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Abstract. We study the kernels K, ;(z) of the remainder term R, s(f) of some Gauss—
Turdan—Kronrod quadrature rules for analytic functions when the weight function is the
chosen subclass of Gori—Micchelli weight functions. We investigate the location on the
elliptic contours where the modulus of the kernel attains its maximum value, which leads
to effective error bounds of Gauss—Turan—Kronrod quadratures.

INTRODUCTION

Let w be an integrable (nonnegative) weight function on the interval (—1,1),

n € N and s € Ny. It is well known that the Gauss—Turan quadrature formula with
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multiple nodes,
1 n
/1f(t> ZZAwf Ty +Rn8(f)7 (1>
- v=11i=0
is exact for all algebraic polynomials of degree at most 2(s+ 1)n — 1. The nodes 7, in
(9) must be zeros of the s-orthogonal polynomials with respect to the weight function
w(t). The s-orthogonal polynomials 7, = m,, with respect to the weight function

w(t) are polynomials which satisfy the following orthogonality conditions

1
/ T (1) R w(t)dt = 0, k=0,1,....,n— 1.

-1

Numerically stable methods for constructing nodes 7, and coefficients A;, can be
found in [4], [10], [14]. For more details on quadrature formulae with multiple nodes
see [5] and [9].

Let T" be a simple closed curve in the complex plane surrounding the interval
[—1,1] and let D be its interior. If integrand f is analytic on D and continuous on D,
then the remainder term R, ; in (9) admits the contour integral representation (see
[17], [11]) X

Fus(f) = 5= § Kns(2)f(2) dz. &)

The kernel is given by

zZ,w :7%,5(2;711) zZ ¢ |-
Kslziw) = 2000 2 -10)

where

puatziw) = [ s

The modulus of the kernel is symmetric with respect to the real axis, i.e., | I, 4(Z)| =
|K,.s(2)|. If the weight function w is even, the modulus of the kernel is symmetric
with respect to both axes, i.e., |K, s(—%)| = |K,s(2)| (see [11, Lemma 2.1]).

The integral representation (2) leads to a general error estimate, by using Holder

Ky s(2
f v (3)

(fms ||dz|)”(;4|f i)

inequality,

‘Rns

1
T or
1
o
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ie.,
1
Rns S a_ Kns /'y 4
R (£)] < o 1Kl 11, (4)

where 1 <7 < 400, 1/r+1/r" =1, and

1/r
(f1r@rde) " 1<r<+oo,
171, =
max | £(2)], r=+oo.

The case r = 400 (' = 1) gives

1

R ()] = 5 (e ()] 1] 9

L>-error bounds of type (5) for Gaussian quadratures (s = 0) of analytic functions
were studied in [2], [3], [18], [19], [7]. The general case (s € N) was studied in [11]
and [16].

On the other side, for 7 =1 (7" = +00), the estimate (4) is reduced to

RusD] < 5= ( F1Ews@lI=A) 1] (©)

L'-error bounds of type (6) for Gaussian quadratures (s = 0) of analytic functions
were studied in [6]. The general case (s € N) is studied in [12].
Following the well-known idea of Kronrod, the formula (9) can be extended to the

interpolatory quadrature formula (see [15])

1 n 2s n+1 25y
[ r@uwydt =33 B fOm) + 3.3 Ciuf ) + Eusl ), (7)
-1 v=11i=0 pn=135=0
where 7, are the same nodes as in (9), s, € Ng (¢ =1,...,n+ 1) and the new nodes

7 and new weights B;,,C;, are chosen to maximize the degree of exactness of (7),
which is greater than or equal to 2ns+3n+1+2 Z",l su- The nodes 7; must satisfy
the orthogonality conditions
1
/ W) dt =0, m=0,1,...,n, (8)
-1

where
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The case s, =0 (u=1,...,n+ 1) was considered in [8], [20], [13].
If the integrand f is analytic on D and continuous on D, then F,, ¢(f) for quadra-
tures (7) can be expressed again in the form (2), with K, s(z;w) = pns(z;w)/Qn(2)

and

pns(230) = /1 (2) w(t)dt.

1 z—1

Usually for these quadratures we introduce the so-called generalized Stieltjes poly-
nomial as T (t) = [T (8 — 7).

In this paper we study the kernels of some Gauss—Turdan—Kronrod quadrature
rules for analytic functions when the weight function is the chosen subclass of Gori—
Micchelli weight functions. In fact, we investigate the location on the elliptic contours
where the modulus of the kernel attains its maximum value, which leads to effective
error bounds of such quadratures. It is given in the next section. In the rest of this
section we give a remark on the existence problem according to a mistake in the proof
of Proposition 2.1 in [15].

Namely, the existence of the real rule (7) depends on the existence of the corre-
sponding Stieltjes polynomial, i.e., on the fact whether all its zeros are real, simple
and different from 7,. This can be derived as a consequence of the conditions (2.5)
in [15, Proposition 2.1]. The existence of the requested Sieltjes polynomial in general
case depends on the weight function w. This is a very difficult question which is set-
tled only partially in the theory of ordinary Gauss-Kronrod quadrature formulae (see,
for instance, [1], [21] and reference therein). A proof of existence and uniqueness of
general real Kronrod extensions of Gaussian quadrature formulae with multiple nodes
(contrary to an observation in Abstract and the last paragraph of Introduction in [15])
cannot be given. However, the existence of the real rule (7) can be proved in some
special cases (see [15, Theorems 3.1 — 3.4]). It can be shown that when the rule (7)

with all nodes belonging to [—1, 1] exists, it is unique. The proof is given as follows.
The quadrature rule of type (7) can be written in the form
2041 2s,

/ Cwlt) fydi = 35 Ay fO(n) + Rus(f). (9)

-1 v=1 i=0
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where the nodes 7,, v = 1,2,... ¢ are fixed. It will have a degree of exactness equal
to N =30 +25%H s, + 1, if and only if K = 20+ 1+ 2324 s, coefficients A;,

satisfy the following system of N + 1 linear equations

2041 2s, ) 1
S5 Al () :/1w(t)uj(t)dt, j=01,...,N, (10)
v=1 i=0 -

where u;(t), j = 0,1,..., N, are linearly independent functions from the space Py.

Let us take that the matrix [ugz) (1,)] with N+1 rows and K columns has rank N+1—¢
(¢ > 1 because of N > K). If all nodes are mutually different, this is equivalent to

the following statement: the boundary differential problem

ANty

vt =0 uN(m) =0, (i=01,...,2s,; v=1,2,....2041),  (11)

has ¢ linearly independent solutions Uy, k =0,1,...,q — 1 (see [5, p. 41-43]).

The system (10) is consistent if and only if the ¢ conditions
1
/1MMﬁ@ﬁ:Q k=0,1,...,q-1, (12)
-1

are satisfied. In that case (10) has oo ~(V+1=9) solutions.
It is easy to see that the problem (11) has the following ¢+ 1 linearly independent
nontrivial solutions
2041
" It —7)> ", k=0,1,...,L
v=1
Denoting them as Ug(t), the conditions (12) become the conditions (8). The system

(10) has one and only one solution since

20+1 2041
K-—(N+1-¢)=(20+1+2) s,)+{+1)—(30+2> s,+2)=0.
v=1 v=1

MAIN RESULTS

We take the contour I' as an ellipse with foci at the points £1 and a sum of

semi-axes o > 1,

E = {ZE C:z= (0" 4+ o7t ™), OS@SQW}.

N | —
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In this paper we consider the case when the weight function w is the Gori-Micchelli

weight function

w(t) = wy(t) = Ugszle(t) (1—-t)1Y2 reqo,1,...,s}, (13)

where U,,_1(cosf) = sinnf/sinf is the Chebyshev polynomial of the second kind. If
we take n > 2, 51 = 5,41 = (s —{)/2 and s, = s — ¢ (p = 2,...,n), there holds
fne1(t) = (1 — t2)U,_1(t) (see [15, Theorem 3.1]).

In [15, p. 301] it was shown that

i
Prse(z;w) = 020 94st1 20 Zn,s0(u) ,

where

Zn,s(u) = i(—l)j (28 " 1) u41nj

j=0 §—7

and

1 (1= 221Uy, 1 (2)]?
Qn,s,ﬁ(z;w) = 92s+1 [Un,1<2>]2£

Now we can derive the explicit representation of the kernel

T [Un—l(z)]% Znsf(u)
K, iz;w) = = ) 14
se(zw) 2l 225 2n (1 — 22)sH1~ [[y,_ (2)]25H1 (14)
Using equalities
A9y, — COS 210 1/2
‘1 — 22‘ = 271 (GQ — COS 29), ‘Un,1(2)| = (W) y
where a; = a;(0) = (' +077)/2, €N, p> 1, we get
n - 2 6 ¢ Zns
’Knysyg(Z;U))’ — Q0 (a2 COs 2T ) | s ,K(u)| (15>

n2t 25+=1 g2n (g, — cos 4nB)st1/2(ay — cos 20)1/2
The graphs 0 — |K,,;¢(2)| (z € &,) for some values of n, s, £ and p are displayed

in Figure 1.

Theorem 1. For each fired s € Ny, o0 > 1 and { € N (¢ < s) there exists
no = no(0,¢) € N (ng > 2) such that

1
max | Ks0(2)] = ‘Kn,s,e (5(9 + @1)>

Y
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for each n > ng. When € =0, | K, ()| attains its mazimum on the real azis for all

neN (n>2).

Proof. The weight function w(t) is even, so we can take 6 € [0, 7/2].

First, for each n € N and o > 1 we prove

|Zn,s7€(pei9)| < Zn,sj(ﬁ)

0<6<m/2

(a4n — cosdnb)V/2 = (ag, — 1)1/?’

/8 /4 3n/8 /2 /8 /4 3n/8 T2

14 —16
10 10

s X

3 1.5

2r 1

1 0.5

0 . . . ) 0 . . . ,

/8 /4 3m/8 /2 /8 /4 3n/8 T2

Figure 1: The function 0 — |K, 32(2)| (2 € E1.07) for n = 15,20, 25,30

We note that

o) — [(Sim <2§1<_1)k (258 _Jrkl> u4"k> + Cos(u) (16)

v=0 k=2v
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where

—4ns

0, when s is even,
Cn S( ) = .
U , when s is odd.

It is easy to prove that |(,s(pe®)| = (,.s(p). Using the next notation
2v+1 2 1
S,,(’LL) — Z (_1)k< S +k >U—4nk
8 J—

2541 B 2541 4@ Dn
s — 2v s—2vr—1

(28 + 1) —8vn 1 _ au74n)

s —2v

where
s — 2v
a=——— and O0<a<l,
s+ 2v+ 2

we get

2s+1
s —2v

1S, (pe™®)| = ( )p_&’"\/l — 2qcos4nf + ¢2,

where ¢ = ap ™", 0 < ¢ < 1.
The next step is to prove

[Sulpe™)l — _  Su(p) (17)

(ag4n — cos4nb)'/2 = (ag, — 1)1/~

Using the previous facts, (17) is reduced to
(asn — 1)(1 — 2q cos 4nf + ¢°) < (au, — cos4nd)(1 — q)?,

ie.,

1 —2gasm +¢>>0.

It is easy to prove that
1 —2qas, +¢* = (1 —a)(l —ap™®),

which proves (17).
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Now, from (16) and (17) it follows

Zusalpe™)l O 1S, (pe")] [Grs (™)
(aan —cosdnd)'/2 = = (as, — cos4nb)/? ~ (as, — cos4nb)l/?
SO S Gul)
TS (=12 (e, = 1)V
Zn,Sl(ﬂ)
(a4n _ 1)1/2 ’
To complete the proof it remains to prove
(@, — cos 2nb)* (ag, —1)* (18)
(a4, — cosdnf)s(ay — cos20)1/2 = (a4, — 1)%(ay — 1)1/27
for sufficiently large n (n > ng(o,¢)) and 6 € (0,7/2]. Since
A4y, — cOs4nl = 2 (ag, — cos 2nb) (ag, + cos2nb) > a4y, — 1,
it suffices to prove
(agn + cos 2n0)* (ay — cos20) > (ag, + 1)*(ay — 1), (19)

for sufficiently large n (n > ny(o,¢)) and 0 € (0,7/2]. When ¢ = 0, (19) holds
obviously.

Using the following transformations
ag — cos20 = (ay — 1) + 2sin? 6

and

(g, + cos 2n6)* = (ag, + 1)** — 2sin®nb - F, 4(n, 0),

where

2/ 2€
Foi(n,0) => (=2)"! < . ) (agn + 1)*Fsin?*2nh (> 0),
k=1

(19) is reduced to
2sin? 0 (ag, + 1)% — 2sin®nf [(ag — 1) + 2sin® 0] F, 4(n, ) > 0. (20)

After dividing the inequality (20) by 2sin? 6, it is reduced to

2
(agn +1)% — 222 nf [(as — 1) + 2sin26] F,4(n,0) > 0. (21)

sin? 6
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Now, from the well-known fact

sin nd
- <n,
sinf | —
it follows
in? 0 2 0
% [(ag — 1) +25sin® 0] = (ay — 1)8;?1127; +2sin’nd < (ay — 1)n* +2.  (22)

In the same way as in [16, Theorem 2.2] one can show that

Fure.t) < 54 2 Vi + 122122504 (2 (0 4 122 (23)
nl\Y, = = 2%k +1 2n 2 Pt 2k 2n .

Using (22) and (23), we conclude that the left-hand side of (21) is greater than or
equal to G(n) = G,(n), where

Gou(n) = (ag, + 1)25 —[(ay — 1)n? + 2] x
i—1 oY 1 (-1 20 (24)
k 20-2k—1 1 k 20—2k
X Lz:%él <2k+1>(a2n—|—1) 2;::14 <2k>(a2n—|—1) ] .

Since G,s(n) (p,¢ — are fixed) is continuous on R and lim, ;. G,s(n) = 400, it
follows that G,,(n) > 0 for each n > t, where ¢ is the largest zero of G,(n). For ng
we can take [t] + 1. O

The proof of Theorem 1 is not only of a theoretical, but also of a practical impor-
tance. We can use the function G,,(n) (G does not depend on s) from the proof to
estimate ng. Numerical values of [t] + 1 (¢ is the largest zero of G, ) for some values
of o, s and ¢ are presented in Table 1. The smallest possible (s.p.) values of ng are
also presented. We can see that the smallest possible ng is estimated by [¢] + 1 very
well.

A typical graph illustrating the relationship between n and G, 4(n) is displayed in
Figure 2 (left).

Theorem 2. For each fited s € Ng, n € N (n > 2) and ¢ € N (¢ < s) there
exists o9 = 0o(n, ) > 1 such that

1

Kns :Kns A _1>‘
x| Ko(2)| = [ Ko (50 + 07

for each o0 > o9.
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Table 1:

the s.p. ng
] o |s=2]s=3|s=4|s=5][t]+1
211.05 44 43 42 41 46
1.08 | 28 28 27 26 30
1.1 23 22 22 21 24
1.2 12 12 12 12 13

1.3 9 9 8 8 9
1.5 6 6 6 6 6
0| o |s=4|s=5|s=6|s=T]|[t]+1

411.05| 57 56 56 56 58
1.08 | 36 36 36 36 37
1.1 29 29 29 29 30
1.2 16 16 16 15 16
1.3 11 11 11 11 11
1.5 7 7 7 7 7

Figure 2: The function Gy 32(n) (left) and Gg2(p)(right).

Proof. We can repeat the same computation which led to (24), where we can fix
n and let ¢ be a variable. Since G, (o) (n,¢ — are fixed) is continuous when ¢ > 1
and lim, ;. Gpe(n) = +oo0, it follows that G,,¢(p) > 0 for all o > r, where r is the
largest zero of G, ¢(0). For gy we can take 7. a
We can use the function G, ¢(p) from the proof to estimate gg. Numerical values

of r (r is the largest zero of G,,,) for some values of n, s and ¢ are presented in
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Table 2. The smallest possible (s.p.) values of g, are also presented. We can see that

the smallest possible gg is estimated by r very well.

Table 2:

the s.p. 0o

n|s=11]s=2]|s=3 T

1| 3] 1.4459 | 1.4080 | 1.3935 | 1.7969
51 1.2277 | 1.2111 | 1.2047 | 1.4052
10 | 1.1047 | 1.0977 | 1.0949 | 1.1828

20 | 1.0507 | 1.0474 | 1.0461 | 1.0873

lln|s=3]|s=4|s=5 r

3| 324733 | 2.4687 | 2.4641 | 2.5175
51 1.6720 | 1.6697 | 1.6673 | 1.6938
10 | 1.2859 | 1.2849 | 1.2839 | 1.2949

20| 1.1332 | 1.1328 | 1.1323 | 1.1372

A typical graph illustrating the relationship between g and G, /(o) is displayed in
Figure 2 (right).
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