A SEQUENCE OF KUREPA'S FUNCTIONS

Gradimir V. MILOVANOVIĆ

Faculty of Electronic Engineering, Department of Mathematics University of Niš, P.O. Box 73, 18000 Niš, Yugoslavia

Dedicated to the memory of Professor D. Kurepa

Abstract: In this paper we define and study a sequence of functions $\{K_m(z)\}_{m=-1}^{+\infty}$, where $K_{-1}(z) = \Gamma(z)$ is the gamma function and $K_0(z) = K(z)$ is the Kurepa function [5–6]. We give several properties of $K_m(z)$ including a discussion on their zeros and poles.

 ${\bf Keywords:} \ {\rm Gamma \ function, \ Kurepa \ function, \ left \ factorial, \ meromorphic \ function, \ zeros, \ poles.$

AMS Subject Classification(1991): Primary 33B15, 65D20.

1. INTRODUCTION

The left factorial function $z \mapsto K(z)$ was defined by Professor D. Kurepa (see [5–6]) in the following way

$$K(z) = \int_0^\infty \frac{t^z - 1}{t - 1} e^{-t} dt \qquad (\text{Re}\, z > 0).$$
(1.1)

Firstly, he introduced so-called left factorial as

 $!0 = 0, !n = 0! + 1! + \dots + (n - 1)! (n \in \mathbb{N})$

and then extended it to the right side of the complex plane by (1.1). The function K(z) can be extended analytically to the hole complex plane by

$$K(z) = K(z+1) - \Gamma(z+1), \qquad (1.2)$$

1

^{*}This work was supported in part by the Serbian Scientific Foundation, grant number $04\mathrm{M}03.$

where $\Gamma(z)$ is the gamma function defined by

$$\Gamma(z) = \int_0^\infty e^{-t} t^{z-1} dt \quad (\operatorname{Re} z > 0) \quad \text{and} \quad z\Gamma(z) = \Gamma(z+1).$$

Kurepa [6] proved that K(z) is a meromorphic function with simple poles at the points $z_k = -k$ ($k \in \mathbb{N} \setminus \{2\}$). Graphs of the gamma and Kurepa functions for real values of z are displayed in Fig. 1.1.

FIG. 1.1: The gamma function $\Gamma(x) = K_{-1}(x)$ (dotted line) and the Kurepa function $K(x) = K_0(x)$ (solid line)

Slavić [10] found the representation

$$K(z) = -\frac{\pi}{e} \cot \pi z + \frac{1}{e} \left(\sum_{\substack{n=1\\2}}^{\infty} \frac{1}{n!n} + \gamma \right) + \sum_{n=0}^{\infty} \Gamma(z-n),$$

where γ is Euler's constant. These formulas were mentioned also in the book [8]. A number of problems and hypotheses, especially in number theory, were posed by Kurepa and then considered by several mathematicians. For details and a complete list of references see a recent survey written by Ivić and Mijajlović [4].

In this paper we define and study a sequence of complex functions $\{K_m(z)\}_{m=-1}^{+\infty}$, such that the first two terms are the gamma function and the Kurepa function, i.e., $K_{-1}(z) = \Gamma(z)$ and $K_0(z) = K(z)$. In Section 2 we give the basic definition of the sequence $\{K_m(z)\}_{m=-1}^{+\infty}$ and main properties of such functions including their graphs for the real values of z. Zeros and poles of $K_m(z)$ are discussed in Section 3. Numerical calculations, series expansions, as well as some applications of such functions will be given elsewhere.

2. BASIC DEFINITIONS AND PROPERTIES

DEFINITION 2.1. The polynomials $t \mapsto Q_m(t; z), m = -1, 0, 1, 2, \ldots$, are defined by

$$Q_{-1}(t;z) = 0, \quad Q_m(t;z) = \sum_{\nu=0}^m \binom{m+z}{\nu} (t-1)^{\nu}.$$
 (2.1)

For example,

$$Q_0(t;z) = 1,$$

$$Q_1(t;z) = 1 + (z+1)(t-1),$$

$$Q_2(t;z) = 1 + (z+2)(t-1) + \frac{1}{2}(z^2 + 3z + 2)(t-1)^2,$$

$$Q_3(t;z) = 1 + (z+3)(t-1) + \frac{1}{2}(z^2 + 5z + 6)(t-1)^2 + \frac{1}{6}(z^3 + 6z^2 + 11z + 6)(t-1)^3.$$

It is easy to see that the following result holds:

LEMMA 2.1. For every $m \in \mathbb{N}_0$ we have

$$Q_m(t;z) = Q_{m-1}(t;z+1) + \frac{1}{m!}(z+1)(z+2)\cdots(z+m)(t-1)^m.$$

If we define Δ_z as the standard forward difference operator

$$\Delta_z f(z) = f(z+1) - f(z),$$

then equality (1.2) can be expressed in the form

$$\Delta_z K_0(z) = K_{-1}(z+1), \\ 3$$

where we put $K(z) = K_0(z)$ and $\Gamma(z) = K_{-1}(z)$. Our goal is here to define the functions $K_m(z)$, m = 1, 2, ..., such that

$$\Delta_z K_m(z) = K_{m-1}(z+1), \qquad m = 0, 1, \dots$$

In our considerations we also use the k-th order difference operator Δ_z^k , defined inductively as

$$\Delta_z^0 f(z) \equiv f(z), \qquad \Delta_z^k f(z) = \Delta_z \left(\Delta_z^{k-1} f(z) \right) \quad (k \in \mathbb{N}).$$

Firstly, we prove the following auxiliary result:

LEMMA 2.2. For every $m \in \mathbb{N}_0$ we have

$$\Delta_z Q_m(t;z) = (t-1)Q_{m-1}(t;z+1).$$

Proof. According to to previous definition we have

$$\begin{aligned} \Delta_z Q_m(t;z) &= Q_m(t;z+1) - Q_m(t;z) \\ &= \sum_{\nu=0}^m \binom{m+z+1}{\nu} (t-1)^\nu - \sum_{\nu=0}^m \binom{m+z}{\nu} (t-1)^\nu \\ &= \sum_{\nu=1}^m \binom{m+z}{\nu-1} (t-1)^\nu \\ &= (t-1) \sum_{\nu=0}^{m-1} \binom{m-1+z+1}{\nu} (t-1)^\nu \\ &= (t-1)Q_{m-1}(t;z+1). \quad \Box \end{aligned}$$

DEFINITION 2.2. The sequence $\{K_m(z)\}_{m=-1}^{+\infty}$ is defined by

$$K_m(z) = \int_0^{+\infty} \frac{t^{z+m} - Q_m(t;z)}{(t-1)^{m+1}} e^{-t} dt \qquad (\operatorname{Re} z > 0),$$
(2.2)

where $Q_m(t;z)$ given by (2.1).

THEOREM 2.3. For $\operatorname{Re} z > 0$ we have

$$\Delta_z K_m(z) \equiv K_m(z+1) - K_m(z) = K_{m-1}(z+1)$$

and

$$\Delta_{z}^{i} K_{m}(z) = K_{m-i}(z+i), \qquad i = 1, 2, \dots, m+1$$

FIG. 2.1: The function $K_1(x)$

 $\it Proof.$ Using Lemma 2.2 we obtain

$$\Delta_z (t^{z+m} - Q_m(t;z)) = t^{z+1+m} - t^{z+m} - \Delta_z Q_m(t;z)$$

= $(t-1) [t^{z+m} - Q_{m-1}(t;z+1)].$

Then

$$\Delta_z K_m(z) = \int_0^{+\infty} \Delta_z \left[\frac{t^{z+m} - Q_m(t;z)}{(t-1)^{m+1}} \right] e^{-t} dt$$
$$= \int_0^{+\infty} \frac{t^{z+m} - Q_{m-1}(t;z+1)}{(t-1)^m} e^{-t} dt$$
$$= K_{m-1}(z+1).$$

Iterating we obtain

$$\Delta_z^i K_m(z) = \Delta_z^{i-1} K_{m-1}(z+1) = \Delta_z^{i-2} K_{m-2}(z+2) = \dots = K_{m-i}(z+i).$$

For i = m + 1 we find $\Delta_z^{m+1} K_m(z) = K_{-1}(z + m + 1) = \Gamma(z + m + 1)$. \Box

FIG. 2.2: The function $K_2(x)$

It is easy to see that for nonnegative integers the following result holds: **THEOREM 2.4.** For $n, m \in \mathbb{N}_0$ we have

$$K_m(n) = \sum_{i=0}^{n-1} \frac{(-1)^i}{i!} \sum_{\nu=i}^{n-1} \nu! \binom{m+n}{\nu+m+1}, \qquad K_m(0) = 0.$$

If we put

$$S_{\nu} = \nu! \sum_{i=0}^{\nu} \frac{(-1)^i}{i!} \qquad (\nu \ge 0),$$

FIG. 2.3: The function $K_3(x)$

i.e., $S_{\nu} = \nu S_{\nu-1} + (-1)^{\nu}$ with $S_0 = 1$, then $K_m(n)$ can be expressed in the following form

$$K_m(n) = \sum_{\nu=0}^{n-1} \binom{m+n}{\nu+m+1} S_{\nu}.$$

Since

 $S_0 = 1$, $S_1 = 0$, $S_2 = 1$, $S_3 = 2$, $S_4 = 9$, $S_5 = 44$, etc.,

we have

$$K_m(0) = 0, \quad K_m(1) = 1, \quad K_m(2) = m + 2,$$

$$K_m(3) = \frac{1}{2}(m^2 + 5m + 8),$$

$$K_m(4) = \frac{1}{6}(m^3 + 9m^2 + 32m + 60),$$

7

etc.

The function $K_m(z)$, $m \in \mathbb{N}$, can be extended analytically to the hole complex plane by

$$K_m(z) = K_m(z+1) - K_{m-1}(z+1).$$
(2.3)

Suppose that we have analytic extensions for all functions $K_{\nu}(z)$, $\nu < m$. Using (2.2) and (2.3) we define $K_m(z)$ at first for z satisfying $\operatorname{Re} z > -1$, then for $\operatorname{Re} z$ such that $\operatorname{Re} z > -2$, etc. In this way we obtain the function $K_m(z)$ in the hole complex plane.

Evaluation of the Kurepa function $K_0(z)$ for some specific z in (0,1), using quadrature formulas with relatively small accuracy, was done by Slavić and the author of this paper (see [6]). Recently, we [9] gave power series expansions of the Kurepa function $K_0(a + z)$, $a \ge 0$, and determined numerical values of their coefficients $b_{\nu}(a)$ for a = 0 and a = 1, in high precision (Q-arithmetic with machine precision $\approx 1.93 \times 10^{-34}$). Using an asymptotic behaviour of $b_{\nu}(a)$, when $\nu \to \infty$, we gave a transformation of series with much faster convergence. Also, we obtained the Chebyshev expansions for $K_0(1 + z)$ and $1/K_0(1 + z)$. For similar expansions of the gamma function see e.g. Davis [2], Luke [7], Fransén and Wrigge [3], and Bohman and Fröberg [1].

Graphs of functions $K_m(x)$, m = 1, 2, 3, for real values of x are displayed in figures 2.1, 2.2, and 2.3, respectively.

3. ZEROS AND POLES

Poles of $K_m(z)$ are in the points $z_n^{(m)} = -n$, n = m + 1, m + 2, ..., except the point $z_2^{(0)}$ when $K_0(z_2^{(0)}) = K_0(-2) = 1$.

The poles of gamma function $\Gamma(z) = K_{-1}(z)$ are $z_n^{(-1)} = -n, n = 0, 1, \ldots$, with the corresponding residues

$$\operatorname{Res}_{z=-n} \Gamma(z) = \frac{(-1)^n}{n!} \qquad (n = 0, 1, \dots)$$

Putting

$$R_n^{(m)} = \operatorname{Res}_{z=-n} K_m(z) \qquad (n \ge m+1),$$

we can prove the following result:

THEOREM 3.2. For every $n \ge m+3$ we have that

$$R_n^{(m)} = R_{m+2}^{(m)} - \sum_{\nu=m+2}^{n-1} R_{\nu}^{(m-1)},$$

where

$$R_{m+1}^{(m)} = (-1)^{m+1}, \qquad R_{m+2}^{(m)} = m(-1)^{m+1}.$$

For m = 0 Theorem 4 reduces to Kurepa's result [6, §6]:

$$R_1^{(0)} = \operatorname{Res}_{z=-1} K_0(z) == 1,$$

$$R_n^{(0)} = \operatorname{Res}_{z=-n} K_0(z) = -\sum_{\nu=2}^{n-1} \frac{(-1)^{\nu}}{\nu!}$$

We note that z = -2 is not a pole of $K_0(z)$ $(R_2^{(0)} = 0)$.

REFERENCES

- J. Bohman and C.-E. Fröberg, The Γ-function revisited: power series expansions and real-imaginary zero lines, Math. Comp. 58 (1992), 315–322.
- [2] H.T. Davis, Tables of the Higher Mathematical Functions, vol. I, Principia Press, Bloomington, IN, 1933.
- [3] A. Fransén and S. Wrigge, High-precision values of the gamma function and some related coefficients, Math. Comp. 34 (1980), 553–566.
- [4] A. Ivić and Ż. Mijajlović, On Kurepa problems in number theory, Publ. Inst. Math. (N.S.) 57 (71) (1995), 19–28.
- [5] D. Kurepa, On the left factorial function !n, Math. Balkanica 1 (1971), 147–153.
- [6] D. Kurepa, Left factorial function in complex domain, Math. Balkanica 3 (1973), 297– 307.
- [7] Y.L. Luke, Mathematical Functions and Their Approximations, Mir, Moscow, 1980 (Russian).
- [8] O.I. Marichev, Handbook of Integral Transformation of Higher Transcendental Functions: Theory and Algorithmic Tables, Ellis Horwood Ltd., Chichester, 1983
- [9] G.V. Milovanović, Expansions of the Kurepa function, Publ. Inst. Math. (N.S.) 57 (71) (1995), 81–90.
- [10] D.V. Slavić, On the left factorial function of the complex argument, Math. Balkanica 3 (1973), 472–477.

9