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Abstract. In this paper, we prove certain sharp inequalities that relate the uniform norm of the

derivative and the polynomial itself, in case when the zeros are outside or inside some closed

disk. We further extend the obtained results to the polar derivative of a polynomial. The obtained

results strengthen some recently proved Erdős-Lax and Turán-type inequalities contained in a

paper published recently by Kumar [Complex Anal. Oper. Theory 14, 65 (2020)], as well as

other related inequalities.

1. Introduction

Let P(z) be a polynomial of degree n and P′(z) its derivative. Turán’s inequality

[23] that relates the norm of a polynomial to that of its derivative on the unit circle states

that if P(z) is a polynomial of degree n having all its zeros in |z| ≤ 1, then

max
|z|=1

|P′(z)| ≥ n

2
max
|z|=1

|P(z)|. (1)

On the other hand, if P(z) has no zeros in |z|< 1, then Erdős conjectured and later Lax

[10] proved that

max
|z|=1

|P′(z)| ≤ n

2
max
|z|=1

|P(z)|. (2)

Thus in (1) as well as in (2) equality holds for those polynomials of degree n which

have all their zeros on |z|= 1. Various versions of these inequalities are a classical topic

in analysis. As a generalization of (1), Govil [7] proved that if P(z) has all its zeros in

|z| ≤ k , k ≥ 1, then

max
|z|=1

|P′(z)| ≥ n

1+ kn
max
|z|=1

|P(z)|, (3)

where as, for the class of polynomials not vanishing in |z| < k , k ≤ 1, the precise

estimate of maximum |P′(z)| on |z| = 1 does not seem to be known in general. In

1980, it was again Govil [6], who generalized (2) by proving that if P(z) does not

vanish in |z|< k , k ≤ 1, then

max
|z|=1

|P′(z)| ≤ n

1+ kn
max
|z|=1

|P(z)|, (4)

Mathematics subject classification (2010): 30A10, 30C10, 30D15.

Keywords and phrases: polynomial; polar derivative; Rouché’s theorem; inequality; zeros.
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provided |P′(z)| and |Q′(z)| attain maximum at the same point on |z| = 1, where

Q(z) = znP(1/z) . Both the inequalities (3) and (4) are best possible and hold with

equality for P(z) = zn + kn . Although the inequality (3) is sharp but it has a drawback.

The bound in this inequality depends on the zero of the largest modulus and not on

other zeros even if some of them are very close to the origin. This was taken into con-

sideration by Aziz [1], who proved that if P(z) = an ∏n
ν=1(z− zν ) is a polynomial of

degree n with |zν | ≤ k , k ≥ 1, then

max
|z|=1

|P′(z)| ≥ 2

1+ kn

n

∑
ν=1

k

k+ |zν |
max
|z|=1

|P(z)|. (5)

A similar type of modification to (4) was given by Aziz and Ahmad [2], who proved

that if P(z) = an ∏n
ν=1(z− zν ) is a polynomial of degree n which does not vanish in

|z|< k , k ≤ 1 and Q(z) = znP(1/z) , then

max
|z|=1

|P′(z)| ≤ 1

1+ kn

{
n− kn

n

∑
ν=1

|zν |− k

|zν |+ k

}
max
|z|=1

|P(z)|, (6)

provided |P′(z)| and |Q′(z)| attain maximum at the same point on |z|= 1. Equality in

(6) holds for P(z) = zn + kn .

Very recently, Kumar [9] strengthened the bound in (5) by involving the modulus

of each zero and some of the coefficients of the underlying polynomial. In fact, Kumar

proved that if

P(z) =
n

∑
ν=0

aνzν = an

n

∏
ν=1

(z− zν)

is a polynomial of degree n having all its zeros in |z| ≤ k , k ≥ 1, then

max
|z|=1

|P′(z)| ≥
{

2

1+kn
+

(|an|kn −|a0|)(k−1)

(1+kn)(|an|kn +k|a0|)

} n

∑
ν=1

k

|zν |+k
max
|z|=1

|P(z)|. (7)

In the same paper, Kumar proved an extension of (4) by showing that if P(z)
in (11) is a polynomial of degree n having no zeros in |z| < k , k ≤ 1, and Q(z) =
znP(1/z) , then

max
|z|=1

|P′(z)| ≤
{

n−
[

2kn

1+ kn
+

kn(|a0|− |an|kn)(1− k)

(1+ kn)(|a0|k+ |an|kn)

]
n

∑
ν=1

|zν |
|zν |+ k

}
max
|z|=1

|P(z)|. (8)

provided |P′(z)| and |Q′(z)| attain maximum at the same point on |z|= 1. Equality in

(6) and (7) holds for P(z) = zn + kn .

For a polynomial P(z) of degree n , we define

Dα P(z) := nP(z)+ (α − z)P′(z),

the polar derivative of P(z) with respect to the point α . The polynomial Dα P(z) is of

degree at most n− 1 and it generalizes the ordinary derivative in the sense that

lim
α→∞

{
Dα P(z)

α

}
= P′(z),
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uniformly with respect to z for |z| ≤ R , R > 0.

Various results of majorization on the polar derivative of a polynomial can be

found in the comprehensive books of Milovanović et al. [14], Marden [11] and Rahman

and Schmeisser [22], where some approaches to obtaining polynomial inequalities are

developed on applying the methods and results of the geometric function theory. For

the latest research and development in this direction, one can see some of the papers

([9], [12], [13], [15]–[20]). By using the new version of the Schwarz lemma, Kumar

[9] in the same paper also proved the polar derivative generalizations of (7) and (8) in

the form of the following results.

THEOREM A. Let P(z) =∑n
ν=0 aνzν = an ∏n

ν=1(z−zν) be a polynomial of degree

n having all its zeros in |z| ≤ k , k ≥ 1 . Then for any complex number α with |α| ≥ k ,

max
|z|=1

|Dα P(z)| ≥ 2(|α|− k)

1+ kn

{
1+

(|an|kn −|a0|)(k− 1)

2(|an|kn + k|a0|)

}

×
n

∑
ν=1

k

|zν |+ k
max
|z|=1

|P(z)|. (9)

THEOREM B. Let P(z) =∑n
ν=0 aνzν = an ∏n

ν=1(z−zν ) be a polynomial of degree

n having no zeros in |z|< k , k ≤ 1 , and Q(z) = znP(1/z) . If |P′(z)| and |Q′(z)| attain

maximum at the same point on |z|= 1 , then for any complex numbers α with |α| ≥ 1 ,

max
|z|=1

|Dα P(z)|≤
{

n|α|− (|α|− 1)

[
2kn

1+ kn
+

kn(|a0|− |an|kn)(1− k)

(1+ kn)(|a0|k+ |an|kn)

]}

×
n

∑
ν=1

|zν |
|zν |+ k

max
|z|=1

|P(z)|. (10)

REMARK 1. All the previous results can be formulated for monic polynomials,

without loss of generality, so that we can put an = 1 in the inequalities (7)–(10), ob-

taining simpler expressions.

If we divide both sides of (9) and (10) by |α| and let |α| → ∞ , we get respectively

(7) and (8). It is important to mention here that Kumar [9] has mentioned in the last part

of his paper that (8) and (10) are possibly the best available bounds so far towards the

problem of generalizing the Erdős-Lax inequality for the class of polynomials having

no zeros in |z|< k , k ≤ 1. Motivated by this, the authors are curious to establish some

improved bounds of Erdős-Lax and Turán-type for the derivative and polar derivative

of a polynomial. The obtained results produce refinements of (7)–(10) and related

inequalities.

2. Main Results

As we mentioned in Remark 1, without loss of generality, in the sequel we consider

only the class of monic polynomials P̂n of degree n , with the complex zeros zν , ν =
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1, . . . ,n , i.e.,

P(z) = zn + an−1zn−1 + · · ·+ a1z+ a0 =
n

∏
ν=1

(z− zν), (11)

for which we introduce the following quantities

An(k) =
n

∑
ν=1

k

|zν |+ k
, Bn(k) =

n

∑
ν=1

|zν |
|zν |+ k

, m = min
|z|=k

|P(z)|. (12)

We note that An(k)+Bn(k) = n .

We begin now by presenting the following strengthening of (7).

THEOREM 1. Let P(z) ∈ P̂n having all its zeros in |z| ≤ k , k ≥ 1 . Then for

0 ≤ t ≤ 1 , we have

max
|z|=1

|P′(z)| ≥ 2An(k)

1+ kn

{[
1+

(kn −|a0|− tm)(k− 1)

2(kn + k|a0|− tm)

]
max
|z|=1

|P(z)|

+
1

2kn

[
kn − 1− (kn −|a0|− tm)(k− 1)

kn + k|a0|− tm

]
tm

}
, (13)

Equality in (13) holds for P(z) = zn + kn .

REMARK 2. For t = 0, (13) reduces to (7) (an = 1) . In fact excepting the case

when some or all the zeros of P(z) lie on |z|= k , the bound obtained in (13) is always

sharper than the bound obtained in (7). As an illustration we consider two polynomials

of degree four.

CASE (a): Let P(z) = z4 − 2z3 + 4z− 4, with all zeros {−
√

2,
√

2,1− i,1+ i} on

the circle |z|=
√

2, so that Theorem 1 holds for k ≥
√

2. Since

M = max
|z|=1

|P(z)|= max
0≤θ<2π

√
37− 36cosθ − 16cos2θ + 24cos3θ − 8cos4θ

and

M1 = max
|z|=1

|P′(z)|= max
0≤θ<2π

√
68− 48cosθ − 48cos2θ + 32cos3θ ,

i.e., M = 9.6142743738 . . . and M1 = 12.250756577 . . . , as well as

m = min
|z|=k

|P(z)|= P(k) = (k2 − 2)
(
(k− 1)2 + 1

)
(k ≥

√
2),

the right hand side of the inequality (13) is presented in Fig. 1 for t = 0 and t = 1. The

curve for t = 0 is in fact, the right hand side of (7) (an = 1) .

CASE (b): Let P(z) = z4 + 4, with all zeros {1− i,1+ i,−1− i,−1+ i} on the

circle |z| =
√

2. Again Theorem 1 holds for k ≥
√

2, here with M = 5, M1 = 4, and

m = min|z|=k |P(z)|= k4 −4. The corresponding graphics for t = 0, t = 1/2 and t = 1

are presented in Fig. 2. As we can see the sharpest inequality is obtained for t = 1.

Evidently, equality in (13) holds for k =
√

2 for the polynomial z4 + 4.
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Figure 1: Bounds obtained by Theorem 1 when
√

2 ≤ k ≤ 6: Case (a) for t = 0 and

t = 1
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Figure 2: Bounds obtained by Theorem 1 when
√

2 ≤ k ≤ 6: Case (b) for t = 0,1/2,1

It is also easy to see that (13) includes the following inequality due to Dewan and

Upadhye [4]:

max
|z|=1

|P′(z)| ≥
n

∑
ν=1

k

|zν |+ k

{
2

1+ kn
max
|z|=1

|P(z)|+ kn − 1

kn(kn + 1)
min
|z|=k

|P(z)|
}
.

In the sequel we prove the following refinement of (8), which in turn strengthens

the bound in (6).

THEOREM 2. Let P(z) ∈ P̂n having no zeros in |z| < k , k ≤ 1 , and let Q(z) =
znP(1/z) . If |P′(z)| and |Q′(z)| attain maximum at the same point on |z|= 1 , then for
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every 0 ≤ t ≤ 1 , we have

max
|z|=1

|P′(z)| ≤
{

n−
[

1+
(|a0|− kn − tm)(1− k)

2k(|a0|+ kn−1 − tm)

]
2knBn(k)

1+ kn

}
max
|z|=1

|P(z)|

− tm

(
1− kn − kn(|a0|− kn − tm)(1− k)

k(|a0|+ kn−1− tm)

)
Bn(k)

1+ kn
. (14)

Equality in (14) holds for P(z) = zn + kn .

REMARK 3. For t = 0, (14) reduces to (8) (an = 1) . The following result which

is a refinement of (6) immediately follows from Theorem 2 for t = 1.

COROLLARY 1. Let P(z) ∈ P̂n having no zeros in |z|< k , k ≤ 1 , and let Q(z) =
znP(1/z) . If |P′(z)| and |Q′(z)| attain maximum at the same point on |z|= 1 , then

max
|z|=1

|P′(z)| ≤ 1

1+ kn

{(
n− kn

n

∑
ν=1

|zν |− k

|zν |+ k

)
max
|z|=1

|P(z)|

− (1− kn)
n

∑
ν=1

|zν |
|zν |+ k

min
|z|=k

|P(z)|
}
. (15)

Equality in (15) holds for P(z) = zn + kn .

In the literature, we can see a series of papers where inequalities involving the

ordinary derivatives have been extended to the polar derivatives. Here, we are interested

to extend Theorems 1 and 2 to the polar derivative of a polynomial and to get compact

generalizations of these results. These generalizations involve the proofs of Theorems 1

and 2 as well, so it is obligatory to establish Theorems 1 and 2 before their respective

generalizations in the form of Theorems 3 and 4. In this context, our next result is

a polar derivative generalization of Theorem 1 which also provides a refinement of

Theorem A.

THEOREM 3. Let P(z) ∈ P̂n having all its zeros in |z| ≤ k , k ≥ 1 . Then for every

complex number α with |α| ≥ k and 0 ≤ t ≤ 1 , we have

max
|z|=1

|Dα P(z)| ≥2(|α|− k)

1+ kn

{(
1+

(kn −|a0|− tm)(k− 1)

2(kn + k|a0|− tm)

)
max
|z|=1

|P(z)|

+
1

2kn

(
kn − 1− (kn −|a0|− tm)(k− 1)

kn + k|a0|− tm

)
tm

}
An(k). (16)

Equality in (16) holds for P(z) = zn + kn .

REMARK 4. For t = 0, Theorem 3 reduces to Theorem A (an = 1) . If we di-

vide both sides of (16) by |α| and let |α| → ∞ , we get the inequality (13), and thus

Theorem 3 is an extension of Theorem 1.
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Finally, we prove the following polar derivative generalization of Theorem 2. The

obtained inequality gives a refinement of the inequality (10) as well.

THEOREM 4. Let P(z) ∈ P̂n having no zeros in |z| < k , k ≤ 1 , and let Q(z) =
znP(1/z) . If |P′(z)| and |Q′(z)| attain maximum at the same point on |z|= 1 , then for

every complex number α with |α| ≥ 1 and 0 ≤ t ≤ 1 , we have

max
|z|=1

|Dα P(z)| ≤ n|α|max
|z|=1

|P(z)|

− |α|− 1

1+ kn
Bn(k)

{
2kn

(
1+

(|a0|− kn − tm)(1− k)

2k(|a0|+ kn−1− tm)

)
max
|z|=1

|P(z)|

+

(
1− kn− kn−1(|a0|− kn − tm)(1− k)

|a0|+ kn−1 − tm

)
tm

}
. (17)

Equality in (17) holds for P(z) = zn + kn .

REMARK 5. For t = 0, Theorem 4 reduces to Theorem B (an = 1) . If we di-

vide both sides of (17) by |α| and let |α| → ∞ , we get the inequality (14), and thus

Theorem 4 is an extension of Theorem 2.

3. Auxiliary Results

We need the following lemmas to prove our theorems. The following lemma is

due to Mir et al. [20].

LEMMA 1. If P(z) ∈ P̂n having no zeros in |z|< 1 , then for R ≥ 1 and 0 ≤ t ≤ 1 ,

we have

max
|z|=R

|P(z)| ≤
(
(1+Rn)(|a0|+R− tm1)

(1+R)(|a0|+ 1− tm1)

)
max
|z|=1

|P(z)|

−
(
(1+Rn)(|a0|+R− tm1)

(1+R)(|a0|+ 1− tm1)
− 1

)
tm1, (18)

where m1 = min|z|=1 |P(z)| . Equality in (18) holds for P(z) = (α + β zn)/2 , |α| =
|β |= 1 .

LEMMA 2. If P(z) ∈ P̂n having all its zeros in |z| ≤ k , k ≥ 1 , then for 0 ≤ t ≤ 1 ,

we have

max
|z|=k

|P(z)| ≥
(

2kn

1+ kn
+

kn(kn −|a0|− tm)(k− 1)

(1+ kn)(kn + k|a0|− tm)

)
max
|z|=1

|P(z)|

+

(
kn − 1

kn + 1
− (kn −|a0|− tm)(k− 1)

(1+ kn)(kn + k|a0|− tm)

)
tm, (19)

where m = min|z|=k |P(z)| . Equality in (19) holds for P(z) = zn + kn .
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Proof. Let T (z) = P(kz) . Since P(z) has all its zeros in |z| ≤ k , k ≥ 1, the

polynomial T (z) has all its zeros in |z| ≤ 1. Let H(z) = znT (1/z) be the reciprocal

polynomial of T (z) , then H(z) is a polynomial of degree at most n having no zeros in

|z| < 1. Hence applying (18) of Lemma 1 to the polynomial H(z) , we get for k ≥ 1

and 0 ≤ t ≤ 1,

max
|z|=k

|H(z)| ≤
(
(1+ kn)(kn + k|a0|− tm∗)
(1+ k)(kn + |a0|− tm∗)

)
max
|z|=1

|H(z)|

−
(
(1+ kn)(kn + k|a0|− tm∗)
(1+ k)(kn + |a0|− tm∗)

− 1

)
tm∗, (20)

where m∗ = min|z|=1 |H(z)| .
Since |H(z)|= |T (z)| on |z|= 1, hence,

m∗ = min
|z|=1

|H(z)|= min
|z|=1

∣∣∣∣z
nP

(
k

z

)∣∣∣∣= min
|z|=k

|P(z)|= m,

max
|z|=1

|H(z)|= max
|z|=1

|T (z)|= max
|z|=k

|P(z)|,

and

max
|z|=k

|H(z)|= max
|z|=k

∣∣∣∣z
nP

(
k

z

)∣∣∣∣= kn max
|z|=1

|P(z)|,

which when substituted in (20) gives

max
|z|=k

|P(z)| ≥
(

(1+ k)(kn + |a0|− tm)

(1+ kn)(kn + k|a0|− tm)

)
kn max

|z|=1
|P(z)|

+

(
1− (1+ k)(kn + |a0|− tm)

(1+ kn)(kn + k|a0|− tm)

)
tm. (21)

Using the fact that

(1+ k)(kn + |a0|− tm)

(1+ kn)(kn + k|a0|− tm)
=

2

1+ kn
+

(kn −|a0|− tm)(k− 1)

(1+ kn)(kn + k|a0|− tm)
,

in (21), we get

max
|z|=k

|P(z)| ≥
(

2kn

1+ kn
+

kn(kn −|a0|− tm)(k− 1)

(1+ kn)(kn + k|a0|− tm)

)
max
|z|=1

|P(z)|

+

(
kn − 1

kn + 1
− (kn −|a0|− tm)(k− 1)

(1+ kn)(kn + k|a0|− tm)

)
tm,

which is (19) and this completes the proof of Lemma 2.

LEMMA 3. If P(z) ∈ P̂n and Q(z) = znP(1/z) , then on |z|= 1 ,

|P′(z)|+ |Q′(z)| ≤ nmax
|z|=1

|P(z)|.

8



The above lemma is due to Govil and Rahman [8].

LEMMA 4. If P(z) is a polynomial of degree n, then for R ≥ 1 ,

max
|z|=R

|P(z)| ≤ Rn max
|z|=1

|P(z)|.

The above lemma is a simple consequence of the Maximum Modulus Principle

[21]. The following lemma is due to Giroux, Rahman and Schmeisser [5].

LEMMA 5. If P(z) = ∏n
ν=1(z − zν ) is a polynomial of degree n having all its

zeros in |z| ≤ 1 , then

max
|z|=1

|P′(z)| ≥
n

∑
ν=1

1

1+ |zν |
max
|z|=1

|P(z)|.

4. Proofs of Main Results

Proof of Theorem 1. Let G(z) = P(kz) . Recall that a monic polynomial P(z) has

all its zeros in |z| ≤ k , k ≥ 1, the polynomial

G(z) = kn
n

∏
ν=1

(
z− zν

k

)

has all its zeros in |z| ≤ 1, therefore, applying Lemma 5 to G(z) , we get

max
|z|=1

|G′(z)| ≥
n

∑
ν=1

1

1+ |zν |
k

max
|z|=1

|G(z)|, (22)

which is equivalent to

k max
|z|=1

|P′(kz)| ≥
n

∑
ν=1

k

k+ |zν |
max
|z|=k

|P(z)|. (23)

Since P′(z) is a polynomial of degree n−1 and k ≥ 1, therefore by Lemma 4, we have

max
|z|=1

|P′(kz)|= max
|z|=k

|P′(z)| ≤ kn−1 max
|z|=1

|P′(z)|.

Using this and Lemma 2 in (23), as well as the notation from (12), we get

kn max
|z|=1

|P′(z)| ≥ An(k)

1+ kn

{(
2kn +

kn(kn −|a0|− tm)(k− 1)

kn + k|a0|− tm

)
max
|z|=1

|P(z)|

+

(
kn − 1− (kn −|a0|− tm)(k− 1)

kn + k|a0|− tm

)
tm

}
,

which is equivalent to (13). This completes the proof of Theorem 1.
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Proof of Theorem 2. Let Q(z) = znP(1/z) . Since P(z) 6= 0 in |z| < k , k ≤ 1,

the polynomial Q(z) of degree n has all its zeros in |z| ≤ 1/k , 1/k ≥ 1. On applying

Theorem 1 to Q(z) , we get for 0 ≤ t ≤ 1,

max
|z|=1

|Q′(z)| ≥
n

∑
ν=1

1
k

1
k
+ 1

|zν |

[(
2

1+ 1
kn

+

(
|a0|
kn − 1− tm

kn

)(
1
k
− 1
)

(
1+ 1

kn

)( |a0|
kn + 1

k
− tm

kn

)
)

max
|z|=1

|P(z)|

+

(
1
kn − 1

1
kn

(
1
kn + 1

) −

(
|a0|
kn − 1− tm

kn

)(
1
k
− 1
)

1
kn

(
1
kn + 1

)( |a0|
kn + 1

k
− tm

kn

)
)

tm

kn

]
, (24)

because

min
|z|=1/k

|Q(z)|= min
|z|=1/k

∣∣∣znP(1/z)
∣∣∣= 1

kn
min
|z|=k

|P(z)|= m

kn

and

max
|z|=1

|Q(z)|= max
|z|=1

|P(z)|.

The above inequality (24) is equivalent to

max
|z|=1

|Q′(z)| ≥ Bn(k)

1+ kn

{(
2kn +

kn(|a0|− kn − tm)(1− k)

k(|a0|+ kn−1 − tm)

)
max
|z|=1

|P(z)|

+

(
1− kn − kn(|a0|− kn − tm)(1− k)

k(|a0|+ kn−1 − tm)

)
tm

}
, (25)

where Bn(k) is defined in (12).

Also |P′(z)| and |Q′(z)| attain maximum at the same point on |z|= 1, we have

max
|z|=1

(|P′(z)|+ |Q′(z)|) = max
|z|=1

|P′(z)|+max
|z|=1

|Q′(z)|. (26)

On combining (25), (26) and Lemma 3, we get

nmax
|z|=1

|P(z)| ≥ max
|z|=1

|P′(z)|

+
Bn(k)

1+ kn

{(
2kn +

kn(|a0|− kn − tm)(1− k)

k(|a0|+ kn−1 − tm)

)
max
|z|=1

|P(z)|

+

(
1− kn− kn(|a0|− kn − tm)(1− k)

k(|a0|+ kn−1 − tm)

)
tm

}
,

which after simplification yields (14).

This proves Theorem 2 completely.
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Proof of Theorem 3. Let G(z) = P(kz) . Since P(z) has all its zeros in |z| ≤ k ,

k ≥ 1, therefore, all the zeros of G(z) lie in |z| ≤ 1, hence by (22), we get

max
|z|=1

|G′(z)| ≥
n

∑
ν=1

k

k+ |zν |
max
|z|=1

|G(z)|. (27)

Let H(z) = znG(1/z) . Then it can be easily verified that

|H ′(z)|= |nG(z)− zG′(z)| for |z|= 1. (28)

The polynomial H(z) has all its zeros in |z| ≥ 1 and |H(z)| = |G(z)| for |z| = 1,

therefore, by the result of de-Bruijn [3],

|H ′(z)| ≤ |G′(z)| for |z|= 1. (29)

Now, noting that by hypothesis, we have |α|/k ≥ 1, hence on using definition of polar

derivative of a polynomial, we get

∣∣Dα/kG(z)
∣∣ =

∣∣∣nG(z)+
α

k
G′(z)− zG′(z)

∣∣∣

≥
∣∣∣α

k

∣∣∣ |G′(z)|− |nG(z)− zG′(z)|,

which on using (28) and (29), gives

∣∣∣D α
k

G(z)
∣∣∣ ≥ |α|− k

k
max
|z|=1

|G′(z)|. (30)

Using (27) in (30) and on replacing G(z) by P(kz) , we get

max
|z|=1

∣∣Dα/kP(kz)
∣∣ ≥ |α|− k

k

n

∑
ν=1

k

k+ |zν |
max
|z|=1

|P(kz)|,

which implies

max
|z|=1

∣∣∣nP(kz)+
(α

k
− z
)

kP′(kz)
∣∣∣≥ |α|− k

k

n

∑
ν=1

k

k+ |zν |
max
|z|=k

|P(z)|,

which gives by using Lemma 2 on the right hand side that

max
|z|=k

|Dα P(z)| ≥ |α|− k

k

An(k)

1+ kn

{(
2kn +

kn(kn −|a0|− tm)(k− 1)

kn + k|a0|− tm

)
max
|z|=1

|P(z)|

+

(
kn − 1− (kn −|a0|− tm)(k− 1)

kn + k|a0|− tm

)
tm

}
, (31)

where An(k) is defined in (12). Since Dα P(z) is a polynomial of degree at most n− 1

and k ≥ 1, applying Lemma 4 to the polynomial Dα P(z) , we get

max
|z|=k

|Dα P(z)| ≤ kn−1 max
|z|=1

|Dα P(z)|,

11



which on using in (31) gives (16).

This completes the proof of Theorem 3.

Proof of Theorem 4. Since Q(z) = znP(1/z) , it is easy to verify that for |z|= 1,

|Q′(z)| = |nP(z)− zP′(z)|. (32)

Also, for any complex number α with |α| ≥ 1, the polar derivative of P(z) with respect

to α is

Dα P(z) = nP(z)+ (α − z)P′(z).

This implies by (32) for |z|= 1, that

|Dα P(z)| ≤ |nP(z)− zP′(z)|+ |α||P′(z)|

= |Q′(z)|+ |α||P′(z)|

= |Q′(z)|+ |P′(z)|− |P′(z)|+ |α||P′(z)|

≤ nmax
|z|=1

|P(z)|+(|α|− 1)|P′(z)| (by Lemma 3).

This gives by using Theorem 2, that

max
|z|=1

|Dα P(z)| ≤ nmax
|z|=1

|P(z)|

+(|α|−1)

[{
n−
(

2kn +
kn(|a0|−kn − tm)(1−k)

k(|a0|+kn−1 − tm)

)
Bn(k)

1+kn

}
max
|z|=1

|P(z)|

−tm

(
1−kn − kn(|a0|−kn − tm)(1−k)

k(|a0|+kn−1 − tm)

)
Bn(k)

1+kn

]
,

which after simplification gives (17).

This completes the proof of Theorem 4.

5. Conclusion

We proved some sharp inequalities that relate the uniform norm of the derivative

and the polynomial itself, in case when the zeros are outside or inside some closed disk.

Also, we extended these results to the polar derivative of a polynomial. The obtained

results sharpen and generalize some already known estimates of Erdős-Lax and Turán-

type.
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[23] P. TURÁN, Über die Ableitung von polynomen, Compositio Math., 7 (1939), 89–95.
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13


