying the contour integration method to the series S (see Theorem 5.2), for N = 5(5)50
nodes and m = 1(1)5, we get the Gaussian approximations,

S ≈ S(N,m) =

m−1∑

k=1

(−1)k

(k + 1)2
+QN,2(Ψm,∞),
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where

QN,2(Ψm,∞) =

N∑

ν=1

AN
ν,2Ψ

(
m− 1

2
,
τNν,2
π

)
.

The relative errors, rN,m = |(S(N,m) − S)/S|, are presented in the last five columns in Table 3.
As we can see the Laplace transform method is most efficient in this case.

Example 6.2. We consider now the series

T1(a) =

+∞∑

k=1

1√
k(k + a)

(a ≥ 0).

T1(1) appears in a study of spirals and defines the well-known Theodorus constant (see Davis [8]). The
series is slowly convergent. The first 1 000 000 terms of T1(1) give the result T1(1) = 1.8580 . . . ≈ 1.86
(only 3-digit accuracy).

In 1991 Gauutschi [10] calculated T1(a) by using the method of the Laplace transform for different
values of a (≤ 32). As a increases, the convergence of the Gauss quadrature formula slows down
considerably. For example, when a = 8, the corresponding quadrature with N = 40 nodes gives a
result with relative error 2.6× 10−8.

In a special case for a = 1, Gautschi [14] has recently proved that

T1(1) =
2√
π

∫ +∞

0

D(
√
t)√
t

w(t)dt,

where D is Dawson’s integral D(x) = e−x2

∫ x

0

et
2

dt and w is the corresponding weight function given

by w(t) = t−1/2ε(t) =
√
t/(et − 1). In the construction of Gaussian quadratures with respect to this

weight, the moments are

µk =

∫ +∞

0

tk+1/2

et − 1
dt = Γ

(
k +

3

2

)
ζ
(
k +

3

2

)
, k = 0, 1, . . . ,

where the gamma function and the Riemann zeta function are computable by variable-precision cal-
culation.

Using the Chebyshev algorithm with sufficiently high precision, Gautschi [14] has obtained Gaus-
sian quadratures and applied them to the summation of this series for N = 5(10)75.
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N Q
(N)
10 (1)

5 1.8600250792211916 . . .

15 1.860025079221190307180695915717174 . . .

25 1.860025079221190307180695915717143324666524143 . . .

35 1.86002507922119030718069591571714332466652412152345153 . . .

45 1.86002507922119030718069591571714332466652412152345149304919921 . . .

55 1.860025079221190307180695915717143324666524121523451493049199503598380 . . .

Table 4: Gaussian approximation of the sum T1(1).

Now, we directly apply the method of contour integration to Tm(a), where

T1(a) =

m−1∑

k=1

1√
k(k + a)

+ Tm(a), Tm(a) =

+∞∑

k=m

1√
k(k + a)

.

Then we use the Gaussian quadrature formula with respect to the weight function w1(t) = 1/ cosh2 t
on R+ to calculate Tm(a).

In order to construct Gaussian rules for N ≤ 100, we need the recursion coefficients αk and βk for
k ≤ N−1 = 99, i.e., the moments for k ≤ 2N−1 = 199. Taking the WorkingPrecision to be 160, we
obtain the first hundred recursion coefficients αk and βk, with relative errors less than 1.86× 10−78.

For this series we have

f(z) =
1√

z(z + a)
and F (z) =

2√
a

(
arctan

√
z

a
− π

2

)
,

where the integration constant is taken so that F (∞) = 0. Thus, we obtain

T1(a) ≈ Q(N)
m (a) =

m−1∑

k=1

1√
k(k + a)

+

N∑

ν=1

AN
ν,1Φ

(
m− 1

2
,
τNν,1
π

)
,

where Φ(x, y) is defined in Theorem 5.1. The Gaussian approximation Q
(N)
m (a) for a = 1, m = 10,

and N = 5(10)55 are presented in Table 4. Boxed digits are in error.As we can see the method is very
efficient.
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Figure 4: Relative errors in the Gaussian approximation T1(1) ≈ Q
(N)
m (1) for N = 5(5)100 and some

selected values of m.

Relative errors of Q
(N)
m (1) for N = 5(5)100 and different values ofm (≤ 20) are presented in Figure

4 in a log-scale.
Numerical results also show that the convergence is slightly faster if the parameter a is larger. For

example, if a = 1000, then taking m = 20 and N = 5(5)25, the corresponding relative errors in the
Gaussian approximations are 2.32(−20), 1.06(−33), 6.01(−43), 1.18(−51), 1.89(−59), respectively.
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Mathematical Institute,
Serbian Academy of Sciences and Arts,
Kneza Mihaila 36,
11000 Beograd, Serbia.
gvm@mi.sanu.ac.rs


