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A b s t r a c t. In this short note we prove that two trigonometric quadrature

formulae which are very often in applications, are equivalent to the trigonometric

version of the Gauss-Radau formulas with respect to the Chebyshev weight of the

first kind on (−1, 1). Also, we give a short account on the classical results of Gauss-

Radau quadrature rules which are related to the Chebyshev weight functions.
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1. Introduction

In this short note we consider the (2n+1)-point trigonometric quadrature
formula ∫ 2π

0
f(x) dx =

2π

2n+ 1

2n∑

k=0

f(xk) +R2n+1[f ], (1.1)
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with the nodes

xk = x0 +
2kπ

2n+ 1
, k = 0, 1, . . . , 2n,

where 0 ≤ x0 < 2π/(2n+1). Formula (1.1) is exact for every trigonometric
polynomial of degree at most 2n (cf. [14]). Such kind of quadratures are
known as quadrature formulas of Gaussian type and they have applications
in numerical integration of 2π-periodic functions. A brief historical survey
of available approaches for the construction of quadrature formulas with
maximal trigonometric degree of exactness can be found in [9].

Two special cases of the quadrature formula (1.1) for which x0 = 0
and x0 = π/(2n+1) are very interesting in applications. The corresponding
quadrature sums on the right hand side of (1.1) in these cases, we will denote
by

QT
2n+1(f) =

2π

2n+ 1

2n∑

k=0

f

(
2kπ

2n+ 1

)
(1.2)

and

QM
2n+1(f) =

2π

2n+ 1

2n∑

k=0

f

(
(2k + 1)π

2n + 1

)
, (1.3)

respectively. Some details on QT
2n+1(f) and its applications in the trigono-

metric approximation can be found in [8, Chap. 3]. The second formula
QM

2n+1(f) has been recently analyzed in [9].

If we put h = 2π/(2n + 1) and fα ≡ f(αh), we can write these formulas
(1.1) and (1.3) in the forms

QT
2n+1(f) = h

{
1

2
f0 + f1 + · · ·+ f2n +

1

2
f2n+1

}

and
QM

2n+1(f) = h
{
f1/2 + f3/2 + · · ·+ f2n + f2n+1/2

}
,

where, because of periodicity, we introduced f2n+1 = f(2π) = f(0) = f0. As
we can see, quadratures (1.2) and (1.3) are symmetric with respect to the
point x = π, and they are, in fact, the composite trapezoidal and midpoint

rules, respectively.
In this short note we prove that these two trigonometric quadrature rules

are equlvalent to the trigonometric version of the Gauss-Radau formulas
with respect to the Chebyshev weight of the first kind on (−1, 1). The
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paper is organized as follows. In Section 2 we mention classical results of
Stieltjes [13] and Markov [7] on algebraic Gauss-Radau type quadratures
with respect to Chebyshev weights. The main result is given in Section 3.

2. Gaussian algebraic quadratures with respect to the Chebyshev weight

Let

w1(t) =
1√

1− t2
, w2(t) =

√
1− t2, w3(t) =

√
1 + t

1− t
, w4(t) =

√
1− t

1 + t

be Chebyshev weights of the first, second, third, and fourth kind, respec-
tively (cf. [1], [4], [8, p. 122]).

In a short note in 1884 Stieltjes [13] gave the explicit expressions for
algebraic Gaussian quadrature formulas for the Chebyshev weights w1, w2,
and w4, ∫ 1

−1
wν(t)g(t) dt = Qn,ν(g) +Rn,ν[g], (2.1)

where

Qn,1(g) =
π

n

n∑

k=1

g

(
cos

(2k − 1)π

2n

)
,

Qn,2(g) =
π

n+ 1

n∑

k=1

sin2
kπ

n+ 1
g

(
cos

kπ

n+ 1

)
,

Qn,4(g) =
4π

2n+ 1

n∑

k=1

sin2
kπ

2n+ 1
g

(
cos

2kπ

2n+ 1

)
(2.2)

and Rn,ν(g) = 0 for all algebraic polynomials of degree at most 2n− 1.
The corresponding formula (2.1) for w3 can be obtained by changing

t := −t and using (2.2), so that
∫ 1

−1
w3(t)g(t) dt =

∫ 1

−1
w4(t)g(−t) dt = Qn,4(g(− · )) +Rn,3[g],

where

Qn,3(g) =
4π

2n+ 1

n∑

k=1

sin2
kπ

2n+ 1
g

(
− cos

2kπ

2n+ 1

)

=
4π

2n+ 1

n∑

k=1

cos2
(
π

2
− kπ

2n+ 1

)
g

(
cos

(
π − 2kπ

2n + 1

))
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and Rn,3(g( · )) = Rn,4(g(− · )).
After changing k := n− k + 1 in the previous quadrature sum, we get

Qn,3(g) =
4π

2n+ 1

n∑

k=1

cos2
(2k − 1)π

2(2n+ 1)
g

(
cos

(2k − 1)π

2n+ 1

)
. (2.3)

Shortly after Stieltjes’ results, Markov [7] obtained the explicit expres-
sions for Gauss-Radau formulas with respect to the Chebyshev weight of the
first kind (for each of the end points),

∫ 1

−1

g(t) dt√
1− t2

=
2π

2n+ 1

[
1

2
g(−1) +

n∑

k=1

g

(
cos

(2k − 1)π

2n+ 1

)]
+R

(−1)
n+1 [g]

(2.4)
and

∫ 1

−1

g(t) dt√
1− t2

=
2π

2n+ 1

[
1

2
g(1) +

n∑

k=1

g

(
cos

2kπ

2n+ 1

)]
+R

(+1)
n+1 [g], (2.5)

as well as the corresponding Gauss-Lobatto formula

∫ 1

−1

g(t) dt√
1− t2

=
π

n+ 1

[
1

2
g(−1) +

n∑

k=1

g

(
cos

kπ

n+ 1

)
+

1

2
g(1)

]
+RL

n+2[g].

Supposing g ∈ C2n+1[−1, 1], Markov [7] expressed the corresponding
error terms in the Gauss-Radau formulas as

R
(−ε)
n+1 [g] = ε

πg(2n+1)(ξ)

(2n + 1)!22n
, −1 < ξ < 1,

where ε = ±1. Also, if g ∈ C2n+2[−1, 1] he found the expression for the
Gauss-Lobatto formula in the form

RL
n+2[g] = − πg(2n+2)(ξ)

(2n+ 2)!22n+1
, −1 < ξ < 1.

These formulas for remainder terms are of little practical use, because
of the higher-order derivative that contains.

The remainder terms of Gauss-Lobatto and Gauss-Radau quadratures
for analytic functions were estimated by Gautschi [2]. For analytic functions
in |z| < r and continuous on

Cr =
{
z ∈ C : |z| = r

}
, r > 1,
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for the Gauss-Radau formulae (2.4) and (2.5), Gauutschi [2] proved that

|Rε
n+1[g]| ≤ r

(
max
z∈Cr

|Kn+1(z)|
)(

max
z∈Cr

|f(z)|
)
, (2.6)

where the maximum of the kernel Kn+1 can be expressed in the form

max
z∈Cr

|Kn+1(z)| = |Kn+1(−r)| = 4π

R−R−1
· 1

R2n+1 − 1
,

where R = r+
√
r2 − 1. The first approach of this type for Gaussian quadra-

tures was developed by Gautschi and Varga [5] (see also [6]).
Recently Notaris [10] has computed or, if that is not possible, estimated

the norm of the error term in the Gauss-Radau formulas for all Cheby-
shev weights wν , ν = 1, 2, 3, 4. His equivalent result for the Gauss-Radau
quadrature rules (2.4) and (2.5)is given by

||R(±1)
n+1 [g]|| =

2πrτ2n+1

(1− τ2n+1)
√
r2 − 1

, n ≥ 1,

where τ = r −
√
r2 − 1. Notice that Rτ = 1.

Remark 2.1. In [3] Gautschi obtained explicit expressions for the
weights of the Gauss-Radau quadrature formula for integration over the in-
terval [−1, 1] relative to the Jacobi weight function wα,β(t) = (1−t)α(1+t)β,
α, β > −1, i.e.,

∫ 1

−1
g(t)wα,β(t) dt = λα,β

0 g(−1) +

n∑

k=1

λα,β
k f(τα,βk ) + R̃n+1[g],

in the form

λα,β
0 =

2α+β+1Γ(β + 1)
(n+ β + 1

n

)
Γ(n+ α+ 1)

Γ(n+ α+ β + 2)

and

λα,β
k =

2α+β

n+ β + 1

Γ(n+ α+ 1)Γ(n + β + 1)

Γ(n+ 1)Γ(n + α+ β + 2)

1− τk

[P
(α,β)
n (τk)]2

, k = 1, . . . , n.

Here τk = τα,βk are the zeros of the Jacobi polynomialP
(α,β+1)
n (t) (cf. [8,

p. 329]).
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3. Main result

In this section we prove that the trigonometric quadrature rules (1.3)
and (1.2) can be obtained directly by applying the (algebraic) Gauss-Radau
quadrature formulas with respect to the Chebyshev weight function of the
first kind on (−1, 1).

Proposition 3.1. Trigonometric quadrature formula (1.3) is equlvalent

to the trigonometric version of the Gauss-Radau formula (2.4), relative to

the Chebyshev weight of the first kind and with a fixed node at the end-

point −1.

Proof. First, we transform the integral of a 2π-periodic function over
[0, 2π] to an integral with respect to the Chebyshev weight function of the
first kind on (−1, 1),

∫ 2π

0
f(x) dx =

∫ π

0
[f(x) + f(2π − x)] dx

=

∫ 1

−1
[f(arccos t) + f(2π − arccos t)]

dt√
1− t2

. (3.1)

Now, if we apply the Gauss-Radau formula (2.4) to the last integral in (3.1),
we get

∫ 2π

0

f(x) dx =
2π

2n+ 1

{
1

2
· 2f(π) +

n∑

k=1

[
f

(
(2k − 1)π

2n+ 1

)
+ f

(
2π − (2k − 1)π

2n+ 1

)]}

+R
(−1)
n+1 [f(arccos(·)) + f(2π − arccos(·))].

Define the nodes xMk by

xMk =
(2k + 1)π

2n+ 1
, k = 0, 1, . . . , 2n.

It is easy to see that xMn = π, as well as the following sums

n∑

k=1

f

(
(2k − 1)π

2n+ 1

)
=

n−1∑

k=0

f(xMk ),
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n∑

k=1

f

(
2π − (2k − 1)π

2n + 1

)
=

n∑

k=1

(
(2(2n − k + 1) + 1)π

2n+ 1

)

=

n∑

k=1

f(xM2n−k+1)

=
2n∑

k=n+1

f(xMk ),

so that
∫ 2π

0
f(x) dx =

2π

2n+ 1

2n∑

k=0

f(xMk ) +RM
2n+1[f ],

i.e., ∫ 2π

0
f(x) dx = QM

2n+1(f) +RM
2n+1[f ],

where

RM
2n+1[f ] = R

(−1)
n+1 [f(arccos(·)) + f(2π − arccos(·))]

is the corresponding error term. ✷

Proposition 3.2. Trigonometric quadrature formula (1.2) is equlvalent
to the trigonometric version of the Gauss-Radau formula (2.5), relative to

the Chebyshev weight of the first kind and with a fixed node at the endpoint 1.

Proof. In order to prove this result we apply now the Gauss-Radau
formula (2.5) to the last integral in (3.1). Then we obtain

∫ 2π

0

f(x) dx =
2π

2n+ 1

{
1

2
(f(0) + f(2π)) +

n∑

k=1

[
f

(
2kπ

2n+ 1

)
+ f

(
2π − 2kπ

2n+ 1

)]}

+R
(+1)
n+1 [f(arccos(·)) + f(2π − arccos(·))].

Introduce now the nodes xTk as

xTk =
2kπ

2n + 1
, k = 0, 1, . . . , 2n.
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We see that xT0 = 0,

n∑

k=1

f

(
2kπ

2n+ 1

)
=

n∑

k=1

f(xTk ),

n∑

k=1

f

(
2π − 2kπ

2n+ 1

)
=

n∑

k=1

(
2(2n − k + 1)π

2n + 1

)

=

n∑

k=1

f(xT2n−k+1)

=
2n∑

k=n+1

f(xTk ),

and then, because of 2π-periodicity of f (f(0) = f(2π)), we have

∫ 2π

0
f(x) dx =

2π

2n + 1

2n∑

k=0

f(xTk ) +RT
2n+1[f ],

i.e., ∫ 2π

0
f(x) dx = QT

2n+1(f) +RT
2n+1[f ],

where

RT
2n+1[f ] = R

(+1)
n+1 [f(arccos(·)) + f(2π − arccos(·))]

is the corresponding error term. ✷

An error estimate of RM
2n+1[f ] in the form

|RM
2n+1[f ]| ≤

2π

r2n+1 − 1

(
max
z∈Cr

|f(z)|
)
,

for analytic functions in a disk |z| ≤ r, r > 1, can be found in [12] and [11].
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Math. Ann. 25 (1885), 427–432.
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