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of his 60th birthday

1Faculty of Electronic Engineering, Department of Mathematics, University of Nǐs,
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Abstract. We study the kernels Kn,s(z) of the remainder term Rn,s(f) of some Gauss–
Turán–Kronrod quadrature rules for analytic functions when the weight function is the
chosen subclass of Gori–Micchelli weight functions. We investigate the location on the
elliptic contours where the modulus of the kernel attains its maximum value, which leads
to effective error bounds of Gauss–Turán–Kronrod quadratures.

INTRODUCTION

Let w be an integrable (nonnegative) weight function on the interval (−1, 1),

n ∈ N and s ∈ N0. It is well known that the Gauss–Turán quadrature formula with
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multiple nodes,

∫ 1

−1
f(t)w(t) dt =

n
∑

ν=1

2s
∑

i=0

Ai,νf
(i)(τν) +Rn,s(f) , (1)

is exact for all algebraic polynomials of degree at most 2(s+1)n−1. The nodes τν in

(9) must be zeros of the s-orthogonal polynomials with respect to the weight function

w(t). The s-orthogonal polynomials πn = πn,s with respect to the weight function

w(t) are polynomials which satisfy the following orthogonality conditions
∫ 1

−1
πn(t)

2s+1tkw(t)dt = 0 , k = 0, 1, . . . , n− 1.

Numerically stable methods for constructing nodes τν and coefficients Ai,ν can be

found in [4], [10], [14]. For more details on quadrature formulae with multiple nodes

see [5] and [9].

Let Γ be a simple closed curve in the complex plane surrounding the interval

[−1, 1] and let D be its interior. If integrand f is analytic on D and continuous on D,

then the remainder term Rn,s in (9) admits the contour integral representation (see

[17], [11])

Rn,s(f) =
1

2πi

∮

Γ
Kn,s(z)f(z) dz. (2)

The kernel is given by

Kn,s(z;w) =
ρn,s(z;w)

[πn,s(z)]2s+1
, z /∈ [−1, 1],

where

ρn,s(z;w) =
∫ 1

−1

[πn,s(t)]
2s+1

z − t
w(t)dt.

The modulus of the kernel is symmetric with respect to the real axis, i.e., |Kn,s(z)| =

|Kn,s(z)|. If the weight function w is even, the modulus of the kernel is symmetric

with respect to both axes, i.e., |Kn,s(−z)| = |Kn,s(z)| (see [11, Lemma 2.1]).

The integral representation (2) leads to a general error estimate, by using Hölder

inequality,

|Rn,s(f)| =
1

2π

∣

∣

∣

∣

∣

∮

Γ
Kn,s(z)f(z) dz

∣

∣

∣

∣

∣

≤
1

2π

(
∮

Γ
|Kn,s(z)|

r|dz|
)1/r( ∮

Γ
|f(z)|r

′

|dz|
)1/r′

,

(3)
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i.e.,

|Rn,s(f)| ≤
1

2π
‖Kn,s‖r ‖f‖r′ , (4)

where 1 ≤ r ≤ +∞, 1/r + 1/r′ = 1, and

‖f‖r :=



















(
∮

Γ
|f(z)|r|dz|

)1/r

, 1 ≤ r < +∞,

max
z∈Γ

|f(z)|, r = +∞.

The case r = +∞ (r′ = 1) gives

|Rn,s(f)| ≤
1

2π

(

max
z∈Γ

|Kn,s(z)|
)

‖f‖1. (5)

L∞-error bounds of type (5) for Gaussian quadratures (s = 0) of analytic functions

were studied in [2], [3], [18], [19], [7]. The general case (s ∈ N) was studied in [11]

and [16].

On the other side, for r = 1 (r′ = +∞), the estimate (4) is reduced to

|Rn,s(f)| ≤
1

2π

(
∮

Γ
|Kn,s(z)||dz|

)

‖f‖
∞

. (6)

L1-error bounds of type (6) for Gaussian quadratures (s = 0) of analytic functions

were studied in [6]. The general case (s ∈ N) is studied in [12].

Following the well-known idea of Kronrod, the formula (9) can be extended to the

interpolatory quadrature formula (see [15])

∫ 1

−1
f(t)w(t) dt =

n
∑

ν=1

2s
∑

i=0

Bi,νf
(i)(τν) +

n+1
∑

µ=1

2sµ
∑

j=0

Cj,µf
(i)(τ ∗µ) + En,s(f) , (7)

where τν are the same nodes as in (9), sµ ∈ N0 (µ = 1, . . . , n+1) and the new nodes

τ ∗µ and new weights Bi,ν ,Cj,µ are chosen to maximize the degree of exactness of (7),

which is greater than or equal to 2ns+3n+1+2
∑n+1

µ=1 sµ. The nodes τ ∗µ must satisfy

the orthogonality conditions

∫ 1

−1
w(t)tmΩn(t) dt = 0, m = 0, 1, . . . , n, (8)

where

Ωn(z) = [πn,s(z)]
2s+1

n+1
∏

µ=1

(z − τ ∗µ)
2sµ+1.
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The case sµ = 0 (µ = 1, . . . , n+ 1) was considered in [8], [20], [13].

If the integrand f is analytic on D and continuous on D, then En,s(f) for quadra-

tures (7) can be expressed again in the form (2), with Kn,s(z;w) = ρn,s(z;w)/Ωn(z)

and

ρn,s(z;w) =
∫ 1

−1

Ωn(z)

z − t
w(t)dt.

Usually for these quadratures we introduce the so-called generalized Stieltjes poly-

nomial as π̂n+1(t) =
∏n+1

µ=1(t− τ ∗µ).

In this paper we study the kernels of some Gauss–Turán–Kronrod quadrature

rules for analytic functions when the weight function is the chosen subclass of Gori–

Micchelli weight functions. In fact, we investigate the location on the elliptic contours

where the modulus of the kernel attains its maximum value, which leads to effective

error bounds of such quadratures. It is given in the next section. In the rest of this

section we give a remark on the existence problem according to a mistake in the proof

of Proposition 2.1 in [15].

Namely, the existence of the real rule (7) depends on the existence of the corre-

sponding Stieltjes polynomial, i.e., on the fact whether all its zeros are real, simple

and different from τν . This can be derived as a consequence of the conditions (2.5)

in [15, Proposition 2.1]. The existence of the requested Sieltjes polynomial in general

case depends on the weight function w. This is a very difficult question which is set-

tled only partially in the theory of ordinary Gauss-Kronrod quadrature formulae (see,

for instance, [1], [21] and reference therein). A proof of existence and uniqueness of

general real Kronrod extensions of Gaussian quadrature formulae with multiple nodes

(contrary to an observation in Abstract and the last paragraph of Introduction in [15])

cannot be given. However, the existence of the real rule (7) can be proved in some

special cases (see [15, Theorems 3.1 – 3.4]). It can be shown that when the rule (7)

with all nodes belonging to [−1, 1] exists, it is unique. The proof is given as follows.

The quadrature rule of type (7) can be written in the form

∫ 1

−1
w(t) f(t) dt =

2`+1
∑

ν=1

2sν
∑

i=0

Ai,νf
(i)(τν) +Rn,s(f) , (9)
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where the nodes τν , ν = 1, 2, . . . , ` are fixed. It will have a degree of exactness equal

to N = 3` + 2
∑2`+1

ν=1 sν + 1, if and only if K = 2` + 1 + 2
∑2`+1

ν=1 sν coefficients Ai,ν

satisfy the following system of N + 1 linear equations

2`+1
∑

ν=1

2sν
∑

i=0

Ai,νu
(i)
j (τν) =

∫ 1

−1
w(t)uj(t)dt, j = 0, 1, . . . , N, (10)

where uj(t), j = 0, 1, . . . , N , are linearly independent functions from the space PN .

Let us take that the matrix [u
(i)
j (τν)] with N+1 rows and K columns has rank N+1−q

(q > 1 because of N > K). If all nodes are mutually different, this is equivalent to

the following statement: the boundary differential problem

dN+1 u

dtN+1
= 0, u

(i)
j (τν) = 0, (i = 0, 1, . . . , 2sν ; ν = 1, 2, . . . , 2`+ 1), (11)

has q linearly independent solutions Uk, k = 0, 1, . . . , q − 1 (see [5, p. 41-43]).

The system (10) is consistent if and only if the q conditions

∫ 1

−1
w(t)Uk(t)dt = 0, k = 0, 1, . . . , q − 1, (12)

are satisfied. In that case (10) has ∞K−(N+1−q) solutions.

It is easy to see that the problem (11) has the following `+1 linearly independent

nontrivial solutions

tk
2`+1
∏

ν=1

(t− τν)
2sν+1, k = 0, 1, . . . , `.

Denoting them as Uk(t), the conditions (12) become the conditions (8). The system

(10) has one and only one solution since

K − (N + 1− q) = (2`+ 1 + 2
2`+1
∑

ν=1

sν) + (`+ 1)− (3`+ 2
2`+1
∑

ν=1

sν + 2) = 0.

MAIN RESULTS

We take the contour Γ as an ellipse with foci at the points ±1 and a sum of

semi-axes % > 1,

E% =
{

z ∈ C : z =
1

2
(%eiθ + %−1e−iθ), 0 ≤ θ ≤ 2π

}

.
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In this paper we consider the case when the weight function w is the Gori–Micchelli

weight function

w(t) = wn,`(t) =
U2`
n−1(t)

n2`
(1− t2)`−1/2, ` ∈ {0, 1, . . . , s}, (13)

where Un−1(cos θ) = sinnθ/ sin θ is the Chebyshev polynomial of the second kind. If

we take n ≥ 2, s1 = sn+1 = (s − `)/2 and sµ = s − ` (µ = 2, . . . , n), there holds

π̂n+1(t) = (1− t2)Un−1(t) (see [15, Theorem 3.1]).

In [15, p. 301] it was shown that

ρn,s,`(z;w) =
π

n2` 24s+1 u2n
Zn,s,`(u) ,

where

Zn,s,`(u) =
s
∑

j=0

(−1)j
(

2s+ 1

s− j

)

1

u4nj

and

Ωn,s,`(z;w) =
1

22s+1
(1− z2)s+1−` [U2n−1(z)]

2s+1

[Un−1(z)]2`
.

Now we can derive the explicit representation of the kernel

Kn,s,`(z;w) =
π

n2` 22s u2n
[Un−1(z)]

2` Zn,s,`(u)

(1− z2)s+1−` [U2n−1(z)]2s+1
. (14)

Using equalities

|1− z2| = 2−1 (a2 − cos 2θ), |Un−1(z)| =

(

a2n − cos 2nθ

a2 − cos 2θ

)1/2

,

where aj = aj(%) = (%j + %−j)/2 , j ∈ N , ρ > 1, we get

|Kn,s,`(z;w)| =
π

n2` 2s+`−1 %2n
(a2n − cos 2nθ)` |Zn,s,`(u)|

(a4n − cos 4nθ)s+1/2(a2 − cos 2θ)1/2
. (15)

The graphs θ 7→ |Kn,s,`(z)| (z ∈ E%) for some values of n, s, ` and % are displayed

in Figure 1.

Theorem 1. For each fixed s ∈ N0, % > 1 and ` ∈ N (` ≤ s) there exists

n0 = n0(%, `) ∈ N (n0 ≥ 2) such that

max
z∈E%

|Kn,s,`(z)| =
∣

∣

∣

∣

Kn,s,`

(

1

2
(%+ %−1)

)∣

∣

∣

∣

,
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for each n ≥ n0. When ` = 0, |Kn,s,`(z)| attains its maximum on the real axis for all

n ∈ N (n ≥ 2).

Proof. The weight function w(t) is even, so we can take θ ∈ [0, π/2].

First, for each n ∈ N and % > 1 we prove

|Zn,s,`(ρe
iθ)|

(a4n − cos 4nθ)1/2
≤

Zn,s,`(ρ)

(a4n − 1)1/2
, 0 ≤ θ ≤ π/2.
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Figure 1: The function θ 7→ |Kn,3,2(z)| (z ∈ E1.07) for n = 15, 20, 25, 30
.

We note that

Zn,s,`(u) =
[(s−1)/2]
∑

ν=0

(

2ν+1
∑

k=2ν

(−1)k
(

2s+ 1

s− k

)

u−4nk

)

+ ζn,s(u) , (16)



228

where

ζn,s(u) :=







0, when s is even,

u−4ns, when s is odd.

It is easy to prove that |ζn,s(ρe
iθ)| = ζn,s(ρ). Using the next notation

Sν(u) :=
2ν+1
∑

k=2ν

(−1)k
(

2s+ 1

s− k

)

u−4nk

=

(

2s+ 1

s− 2ν

)

u−8νn −

(

2s+ 1

s− 2ν − 1

)

u−4(2ν+1)n

=

(

2s+ 1

s− 2ν

)

u−8νn(1− αu−4n) ,

where

α =
s− 2ν

s+ 2ν + 2
and 0 < α < 1 ,

we get

|Sν(ρe
iθ)| =

(

2s+ 1

s− 2ν

)

ρ−8νn
√

1− 2q cos 4nθ + q2 ,

where q = α%−4n, 0 < q < 1.

The next step is to prove

|Sν(ρe
iθ)|

(a4n − cos 4nθ)1/2
≤

Sν(ρ)

(a4n − 1)1/2
. (17)

Using the previous facts, (17) is reduced to

(a4n − 1)(1− 2q cos 4nθ + q2) ≤ (a4n − cos 4nθ)(1− q)2 ,

i.e.,

1− 2qa4n + q2 ≥ 0 .

It is easy to prove that

1− 2qa4n + q2 = (1− α)(1− αρ−8n) ,

which proves (17).
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Now, from (16) and (17) it follows

|Zn,s,`(ρe
iθ)|

(a4n − cos 4nθ)1/2
≤

[(s−1)/2]
∑

ν=0

|Sν(ρe
iθ)|

(a4n − cos 4nθ)1/2
+

|ζn,s(ρe
iθ)|

(a4n − cos 4nθ)1/2

≤
[(s−1)/2]
∑

ν=0

Sν(ρ)

(a4n − 1)1/2
+

ζn,s(ρ)

(a4n − 1)1/2

=
Zn,s,`(ρ)

(a4n − 1)1/2
.

To complete the proof it remains to prove

(a2n − cos 2nθ)`

(a4n − cos 4nθ)s(a2 − cos 2θ)1/2
≤

(a2n − 1)`

(a4n − 1)s(a2 − 1)1/2
, (18)

for sufficiently large n (n ≥ n0(%, `)) and θ ∈ (0, π/2]. Since

a4n − cos 4nθ = 2 (a2n − cos 2nθ) (a2n + cos 2nθ) ≥ a4n − 1,

it suffices to prove

(a2n + cos 2nθ)2`(a2 − cos 2θ) ≥ (a2n + 1)2`(a2 − 1), (19)

for sufficiently large n (n ≥ n0(%, `)) and θ ∈ (0, π/2]. When ` = 0, (19) holds

obviously.

Using the following transformations

a2 − cos 2θ = (a2 − 1) + 2 sin2 θ

and

(a2n + cos 2nθ)2` = (a2n + 1)2` − 2 sin2 nθ · Fρ,`(n, θ),

where

Fρ,`(n, θ) =
2
∑̀

k=1

(−2)k−1
(

2`

k

)

(a2n + 1)2`−k sin2k−2 nθ (≥ 0),

(19) is reduced to

2 sin2 θ (a2n + 1)2` − 2 sin2 nθ [(a2 − 1) + 2 sin2 θ]Fρ,`(n, θ) ≥ 0. (20)

After dividing the inequality (20) by 2 sin2 θ, it is reduced to

(a2n + 1)2` −
sin2 nθ

sin2 θ
[(a2 − 1) + 2 sin2 θ]Fρ,`(n, θ) ≥ 0. (21)
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Now, from the well-known fact
∣

∣

∣

∣

∣

sinnθ

sin θ

∣

∣

∣

∣

∣

≤ n ,

it follows

sin2 nθ

sin2 θ
[(a2 − 1) + 2 sin2 θ] = (a2 − 1)

sin2 nθ

sin2 θ
+ 2 sin2 nθ ≤ (a2 − 1)n2 + 2. (22)

In the same way as in [16, Theorem 2.2] one can show that

Fn,`(%, θ) ≤
`−1
∑

k=0

4k
(

2`

2k + 1

)

(a2n + 1)2`−2k−1−
1

2

`−1
∑

k=1

4k
(

2`

2k

)

(a2n + 1)2`−2k . (23)

Using (22) and (23), we conclude that the left-hand side of (21) is greater than or

equal to G(n) ≡ G%,`(n), where

G%,`(n) := (a2n + 1)2` − [(a2 − 1)n2 + 2]×

×

[

`−1
∑

k=0

4k
(

2`

2k + 1

)

(a2n + 1)2`−2k−1 −
1

2

`−1
∑

k=1

4k
(

2`

2k

)

(a2n + 1)2`−2k
]

.
(24)

Since G%,`(n) (%, ` – are fixed) is continuous on R and limn→+∞ G%,`(n) = +∞, it

follows that G%,`(n) > 0 for each n > t, where t is the largest zero of G%,`(n). For n0

we can take [t] + 1. 2

The proof of Theorem 1 is not only of a theoretical, but also of a practical impor-

tance. We can use the function G%,`(n) (G does not depend on s) from the proof to

estimate n0. Numerical values of [t] + 1 (t is the largest zero of G%,`) for some values

of %, s and ` are presented in Table 1. The smallest possible (s.p.) values of n0 are

also presented. We can see that the smallest possible n0 is estimated by [t] + 1 very

well.

A typical graph illustrating the relationship between n and G%,`(n) is displayed in

Figure 2 (left).

Theorem 2. For each fixed s ∈ N0, n ∈ N (n ≥ 2) and ` ∈ N (` ≤ s) there

exists %0 = %0(n, `) > 1 such that

max
z∈E%

|Kn,s,`(z)| =
∣

∣

∣

∣

Kn,s,`

(

1

2
(%+ %−1)

)∣

∣

∣

∣

for each % > %0.
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Table 1:

the s.p. n0
` % s = 2 s = 3 s = 4 s = 5 [t] + 1
2 1.05 44 43 42 41 46

1.08 28 28 27 26 30
1.1 23 22 22 21 24
1.2 12 12 12 12 13
1.3 9 9 8 8 9
1.5 6 6 6 6 6

` % s = 4 s = 5 s = 6 s = 7 [t] + 1
4 1.05 57 56 56 56 58

1.08 36 36 36 36 37
1.1 29 29 29 29 30
1.2 16 16 16 15 16
1.3 11 11 11 11 11
1.5 7 7 7 7 7

1 2 3 4 5 6 7 8 9
−4

−2

0

2

4

6

8

10

12
x 105

1.1 1.15 1.2 1.25 1.3
−4

−2

0

2

4

6

8
x 105

Figure 2: The function G1.3,2(n) (left) and G8,2(%)(right).

Proof. We can repeat the same computation which led to (24), where we can fix

n and let % be a variable. Since Gn,`(%) (n, ` – are fixed) is continuous when % > 1

and lim%→+∞ Gn,`(n) = +∞, it follows that Gn,`(%) > 0 for all % > r, where r is the

largest zero of Gn,`(%). For %0 we can take r. 2

We can use the function Gn,`(%) from the proof to estimate %0. Numerical values

of r (r is the largest zero of Gn,`) for some values of n, s and ` are presented in
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Table 2. The smallest possible (s.p.) values of %0 are also presented. We can see that

the smallest possible %0 is estimated by r very well.

Table 2:

the s.p. %0
` n s = 1 s = 2 s = 3 r
1 3 1.4459 1.4080 1.3935 1.7969

5 1.2277 1.2111 1.2047 1.4052
10 1.1047 1.0977 1.0949 1.1828
20 1.0507 1.0474 1.0461 1.0873

` n s = 3 s = 4 s = 5 r
3 3 2.4733 2.4687 2.4641 2.5175

5 1.6720 1.6697 1.6673 1.6938
10 1.2859 1.2849 1.2839 1.2949
20 1.1332 1.1328 1.1323 1.1372

A typical graph illustrating the relationship between % and Gn,`(%) is displayed in

Figure 2 (right).
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