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Abstract: In this paper we define and study a sequence of functions {Km(z)}+∞

m=−1,

where K−1(z) = Γ(z) is the gamma function and K0(z) = K(z) is the Kurepa function
[5–6]. We give several properties of Km(z) including a discussion on their zeros and poles.
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1. INTRODUCTION

The left factorial function z 7→ K(z) was defined by Professor D̄. Kurepa (see
[5–6]) in the following way

K(z) =

∫

∞

0

tz − 1

t− 1
e−t dt (Re z > 0). (1.1)

Firstly, he introduced so-called left factorial as

!0 = 0, !n = 0! + 1! + · · ·+ (n− 1)! (n ∈ N)

and then extended it to the right side of the complex plane by (1.1). The function
K(z) can be extended analytically to the hole complex plane by

K(z) = K(z + 1)− Γ(z + 1), (1.2)
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where Γ(z) is the gamma function defined by

Γ(z) =

∫

∞

0

e−ttz−1 dt (Re z > 0) and zΓ(z) = Γ(z + 1).

Kurepa [6] proved that K(z) is a meromorphic function with simple poles at the
points zk = −k (k ∈ N \ {2}). Graphs of the gamma and Kurepa functions for real
values of z are displayed in Fig. 1.1.

Fig. 1.1: The gamma function Γ(x) = K−1(x) (dotted line) and the Kurepa
function K(x) = K0(x) (solid line)

Slavić [10] found the representation

K(z) = −
π

e
cotπz +

1

e

( ∞
∑

n=1

1

n!n
+ γ

)

+

∞
∑

n=0

Γ(z − n),
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where γ is Euler’s constant. These formulas were mentioned also in the book [8].
A number of problems and hypotheses, especially in number theory, were posed by
Kurepa and then considered by several mathematicians. For details and a complete
list of references see a recent survey written by Ivić and Mijajlović [4].

In this paper we define and study a sequence of complex functions {Km(z)}+∞

m=−1,
such that the first two terms are the gamma function and the Kurepa function, i.e.,
K−1(z) = Γ(z) and K0(z) = K(z). In Section 2 we give the basic definition of
the sequence {Km(z)}+∞

m=−1 and main properties of such functions including their
graphs for the real values of z. Zeros and poles of Km(z) are discussed in Section
3. Numerical calculations, series expansions, as well as some applications of such
functions will be given elsewhere.

2. BASIC DEFINITIONS AND PROPERTIES

DEFINITION 2.1. The polynomials t 7→ Qm(t; z), m = −1, 0, 1, 2, . . . , are defined
by

Q−1(t; z) = 0, Qm(t; z) =

m
∑

ν=0

(

m+ z

ν

)

(t− 1)ν . (2.1)

For example,

Q0(t; z) = 1,

Q1(t; z) = 1 + (z + 1)(t− 1),

Q2(t; z) = 1 + (z + 2)(t− 1) +
1

2
(z2 + 3z + 2)(t− 1)2,

Q3(t; z) = 1 + (z + 3)(t− 1) +
1

2
(z2 + 5z + 6)(t− 1)2

+
1

6
(z3 + 6z2 + 11z + 6)(t− 1)3.

It is easy to see that the following result holds:

LEMMA 2.1. For every m ∈ N0 we have

Qm(t; z) = Qm−1(t; z + 1) +
1

m!
(z + 1)(z + 2) · · · (z +m)(t− 1)m.

If we define ∆z as the standard forward difference operator

∆zf(z) = f(z + 1)− f(z),

then equality (1.2) can be expressed in the form

∆zK0(z) = K−1(z + 1),
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where we put K(z) = K0(z) and Γ(z) = K−1(z). Our goal is here to define the
functions Km(z), m = 1, 2, . . . , such that

∆zKm(z) = Km−1(z + 1), m = 0, 1, . . . .

In our considerations we also use the k-th order difference operator ∆k
z
, defined

inductively as

∆0
zf(z) ≡ f(z), ∆k

zf(z) = ∆z

(

∆k−1
z f(z)

)

(k ∈ N).

Firstly, we prove the following auxiliary result:

LEMMA 2.2. For every m ∈ N0 we have

∆zQm(t; z) = (t− 1)Qm−1(t; z + 1).

Proof. According to to previous definition we have

∆zQm(t; z) = Qm(t; z + 1)−Qm(t; z)

=
m
∑

ν=0

(

m+ z + 1

ν

)

(t− 1)ν −
m
∑

ν=0

(

m+ z

ν

)

(t− 1)ν

=

m
∑

ν=1

(

m+ z

ν − 1

)

(t− 1)ν

= (t− 1)

m−1
∑

ν=0

(

m− 1 + z + 1

ν

)

(t− 1)ν

= (t− 1)Qm−1(t; z + 1). �

DEFINITION 2.2. The sequence
{

Km(z)
}+∞

m=−1
is defined by

Km(z) =

∫ +∞

0

tz+m −Qm(t; z)

(t− 1)m+1
e−t dt (Re z > 0), (2.2)

where Qm(t; z) given by (2.1).

THEOREM 2.3. For Re z > 0 we have

∆zKm(z) ≡ Km(z + 1)−Km(z) = Km−1(z + 1)

and

∆i

z
Km(z) = Km−i(z + i), i = 1, 2, . . . ,m+ 1.
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Fig. 2.1: The function K1(x)

Proof. Using Lemma 2.2 we obtain

∆z

(

tz+m −Qm(t; z)
)

= tz+1+m − tz+m −∆zQm(t; z)

= (t− 1)
[

tz+m −Qm−1(t; z + 1)
]

.

Then

∆zKm(z) =

∫ +∞

0

∆z

[

tz+m −Qm(t; z)

(t− 1)m+1

]

e−t dt

=

∫ +∞

0

tz+m −Qm−1(t; z + 1)

(t− 1)m
e−t dt

= Km−1(z + 1).

Iterating we obtain

∆i

z
Km(z) = ∆i−1

z
Km−1(z + 1) = ∆i−2

z
Km−2(z + 2) = · · · = Km−i(z + i).
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For i = m+ 1 we find ∆m+1
z

Km(z) = K−1(z +m+ 1) = Γ(z +m+ 1). �

Fig. 2.2: The function K2(x)

It is easy to see that for nonnegative integers the following result holds:

THEOREM 2.4. For n,m ∈ N0 we have

Km(n) =
n−1
∑

i=0

(−1)i

i!

n−1
∑

ν=i

ν!

(

m+ n

ν +m+ 1

)

, Km(0) = 0.

If we put

Sν = ν!

ν
∑

i=0

(−1)i

i!
(ν ≥ 0),
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Fig. 2.3: The function K3(x)

i.e., Sν = νSν−1+(−1)ν with S0 = 1, then Km(n) can be expressed in the following
form

Km(n) =

n−1
∑

ν=0

(

m+ n

ν +m+ 1

)

Sν .

Since

S0 = 1, S1 = 0, S2 = 1, S3 = 2, S4 = 9, S5 = 44, etc.,

we have

Km(0) = 0, Km(1) = 1, Km(2) = m+ 2,

Km(3) =
1

2
(m2 + 5m+ 8),

Km(4) =
1

6
(m3 + 9m2 + 32m+ 60),
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etc.

The function Km(z), m ∈ N, can be extended analytically to the hole complex
plane by

Km(z) = Km(z + 1)−Km−1(z + 1). (2.3)

Suppose that we have analytic extensions for all functions Kν(z), ν < m. Using
(2.2) and (2.3) we define Km(z) at first for z satisfying Re z > −1, then for Re z
such that Re z > −2, etc. In this way we obtain the function Km(z) in the hole
complex plane.

Evaluation of the Kurepa function K0(z) for some specific z in (0, 1), using
quadrature formulas with relatively small accuracy, was done by Slavić and the
author of this paper (see [6]). Recently, we [9] gave power series expansions of
the Kurepa function K0(a + z), a ≥ 0, and determined numerical values of their
coefficients bν(a) for a = 0 and a = 1, in high precision (Q-arithmetic with machine
precision ≈ 1.93× 10−34). Using an asymptotic behaviour of bν(a), when ν → ∞,
we gave a transformation of series with much faster convergence. Also, we obtained
the Chebyshev expansions for K0(1 + z) and 1/K0(1 + z). For similar expansions
of the gamma function see e.g. Davis [2], Luke [7], Fransén and Wrigge [3], and
Bohman and Fröberg [1].

Graphs of functions Km(x), m = 1, 2, 3, for real values of x are displayed in
figures 2.1, 2.2, and 2.3, respectively.

3. ZEROS AND POLES

Poles of Km(z) are in the points z
(m)
n = −n, n = m + 1,m + 2, . . . , except the

point z
(0)
2 when K0(z

(0)
2 ) = K0(−2) = 1.

The poles of gamma function Γ(z) = K−1(z) are z
(−1)
n = −n, n = 0, 1, . . . , with

the corresponding residues

Res
z=−n

Γ(z) =
(−1)n

n!
(n = 0, 1, . . . ).

Putting
R(m)

n
= Res

z=−n
Km(z) (n ≥ m+ 1),

we can prove the following result:

THEOREM 3.2. For every n ≥ m+ 3 we have that

R(m)
n

= R
(m)
m+2 −

n−1
∑

ν=m+2

R(m−1)
ν

,

where

R
(m)
m+1 = (−1)m+1, R

(m)
m+2 = m(−1)m+1.
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For m = 0 Theorem 4 reduces to Kurepa’s result [6, §6]:

R
(0)
1 = Res

z=−1
K0(z) == 1,

R(0)
n = Res

z=−n
K0(z) = −

n−1
∑

ν=2

(−1)ν

ν!
.

We note that z = −2 is not a pole of K0(z) (R
(0)
2 = 0).

REFERENCES
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[10] D.V. Slavić, On the left factorial function of the complex argument , Math. Balkanica 3

(1973), 472–477.

9


