SOME FINITE SUMMATION FORMULAS INVOLVING
MULTIVARIABLE HYPERGEOMETRIC POLYNOMIALS

Lazar N. Djordjevi¢ and Dragan M. Milosevi¢
Department of Computer Sciences
Faculty of Electronic Engineering
University of Nis
YU-18000 Nis, Serbia, Yugoslavia
E-Mail: <laza><mdragan>@elfak.ni.ac.yu

Gradimir V. Milovanovi¢
Department of Mathematics
Faculty of Electronic Engineering
University of Nis
YU-18000 Nis, Serbia, Yugoslavia
E-Mail: grade@gauss.elfak.ni.ac.yu

and

H.M. Srivastava
Department of Mathematics and Statistics
University of Victoria
Victoria, British Columbia V8W 3P4, Canada
E-Mail: harimsri@math.uvic.ca

Abstract

The main purpose of this paper is to present a family of finite summation
formulas and to apply it in order to derive several functional relationships in-
volving various multivariable hypergeometric polynomials and the Gauss hy-
pergeometric function. A number of special and limit cases of these functional
relationships are also considered.
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1. Introduction and Preliminaries

In terms of a bounded multiple sequence {€Q (ky,...,k,)} of essentially arbitrary (real or
complex) parameters, let

[n1/ma] [nr/mer]
O (T, ) = E E (=) () e
k1=0 k=0
k1 Ky
s s
cQ (k. k) I 1.1
(k1 >h! Pl (1.1)

(nj e Ng:=NU{0}; mjeN; j=1,...,7),

where [k] denotes the greatest integer in £ € R and (), is the Pochhammer symbol (or,
more precisely, the shifted factorial, since (1), = k! (k € Ny)) defined, in terms of Gamma
functions, by

SERACEIO N e (1.2
'(A) AA+D)--(A+k—-1) (keN),

N being the set of positive integers.
For different choices of the multiple sequence {Q (k1,...,k;)} and with

mj=1 (G=1....1),

the multivariable polynomials [¢f. Equation (1.1)]

My, Mpe

@ N1y, ($17 e 7:67“)

would readily yield, as special cases, various classes of orthogonal and biorthogonal polyno-
mials associated with hypergeometric functions of two and more variables (see, for details,
[1], [6], [7], and [12] to [18]). Motivated essentially by these and sundry other occurrences of
special multivariable hypergeometric polynomials in the mathematical and physical sciences
literature, we first propose to derive here a family of finite summation formulas involving
the polynomials defined by (1.1) and then show how this general result can be applied in
order to deduce several functional relationships between various multivariable hypergeomet-
ric polynomials and the Gauss hypergeometric function which corresponds to the familiar
special case

p—1=q=1
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of the generalized hypergeometric ,Fj, function with p numerator and ¢ denominator param-
eters, defined by

(o) ;

_:i (al)k"'(ap)k Z_k (1 3)
k=0 (ﬁl)k...(ﬁq)k k'
(p,g€Ng; pSqg+1; pSq and 2] < oo;

p=q+1 and |z|<1; p=qg+1, |z/|=1, and R(E)>0),

where (and throughout this paper) we find it to be convenient to abbreviate the p-parameter
array:

g, ..., 0 (p € N)

by (a,), the array being empty when p = 0, with similar interpretations for (6q), et cetera,
and

q q
Ee=) B,- o5 (8;¢Z5 :={0,-1,-2,...}).
j=1 j=1

2. Finite Summation Formulas

We begin by recalling the multinomial theorem in the form (c¢f., e.g., [3, p. 13, Eq. 2.3

(9)]):
2 (nlnn)x?lﬂ = (z1+-F )" (2.1)

ni+-+nr=n
(n,mj € No; j=1,...,r; 1€ N\ {1}),

where, and in what follows,

Since
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by virtue of the definition (1.2), we can make use of the multinomial theorem (2.1) in
conjunction with the definition (1.1) to show that

n m
T1seeey My ni Ny
g SR (X1, @) ]t
A\, ooy Ny
ni+--+ny=n

m1k1+"'+mrkr§n

=1" Z <_n)m1k1+"'+mrkr Q (klﬂ R kr)

k1,....kr=0
zy (b /T)™ P zp (b )T)™ Y
A " oA 2 } (2.4)

(T:=ti+--+t; nn;€Ngy myeN; j=1,...,7).

With a view to applying the general finite summation formula (2.4) to the following
familiar special case of the (Srivastava-Daoust) generalized Lauricella functions, defined by

(cf., e.q., [9, p. 38, Eq. 1.4 (24)])

P:p1sPr
ZlyeeyRp

T ) a0):

P P1 / Dr (r)
o0 j=1 (aj)y otk Llj=1 (71> = <7‘7 ) kl ;-
1 k1 K Z]' e Zr (25)

2

. / - 0\ Rl &
k1. k=0 H?:1 (ﬁj)kﬁ,_,%r ?1:1 <5j)k1 e 3:1 <5j >kr 1

whenever the multiple hypergeometric series in (2.5) converges or terminates, we conveniently

set
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and we find from (2.4) that
(ap) © —m, <7p’1>;--- ;
Z n FPpitlieprtl
Niyenny Ny ¢q+155qr+1 ( )

nitetne=n (5(1) .

q1
_nr7 (7;53:)>
Ty, @y | ET
<(5(T)> .
qr ’
—n(a)- PN (A
) p/ - ’7171 ) y \ Vor ’ fL’ltl .t

__ qm pp+lipiseipr
A N (2.6)
! T
(ﬁq) : (6611); T (5(17‘ ) )

(T:t1++tr; n,njEN; j:l,...,?”).

Next, by appealing appropriately to the multiple series identity (cf. [8]; see also [9, p.

39]):

o0 an an
> wlm At n) (M), ugmaj —
M yeeny n,=0 r
=3 wm) (n + +N%%T (2.7)
n=0 ’

and its multivariable hypergeometric form:

()t A1s- o 5 A

sl
FEo 2y, 2

q:0;-+-50
(B,) i — 1=
(ap) , A1+ -+ A

(8,)

the second members of (2.4) and (2.6) can be simplified considerably in the special cases:

= pr1ly z|, (2.8)

Qki, k) = (M), W)y, w (B +--+ k), my=m, and xj:<§) (2.9)

J

(meN; kjeNp; N\, eC; j=1,...,7)
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and
pj—1=¢ =0 (’yg) = )\j> and zit;=7 (j=1,...,7), (2.10)
respectively. We thus find from (2.4) that

n PALAr m: l 1 (A L
N yeeey N 7t 7"'7t 1 r
Ny, ..., Ny 1 r

nit+-+nr=n

=T 3 (=) (o + A () (2.11)
k=0 '
(T=t;+---+t;, meN;, nn;eNg; \; €C; j=1,...,1),
where [¢f. Equation (1.1)]
[n1/m]  [nr/m]
(I)Qi o r(myry, . Z Z Dby Ay (500 ) g (M),

k1 kr

T xy
w(k1+-~-+k:)kl U (2.12)

(njeNg; \;eC; j=1,...,r; meN)

in terms of a bounded sequence {w (n)}, -, of essentially arbitrary (real or complex) parame-
ters. Furthermore, under the constraints given by (2.10), the finite summation formula (2.6)
similarly yields

Qp) N1 AL T, A
Z < n )Fp;(g);...% ( P) 1, "M l 1 t?l s
¢:0;+5 ARRR)
nitetny=n By e s P (ﬁq) et T S b b
A A (o)
— Tn p+2Fq T (213)
(Bg)

(T:t1++tr7 n’njENo; )\jE(C; j:L"'ar)'

3. Applications to Lauricella Polynomials in Several Variables

The various finite summation formulas, which we presented in the preceding section, can
indeed be applied in order to derive the corresponding results for many of the orthogonal
and biorthogonal multivariable hypergeometric polynomials which were referred to in Section
1. We leave the details involved in the derivations of these consequences of our results as
an exercise for the interested reader. We turn instead to some multivariable hypergeometric
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polynomials which are associated, in particular, with the Lauricella functions FX), F 1(;), Fg),
and Fg) of r variables, where (cf. [1, p. 114]; see also [9, p. 33])

(r) . .
F la, by, . becry oo 2y, 2]

o a:by;ee by
=F " Zlyevey Zp

— 1 C1y G

o0

= Z (@ gty )y ==~ (Br)y, 21"

K1, kir =0 (Cl)kl T (Cr)kr Fq!

N

(3.1)

>
.

(Jza] 4+ + |2l <15 ¢; € Zgs G=1,...,7),

(r) .
Fgllay, ... ar, by, b2,y 2]

0:2:me 2 _:ahbl;”';a”l‘)br;
= Fl.:O’;~~~’;O T

(@), (@), (Bn)y, oo (B, 20t 2
— Z I

(3.2)
k1,....kr=0 (C)k1+...+kT kl' kr'

(max {|z1],..., |z} <1; c ¢ Zy),

(r) . .
Follasbyer, ..o e 21,00, 2

a,b:—;- e —;

2:0;---50
= 21y 2y

— Gy G

o0

= Z (a)kl-l—...—&—kr (b)k1+~'+kr Zil LA
oo (Cl>k1 e (CT)]CT kl' kr'

(3.3)

1 1
(]21]§+-~~+\z,«]5<1; ¢; ¢ Zy; jzl,...,r),
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and
F9a,b br;c;z ]
D 701505 0p3 G5 21505 Rp
— a:bi;eee by
= Fl':()’;---’;O Rly-+oy Ry
c:—; —

s D OB

(3.4)
[ (g4, kil el
(max {|z1],..., |z} <1; c ¢ Zy) .
First of all, in its special case when
p—1=¢=0 (ay=a) and p;=¢;—1=0 <5§j):cj; jzl,...,r),
our summation formula (2.6) yields
Z < " )FX)[a,—nl,...,—n,,;cl,...,CT;xl,...,xT]t?l'--tf”
ny,...,ny
ni+--+nr=n
t Tt
=T FY | —naser, ... o 2t L T 3.5
C |: n,a;c, y Crs T ) ) T ( )

(T:tl—l-—i-tr, n,anNo; C]¢Za,j:1,,7’)
In the case of the Lauricella hypergeometric polynomials associated with F' g), (2.13) with
p=q—1=0 (By=c¢) and \j+—b;, (j=1,...,7)

leads us immediately to the functional relationship:

n (r) T T n
F —77,,...,—nr,b,...,br;c;—’”_’_tl...tr
> (") e 1 S "

ni+-4nr=n ! "

=T" oF <—n,b1+"'+br§c§%> (3.6)

(T::t1+"'+tr§ n,n; € No; j=1,...,7; C¢ZE)-

For the Lauricella hypergeometric polynomials associated with F' g ), we similarly find from
(2.6) with

p=q¢g=1 (v =a;0,=c) and pi=¢q; =0 (j=1,...,7)



Multivariable Hypergeometric Polynomials

that

n (r) " n

F —Nq, ..., =N C RRRRY rigt

Z (nla e ,nr> D [a/; ny, y TNy G5, ’xr] tl tr

N1+ Ane=n
t e rtr
=T oF) (_”’a;c; L ) 0
T
(T =t +- -+t nn; €Noy J=1,...,7; CgZa)'
Since

FY =P, F{=F, FY=F, ad Fp=F, (3:8)

each of the functional relationships (3.5), (3.6), and (3.7) (with r = 2) can immediately be
rewritten in terms of one or the other of Appell’s hypergeometric functions Fy, Fs, F3, and
Fy of two variables (cf. [1, p. 14]; see also [9, pp. 22-23]).

Next, for the second set of the Carlitz-Srivastava polynomials defined by [2, Part II, p.
143, Eq. (27)]

Fo (e 05) « (—ngomy); (v 9) s,

[” /m [nr/mr]
— G ——
Z Z mlkl e (_nr)mrkr ( )
kr—0 Vo +-tkrp,
k1 k
x] "
RS, 39

(nj € No; m; € N; 95, ¢, cR™; j=1,...,7; ’y@éZa),
the general result (2.4) readily yields

Z (n n >]—“g)[(oz:ﬁj):(—nj,mj);(vz<pj);g;1,“_7xr}t?1__,t?
Ly-- oy Ny

ni+-+nr=n
miki+-+mrkrSn (a)
n k191 krYy
=T Z (_n)m1k1+---+m,«kr e
(Vg 4rthrp,
mi k myr k'r
. {xl (tl/T) } ' . {IT (tT/T) } (3 10)
k! k! '

(T::t1+---+tr; n,n; € No; m; €N; g=1,...,1; 7¢Z5).

In the particular case when

mj=m, vVj=p, and @; =0 (m,p,0€N), (3.11)
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(3.10) would reduce to the form:

" ) ni Ny
Z ( 1y-o- n)fl())[(a:p):(_nj7m)§(’71U);m,...,xr]tl g

ni+--+nr=n

) ; ) ) t t,
=T" m+pFO' mo.gp {xl (TI) +--+ 2, (_> }
A(o;7);

(T:t1++tr7 n,n; GNO; jzl,...,’l“; maanEN; 7¢Z5)7
where A (m; \) abbreviates the array of m parameters:

AA+l Adm—1
AAFL o AEm (meN).

m m m

For m = p = ¢ = 1, (3.12) would obviously correspond to the functional relationship
(3.7).

Lastly, for Erdélyi’s multivariable extension of the classical Laguerre polynomials defined
by (cf., e.g., [2, Part II, p. 144, Eq. (29)])

(Oé + 1)n1+"'+77»r
n1! ce nT!

L) o (X1, xy) =

T I R CERRRR St
e T1yeooy T | s (3.13)
a+1:—- 0 —

it is easily seen from (2.6) with

p=q—1=0 (By=a+1) and pj=¢;=0 (j=1,...,r)
that

Z Lq(f:)m (1, .., ) Yt
tr4 - ity
:<O‘+”>T”1F1 <—n;oz—|—1;x11+T+x ) (3.14)
(T::t1—|—~~~+tr; n,n; €Ny, j=1,....,m a € Z” =7 \ {0})

Clearly, since [c¢f. Equations (3.4) and (3.13)]

L&z, 2)

= Jim_ {Fg> [)\, —nl,...,—nr;a+1;%,...,%”, (3.15)

our last functional relationship (3.14) can be deduced as a limit case of (3.7) when

c=a+1, ch»—>ﬁ (j=1,...,r), and |a| — oo.
a
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4. Further Extensions and Consequences

The multinomial theorem (2.1), which provided one of the tools used in our present in-
vestigation, is itself a limit case of the following well-known multiple sum [3, p. 13, Eq.

2.3(5)]:

) (m, n n) M)y, - (M), = 4o+ M), (4.1)

ni+-+nr=n
(n,nj € Ny; )\j e G jzl,...,T),
which, for r = 2, is equivalent to the Chu-Vandermonde summation theorem:
u A L A
= eNp; \,ueC). 4.2
20000 e @2

In fact, since

i {0, () == = o {5 &
(n € No; 2] < o0),

upon setting A\; = Az; (j =1,...,r), dividing both sides by A", and letting |A\| — oo, (4.1)
yields the multinomial theorem (2.1).

If we apply the general result (4.1) in place of the multinomial theorem (2.1), we find from
the definition (1.1) that

n S
Z (nl,...,nr> (/\1)”1 ()\T>nr®n1 ..... Ny (CL’l,...,[ET)

ni+--+nr=n
mlk1+"'+mrkr§n

Z (_n)m1k1+---+mrkT (Al)mllﬁ e ()\T)mrkr

()\1 + e _I_ )\T)mlkl“l‘""‘l‘mrkr

= (Mt A,

K1y ker=0
k1 k
xr X"

Qg k) 4.4

(17 ) )kll k'r' ( )

(n,n; € No; mj e N; X\; €C; j=1,...,7r),

which provides a seemingly interesting extension of (2.4).
Finally, in order to give a conveniently simple hypergeometric form of (2.4), we set

A= +-+ N\ and m;=1 (j=1,...,7r),
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and choose the multiple sequence {Q (k1,...,k,)} as in the definition (2.5). We thus obtain

S () GO,

nit+---+nr=n
. 1. . My .
(ap) PN, (7p1>7 ERE R 7 (7]%) )
.Fp:p1+1;~-;pT+1
¢

Qs g L1y

@) (8) (o)

—n, (o) * At (%’1);--- ;Ar,( S?);
= (M) prripitliespetl

g g Ty ..., x| (4.5)
M) () ()
(AZ:A1+"'+)\7; n,n]’GNo;j:L...,’F),

provided that each side of (4.5) exists. In its special case when
p=q=0 and p;=¢;=1 (7]%) = [ 57(3? = Vj; jzl,...,r),
the hypergeometric summation formula (4.5) reduces immediately to the elegant form:

S () B O

ni+---+nr=n
o By (=g, g v ) e oY (<0 s Vs )
g | TTEAL G A
=(A), FUT Tiy.o., Ty (4.6)
Arvges v
(A =M+ + N nn; €Ny, A vy & Zg; jzl,...,r).
A further special case of (4.6) when

Vj:>\j (jzl,...,’l”)

was proven, in a markedly different way, by Toscano [11, p. 241, Eq. (11.4)]; indeed, in this

special case, the right-hand side of (4.6) would involve the Lauricella function F g) defined
by (3.4).

For the Lauricella hypergeometric function FX) defined by (3.1), our summation formula
(4.5) with

p=1=¢=0 (m=qa) and pj=¢;-1=0 (551?:“j;j:17---’r)
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would readily yield

2. (n N n> (A, o+ )y,

ni+-+nr=n

(r) ) .
CF o =g, e ey ey T, T
_ =N, Ay A
= (A)nF1~:1,;m,;1 T1yeooy Ty
Acspgse s

(A :)\1++)\T) n,n; GNO; A7A] g—fZa) jzlvar)a
which, in the special case when
reduces at once to the form:

n
M) (A,
2 () Gk,
ni+-+nr=n
-FX) [, =, o, =N AL, A T, T
=(A), 2Py (=5 Asay + -+ 2)
(A::)\1+---+)\T; n,n; € No; A\ € Zy; j= 1,...,r).
Lastly, we consider the basic multivariable Appell polynomials

..... nr(aabh”'ab?"; xla"'vx'r’)

(bl)nl e (b"")nr
(@a+bi+---+b+n),

FOla+by 4 4by+n,—n1, ., —npib, by, ]

En1 ..... Ny (aablu--wbr;xla-'-axT) = (_1)”

(n:=n1+---4+n,; n,n; €Ng; j=1,...,r)
or, equivalently, by

. . n n
En o on (a,by,. oo bz, xy) =2t
(r) .
Fy' | —ng, ..o, —np, 1 —=by —ng, ... 1 = b — 0y
1 1
l—a—b;—---—b.—2n; —,...,—
T Ty

(n::n1+~--+nr; ’I’L,anN(); j:l,,..,?").

Indeed these basic multivariable Appell polynomials are orthogonal over the simplex

T, ={(x1,....,2x,) 1+ +2, =1 (j20; j=1,...,r)}

13

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)
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with the weight function
w(xy,. .. z) =2 (= — =) (4.12)

Making use of the definition (4.10), it is not difficult to deduce the following summation
formula from the functional relationship (3.6):

n / t,
> ( )E%mm(a+mewh+1w“ﬁr—nf+hi,“,—)
Ny Ny T T
ni+-+nr=n

—1
_ (a +B+r+ n) PT(LaJrr,Bfn) (ﬁ _ 1) (4.13)

n T
(nyn; €Np; j=1,...,m; B:=by+---+b; T =t +---+1t,),
where P{*? (x) denotes the classical Jacobi polynomials defined by (cf., e.g., [10, p. 68])

oSO () e

k=0

or, in terms of the Gauss hypergeometric function, by
2 1\" 2
P (z) o= (O‘ v ”) (l“; ) B (—n, = mi—a— - 2 2 1) . )

Many other interesting corollaries and consequences of our main summation formulas can
be deduced in a similar manner.
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