A SEQUENCE OF KUREPA'S FUNCTIONS

Gradimir V. MILOVANOVIĆ
Faculty of Electronic Engineering, Department of Mathematics
University of Niš, P.O. Box 73, 18000 Niš, Yugoslavia
Dedicated to the memory of Professor $Đ$. Kurepa

Abstract

In this paper we define and study a sequence of functions $\left\{K_{m}(z)\right\}_{m=-1}^{+\infty}$, where $K_{-1}(z)=\Gamma(z)$ is the gamma function and $K_{0}(z)=K(z)$ is the Kurepa function [5-6]. We give several properties of $K_{m}(z)$ including a discussion on their zeros and poles.

Keywords: Gamma function, Kurepa function, left factorial, meromorphic function, zeros, poles.
AMS Subject Classification(1991): Primary 33B15, 65D20.

1. INTRODUCTION

The left factorial function $z \mapsto K(z)$ was defined by Professor $Đ$. Kurepa (see [5-6]) in the following way

$$
\begin{equation*}
K(z)=\int_{0}^{\infty} \frac{t^{z}-1}{t-1} e^{-t} d t \quad(\operatorname{Re} z>0) \tag{1.1}
\end{equation*}
$$

Firstly, he introduced so-called left factorial as

$$
!0=0, \quad!n=0!+1!+\cdots+(n-1)!\quad(n \in \mathbb{N})
$$

and then extended it to the right side of the complex plane by (1.1). The function $K(z)$ can be extended analytically to the hole complex plane by

$$
\begin{equation*}
K(z)=K(z+1)-\Gamma(z+1) \tag{1.2}
\end{equation*}
$$

[^0]where $\Gamma(z)$ is the gamma function defined by
$$
\Gamma(z)=\int_{0}^{\infty} e^{-t} t^{z-1} d t \quad(\operatorname{Re} z>0) \quad \text { and } \quad z \Gamma(z)=\Gamma(z+1)
$$

Kurepa [6] proved that $K(z)$ is a meromorphic function with simple poles at the points $z_{k}=-k(k \in \mathbb{N} \backslash\{2\})$. Graphs of the gamma and Kurepa functions for real values of z are displayed in Fig. 1.1.

Fig. 1.1: The gamma function $\Gamma(x)=K_{-1}(x)$ (dotted line) and the Kurepa function $K(x)=K_{0}(x)$ (solid line)

Slavić [10] found the representation

$$
K(z)=-\frac{\pi}{e} \cot \pi z+\frac{1}{e}\left(\sum_{n=1}^{\infty} \frac{1}{n!n}+\gamma\right)+\sum_{n=0}^{\infty} \Gamma(z-n),
$$

where γ is Euler's constant. These formulas were mentioned also in the book [8]. A number of problems and hypotheses, especially in number theory, were posed by Kurepa and then considered by several mathematicians. For details and a complete list of references see a recent survey written by Ivić and Mijajlović [4].

In this paper we define and study a sequence of complex functions $\left\{K_{m}(z)\right\}_{m=-1}^{+\infty}$, such that the first two terms are the gamma function and the Kurepa function, i.e., $K_{-1}(z)=\Gamma(z)$ and $K_{0}(z)=K(z)$. In Section 2 we give the basic definition of the sequence $\left\{K_{m}(z)\right\}_{m=-1}^{+\infty}$ and main properties of such functions including their graphs for the real values of z. Zeros and poles of $K_{m}(z)$ are discussed in Section 3. Numerical calculations, series expansions, as well as some applications of such functions will be given elsewhere.

2. BASIC DEFINITIONS AND PROPERTIES

DEFINITION 2.1. The polynomials $t \mapsto Q_{m}(t ; z), m=-1,0,1,2, \ldots$, are defined by

$$
\begin{equation*}
Q_{-1}(t ; z)=0, \quad Q_{m}(t ; z)=\sum_{\nu=0}^{m}\binom{m+z}{\nu}(t-1)^{\nu} . \tag{2.1}
\end{equation*}
$$

For example,

$$
\left.\begin{array}{rl}
Q_{0}(t ; z) & =1 \\
Q_{1}(t ; z) & =1+(z+1)(t-1) \\
Q_{2}(t ; z) & =1+(z+2)(t-1)+\frac{1}{2}\left(z^{2}+3 z+2\right)(t-1)^{2}, \\
Q_{3}(t ; z) & =1+(z+3)(t-1)
\end{array}\right) \frac{1}{2}\left(z^{2}+5 z+6\right)(t-1)^{2} .
$$

It is easy to see that the following result holds:
LEMMA 2.1. For every $m \in \mathbb{N}_{0}$ we have

$$
Q_{m}(t ; z)=Q_{m-1}(t ; z+1)+\frac{1}{m!}(z+1)(z+2) \cdots(z+m)(t-1)^{m}
$$

If we define Δ_{z} as the standard forward difference operator

$$
\Delta_{z} f(z)=f(z+1)-f(z)
$$

then equality (1.2) can be expressed in the form

$$
\begin{gathered}
\Delta_{z} K_{0}(z)=K_{-1}(z+1), \\
3
\end{gathered}
$$

where we put $K(z)=K_{0}(z)$ and $\Gamma(z)=K_{-1}(z)$. Our goal is here to define the functions $K_{m}(z), m=1,2, \ldots$, such that

$$
\Delta_{z} K_{m}(z)=K_{m-1}(z+1), \quad m=0,1, \ldots
$$

In our considerations we also use the k-th order difference operator Δ_{z}^{k}, defined inductively as

$$
\Delta_{z}^{0} f(z) \equiv f(z), \quad \Delta_{z}^{k} f(z)=\Delta_{z}\left(\Delta_{z}^{k-1} f(z)\right) \quad(k \in \mathbb{N})
$$

Firstly, we prove the following auxiliary result:
LEMMA 2.2. For every $m \in \mathbb{N}_{0}$ we have

$$
\Delta_{z} Q_{m}(t ; z)=(t-1) Q_{m-1}(t ; z+1)
$$

Proof. According to to previous definition we have

$$
\begin{aligned}
\Delta_{z} Q_{m}(t ; z) & =Q_{m}(t ; z+1)-Q_{m}(t ; z) \\
& =\sum_{\nu=0}^{m}\binom{m+z+1}{\nu}(t-1)^{\nu}-\sum_{\nu=0}^{m}\binom{m+z}{\nu}(t-1)^{\nu} \\
& =\sum_{\nu=1}^{m}\binom{m+z}{\nu-1}(t-1)^{\nu} \\
& =(t-1) \sum_{\nu=0}^{m-1}\binom{m-1+z+1}{\nu}(t-1)^{\nu} \\
& =(t-1) Q_{m-1}(t ; z+1) .
\end{aligned}
$$

DEFINITION 2.2. The sequence $\left\{K_{m}(z)\right\}_{m=-1}^{+\infty}$ is defined by

$$
\begin{equation*}
K_{m}(z)=\int_{0}^{+\infty} \frac{t^{z+m}-Q_{m}(t ; z)}{(t-1)^{m+1}} e^{-t} d t \quad(\operatorname{Re} z>0) \tag{2.2}
\end{equation*}
$$

where $Q_{m}(t ; z)$ given by (2.1).
Theorem 2.3. For $\operatorname{Re} z>0$ we have

$$
\Delta_{z} K_{m}(z) \equiv K_{m}(z+1)-K_{m}(z)=K_{m-1}(z+1)
$$

and

$$
\Delta_{z}^{i} K_{m}(z)=K_{m-i}(z+i), \quad i=1,2, \ldots, m+1
$$

FIG. 2.1: The function $K_{1}(x)$
Proof. Using Lemma 2.2 we obtain

$$
\begin{aligned}
\Delta_{z}\left(t^{z+m}-Q_{m}(t ; z)\right) & =t^{z+1+m}-t^{z+m}-\Delta_{z} Q_{m}(t ; z) \\
& =(t-1)\left[t^{z+m}-Q_{m-1}(t ; z+1)\right] .
\end{aligned}
$$

Then

$$
\begin{aligned}
\Delta_{z} K_{m}(z) & =\int_{0}^{+\infty} \Delta_{z}\left[\frac{t^{z+m}-Q_{m}(t ; z)}{(t-1)^{m+1}}\right] e^{-t} d t \\
& =\int_{0}^{+\infty} \frac{t^{z+m}-Q_{m-1}(t ; z+1)}{(t-1)^{m}} e^{-t} d t \\
& =K_{m-1}(z+1)
\end{aligned}
$$

Iterating we obtain

$$
\Delta_{z}^{i} K_{m}(z)=\Delta_{z}^{i-1} K_{m-1}(z+1)=\Delta_{z}^{i-2} K_{m-2}(z+2)=\cdots=K_{m-i}(z+i)
$$

For $i=m+1$ we find $\Delta_{z}^{m+1} K_{m}(z)=K_{-1}(z+m+1)=\Gamma(z+m+1)$.

Fig. 2.2: The function $K_{2}(x)$
It is easy to see that for nonnegative integers the following result holds:
Theorem 2.4. For $n, m \in \mathbb{N}_{0}$ we have

$$
K_{m}(n)=\sum_{i=0}^{n-1} \frac{(-1)^{i}}{i!} \sum_{\nu=i}^{n-1} \nu!\binom{m+n}{\nu+m+1}, \quad K_{m}(0)=0
$$

If we put

$$
S_{\nu}=\nu!\sum_{i=0}^{\nu} \frac{(-1)^{i}}{i!} \quad(\nu \geq 0)
$$

Fig. 2.3: The function $K_{3}(x)$
i.e., $S_{\nu}=\nu S_{\nu-1}+(-1)^{\nu}$ with $S_{0}=1$, then $K_{m}(n)$ can be expressed in the following form

$$
K_{m}(n)=\sum_{\nu=0}^{n-1}\binom{m+n}{\nu+m+1} S_{\nu}
$$

Since

$$
S_{0}=1, \quad S_{1}=0, \quad S_{2}=1, \quad S_{3}=2, \quad S_{4}=9, \quad S_{5}=44, \quad \text { etc. }
$$

we have

$$
\begin{aligned}
& K_{m}(0)=0, \quad K_{m}(1)=1, \quad K_{m}(2)=m+2, \\
& K_{m}(3)=\frac{1}{2}\left(m^{2}+5 m+8\right), \\
& K_{m}(4)=\frac{1}{6}\left(m^{3}+9 m^{2}+32 m+60\right), \\
& 7
\end{aligned}
$$

etc.
The function $K_{m}(z), m \in \mathbb{N}$, can be extended analytically to the hole complex plane by

$$
\begin{equation*}
K_{m}(z)=K_{m}(z+1)-K_{m-1}(z+1) . \tag{2.3}
\end{equation*}
$$

Suppose that we have analytic extensions for all functions $K_{\nu}(z), \nu<m$. Using (2.2) and (2.3) we define $K_{m}(z)$ at first for z satisfying $\operatorname{Re} z>-1$, then for $\operatorname{Re} z$ such that $\operatorname{Re} z>-2$, etc. In this way we obtain the function $K_{m}(z)$ in the hole complex plane.

Evaluation of the Kurepa function $K_{0}(z)$ for some specific z in $(0,1)$, using quadrature formulas with relatively small accuracy, was done by Slavić and the author of this paper (see [6]). Recently, we [9] gave power series expansions of the Kurepa function $K_{0}(a+z), a \geq 0$, and determined numerical values of their coefficients $b_{\nu}(a)$ for $a=0$ and $a=1$, in high precision (Q -arithmetic with machine precision $\left.\approx 1.93 \times 10^{-34}\right)$. Using an asymptotic behaviour of $b_{\nu}(a)$, when $\nu \rightarrow \infty$, we gave a transformation of series with much faster convergence. Also, we obtained the Chebyshev expansions for $K_{0}(1+z)$ and $1 / K_{0}(1+z)$. For similar expansions of the gamma function see e.g. Davis [2], Luke [7], Fransén and Wrigge [3], and Bohman and Fröberg [1].

Graphs of functions $K_{m}(x), m=1,2,3$, for real values of x are displayed in figures 2.1, 2.2, and 2.3 , respectively.

3. ZEROS AND POLES

Poles of $K_{m}(z)$ are in the points $z_{n}^{(m)}=-n, n=m+1, m+2, \ldots$, except the point $z_{2}^{(0)}$ when $K_{0}\left(z_{2}^{(0)}\right)=K_{0}(-2)=1$.

The poles of gamma function $\Gamma(z)=K_{-1}(z)$ are $z_{n}^{(-1)}=-n, n=0,1, \ldots$, with the corresponding residues

$$
\underset{z=-n}{\operatorname{Res}} \Gamma(z)=\frac{(-1)^{n}}{n!} \quad(n=0,1, \ldots) .
$$

Putting

$$
R_{n}^{(m)}=\underset{z=-n}{\text { Res }} K_{m}(z) \quad(n \geq m+1),
$$

we can prove the following result:
Theorem 3.2. For every $n \geq m+3$ we have that

$$
R_{n}^{(m)}=R_{m+2}^{(m)}-\sum_{\nu=m+2}^{n-1} R_{\nu}^{(m-1)},
$$

where

$$
R_{m+1}^{(m)}=(-1)^{m+1}, \quad 8^{R_{m+2}^{(m)}=m(-1)^{m+1}} .
$$

For $m=0$ Theorem 4 reduces to Kurepa's result [6, §6]:

$$
\begin{aligned}
& R_{1}^{(0)}=\operatorname{Res}_{z=-1} K_{0}(z)==1 \\
& R_{n}^{(0)}={\underset{z e-n}{ }}_{\operatorname{Res}} K_{0}(z)=-\sum_{\nu=2}^{n-1} \frac{(-1)^{\nu}}{\nu!} .
\end{aligned}
$$

We note that $z=-2$ is not a pole of $K_{0}(z)\left(R_{2}^{(0)}=0\right)$.

REFERENCES

[1] J. Bohman and C.-E. Fröberg, The Γ-function revisited: power series expansions and real-imaginary zero lines, Math. Comp. 58 (1992), 315-322.
[2] H.T. Davis, Tables of the Higher Mathematical Functions, vol. I, Principia Press, Bloomington, IN, 1933.
[3] A. Fransén and S. Wrigge, High-precision values of the gamma function and some related coefficients, Math. Comp. 34 (1980), 553-566.
[4] A. Ivić and Ž. Mijajlović, On Kurepa problems in number theory, Publ. Inst. Math. (N.S.) 57 (71) (1995), 19-28.
[5] Đ. Kurepa, On the left factorial function !n, Math. Balkanica 1 (1971), 147-153.
[6] Đ. Kurepa, Left factorial function in complex domain, Math. Balkanica 3 (1973), 297307.
[7] Y.L. Luke, Mathematical Functions and Their Approximations, Mir, Moscow, 1980 (Russian).
[8] O.I. Marichev, Handbook of Integral Transformation of Higher Transcendental Functions: Theory and Algorithmic Tables, Ellis Horwood Ltd., Chichester, 1983
[9] G.V. Milovanović, Expansions of the Kurepa function, Publ. Inst. Math. (N.S.) 57 (71) (1995), 81-90.
[10] D.V. Slavić, On the left factorial function of the complex argument, Math. Balkanica $\mathbf{3}$ (1973), 472-477.

[^0]: *This work was supported in part by the Serbian Scientific Foundation, grant number 04M03.

