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1. Introduction

The Euler-Maclaurin summation formula plays an important role in the
broad area of numerical analysis, analytic number theory, and the theory
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of asymptotic expansions, as well as in many applications in other fields.
In connection with the so-called Basel problem (or in modern terminology,
with determining ζ(2)), in 1732 Leonhard Euler discovered this formula,

n∑
k=0

f(k) =

∫ n

0
f(x) dx+

1

2
(f(0) + f(n))

+
r∑

j=1

B2j

(2j)!

[
f (2j−1)(n)− f (2j−1)(0)

]
+Er(f), (1.1)

which holds for any n, r ∈ N and f ∈ C2r[0, n], where B2j are Bernoulli
numbers (B0 = 1, B1 = −1/2, B2 = 1/6, B3 = 0, B4 = −1/30, . . .). This
formula was also found independently by Maclaurin. While in Euler’s case
the formula (1.1) was applied for computing slowly converging infinite series,
in the second one Maclaurin used it to calculate integrals. A history of this
formula was given by Barnes [3], and some details can be found in [19], [1],
[11], [12], [5].

Bernoulli numbers Bn, n = 0, 1, . . ., can be expressed as values at zero
of the corresponding Bernoulli polynomials, which are defined by the gener-
ating function

text

et − 1
=

∞∑
j=0

Bj(x)t
j

j!
.

Bernoulli polynomials play a similar role in numerical analysis and approx-
imation theory like orthogonal polynomials. First few polynomials are

B0(x) = 1, B1(x) = x− 1

2
, B2(x) = x2 − x+

1

6
, B3(x) = x3 − 3x2

2
+

x

2
,

B4(x) = x4 − 2x3 + x2 − 1

30
, B5(x) = x5 − 5x4

2
+

5x3

3
− x

6
, etc.

Some interesting properties of these polynomials are

B′
n(x) = nBn−1(x), Bn(1− x) = (−1)nBn(x),

∫ 1

0
Bn(x) dx = 0 (n ∈ N).

The error term Er(f) in (1.1) can be expressed in the form (cf. [5])

Er(f) = (−1)r
+∞∑
k=1

∫ n

0

ei2πkt + e−i2πkt

(2πk)2r
f (2r)(x) dx,
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or in the form

Er(f) = −
∫ n

0

B2r(x− ⌊x⌋)
(2r)!

f (2r)(x) dx, (1.2)

where ⌊x⌋ denotes the largest integer that is not greater than x. Supposing
f ∈ C2r+1[0, n], after an integration by parts in (1.2) and recalling that the
odd Bernoulli numbers are zero, we get (cf. [14, p. 455])

Er(f) =

∫ n

0

B2r+1(x− ⌊x⌋)
(2r + 1)!

f (2r+1)(x) dx. (1.3)

If f ∈ C2r+2[0, n], using Darboux’s formula one can obtain (1.1), with

Er(f) =
1

(2r + 2)!

∫ 1

0
[B2r+2 −B2r+2(x)]

(n−1∑
k=0

f (2r+2)(k + x)

)
dx (1.4)

(cf. Whittaker & Watson [26, p. 128]). This expression for Er(f) can be
also derived from (1.3), writting it in the form

Er(f) =

∫ 1

0

B2r+1(x)

(2r + 1)!

(n−1∑
k=0

f (2r+1)(k + x)

)
dx

=

∫ 1

0

B′
2r+2(x)

(2r + 2)!

(n−1∑
k=0

f (2r+1)(k + x)

)
dx,

and then by an integration by parts, the last expression becomes[
B2r+2(x)

(2r + 2)!

(n−1∑
k=0

f (2r+1)(k + x)

)]1
0

−
∫ 1

0

B2r+2(x)

(2r + 2)!

(n−1∑
k=0

f (2r+2)(k + x)

)
dx.

Because of B2r+2(1) = B2r+2(0) = B2r+2, Er(f) can be represented in the
form (1.4).

Since (−1)r [B2r+2 −B2r+2(x)] ≥ 0 on [0, 1] and∫ 1

0
[B2r+2 −B2r+2(x)] dt = B2r+2,

according to the Second Mean Value Theorem for Integrals, there exists
η ∈ (0, 1) such that

Er(f) =
B2r+2

(2r + 2)!

(n−1∑
k=0

f (2r+2)(k+η)

)
= n

B2r+2

(2r + 2)!
f (2r+2)(ξ), 0 < ξ < n.

(1.5)
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Remark 1.1 The Euler-Maclaurin summation formula is implemented
in Mathematica as the function NSum with option Method -> Integrate.

Practicaly, the Euler-Maclaurin summation formula (1.1) is related with
the so-called composite trapezoidal rule,

Tnf :=
n∑

k=0

′′
f(k) =

1

2
f(0) +

n−1∑
k=1

f(k) +
1

2
f(n).

Namely,

Tnf − Inf =
r∑

j=1

B2j

(2j)!

[
f (2j−1)(n)− f (2j−1)(0)

]
+ ET

r (f), (1.6)

where Inf :=
∫ n
0 f(x) dx and the remainder term ET

r (f) is given by (1.5) if
the function f belongs to C2r+2[0, n].

Similarly, for a quadrature sum with values of the function f at the
points x = k + 1

2 , k = 0, 1, . . . , n− 1, i.e., for the midpoint rule

Mnf :=
n−1∑
k=0

f
(
k +

1

2

)
,

there exists the so-called second Euler-Maclaurin summation formula

Mnf − Inf =
r∑

j=1

(21−2j − 1)B2j

(2j)!

[
f (2j−1)(n)− f (2j−1)(0)

]
+ EM

r (f), (1.7)

for which

EM
r (f) = n

(2−1−2r − 1)B2r+2

(2r + 2)!
f (2r+2)(ξ), 0 < ξ < n,

when f ∈ C2r+2[0, n] (cf. [20, p. 157]).

The both formulas, (1.6) and (1.7), can be unified as

Qnf − Inf =
r∑

j=1

B2j(τ)

(2j)!

[
f (2j−1)(n)− f (2j−1)(0)

]
+EQ

r (f),

where τ = 0 for Qn ≡ Tn and τ = 1/2 for Qn ≡ Mn. It is true, because of
the fact that [24, p. 765] (see also [7])

Bj(0) = Bj and Bj

(1
2

)
= (21−j − 1)Bj .
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If we take a combination of Tnf and Mnf as Qnf = Snf = 1
3(Tnf +

2Mnf), which is, in fact, the well-known classical composite Simpson rule,

Snf :=
1

3

[
1

2
f(0) +

n−1∑
k=1

f(k) + 2
n−1∑
k=0

f
(
k +

1

2

)
+

1

2
f(n)

]
,

we obtain

Snf − Inf =
r∑

j=2

(41−j − 1)B2j

3(2j)!

[
f (2j−1)(n)− f (2j−1)(0)

]
+ ES

r (f). (1.8)

Notice that the summation on the right hand-side in the previous equality
starts with j = 2, because the term for j = 1 vanishes. For f ∈ C2r+2[0, n]
it can be proved that there exists ξ ∈ (0, n), such that

ES
r (f) = n

(4−r − 1)B2r+2

3(2r + 2)!
f (2r+2)(ξ).

Some periodic analogues of the Euler-Maclaurin formula with applica-
tions to number theory have been developed by Berndt and Schoenfeld [4].
In the last section of [4], they showed how the composite Newton-Cotes
quadrature formulas (Simpson’s parabolic and Simpson’s three-eighths rules),
as well as various other quadratures (e.g., Weddle’s composite rule), can be
derived from special cases of their periodic Euler-Maclaurin formula, includ-
ing explicit formulas for the remainder term. Also, in the papers [8], [23],
[25], the authors considered some generalizations of the Euler-Maclaurin for-
mula for some particular Newton-Cotes rules, as well as for 2- and 3-point
Gauss-Legendre and Lobatto formulas (see also [2], [9], [16], [17]).

A recent progress in variable-precision arithmetic and symbolic compu-
tation has enabled a development of symbolic/variable-precision software
for orthogonal polynomials and quadratures of Gaussian type, as well as
for their many generalizations. The corresponding software is available to-
day (Gautschi’s package SOPQ in Matlab (cf. [21]) and our Mathematica
package OrthogonalPolynomials [6], [22]).

Using this advantage in this paper we give extensions of Euler-Maclaurin
formulae by replacing Qn by the composite Gauss-Legendre shifted formula,
as well as by its Lobatto modification. Several special cases were obtained
by using our Mathematica package OrthogonalPolynomials.
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2. Euler-Maclaurin formula based on the composite Gauss-Legendre
formula

Let wν = wG
ν and τν = τGν , ν = 1, . . . ,m, be weights (Christoffel num-

bers) and nodes of the Gauss-Legendre quadrature formula on [0, 1],∫ 1

0
f(x) dx =

m∑
ν=1

wG
ν f(τ

G
ν ) +RG

m(f), (2.1)

where the nodes τν are zeros of the shifted (monic) Legendre polynomial

πm(x) =

(
2m

m

)−1

Pm(2x− 1).

Degree of its algebraic precision is d = 2m − 1, i.e., RG
m(f) = 0 for all

algebraic polynomials of degree ≤ 2m− 1. The quadrature sum in (2.1) we
denote by QG

mf , i.e.,

QG
mf =

m∑
ν=1

wG
ν f(τ

G
ν ).

A characterization of the Gaussian quadrature (2.1) can be done via an
eigenvalue problem for the symmetric tridiagonal Jacobi matrix (cf. [18,
p. 326]),

Jm =



α0
√
β1 O

√
β1 α1

√
β2

√
β2 α2

. . .
. . .

. . .
√
βm−1

O
√
βm−1 αm−1


, (2.2)

constructed with the three-term recurrence coefficients,

αk = 1/2, βk =
1

16
· 1

1− (2k)−2
, k ∈ N.

The nodes τν = τGν are the eigenvalues of Jm and the weights wG
ν are given

by wG
ν = β0v

2
ν,1, ν = 1, . . . ,m, where β0 = µ0 =

∫ 1
0 dx = 1 and vν,1 is the

first component of the normalized eigenvector vν = [vν,1 · · · vν,m]T (with
vν

Tvν = 1) corresponding to the eigenvalue τν ,

Jmvν = τνvν , ν = 1, . . . ,m.
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Golub and Welsch [13] gave an efficient procedure for constructing the
Gaussian quadrature rules by simplifying the well-known QR algorithm so
that only the first components of the eigenvectors are computed. Such a
procedure is implemented in several programming packages including the
most known ORTHPOL given by Gautschi [10], as well as in the previous
mentioned packages SOPQ (in Matlab) and OrthogonalPolynomials (in
Mathematica).

The corresponding composite Gauss-Legendre sum for approximating
Inf :=

∫ n
0 f(x) dx can be expressed in the form

G(n)
m f =

n−1∑
k=0

QG
mf(k + ·) =

m∑
ν=1

wG
ν

n−1∑
k=0

f(k + τGν ). (2.3)

In the sequel we use the following expansion of a function f ∈ Cs[0, 1]
in Bernoulli polynomias for any x ∈ [0, 1] (see Krylov [15, p. 15])

f(x) =

∫ 1

0
f(t) dt+

s−1∑
j=1

Bj(x)

j!

[
f (j−1)(1)− f (j−1)(0)

]
− 1

s!

∫ 1

0
f (s)(t)Ls(x, t) dt,

(2.4)
where Ls(x, t) = B∗

s (x − t) − B∗
s (x) and B∗

s (x) is a function of period one,
defined by

B∗
s (x) = Bs(x), 0 ≤ x < 1, B∗

s (x+ 1) = B∗
s (x). (2.5)

Notice that B∗
0(x) = 1, B∗

1(x) is a discontinuous function with a jump of −1
at each integer, and B∗

s (x), s > 1, is a continuous function.
Now, we can prove the following composite formula for the integral Inf =∫ n

0 f(t) dt.

Theorem 2.1 For n,m, r ∈ N (m ≤ r) and f ∈ C2r[0, n] we have

G(n)
m f − Inf =

r∑
j=m

QG
m(B2j)

(2j)!

[
f (2j−1)(n)− f (2j−1)(0)

]
+ EG

n,m,r(f), (2.6)

where G
(n)
m f is given by (2.3), and QG

mB2j denotes the basic Gauss-Legendre
quadrature sum applied to the Bernoulli polynomial x 7→ B2j(x), i.e.,

QG
m(B2j) =

m∑
ν=1

wG
ν B2j(τ

G
ν ) = −RG

m(B2j), (2.7)
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where RG
m(f) is the remainder term in (2.1).

If f ∈ C2r+2[0, n] then there exists ξ ∈ (0, n), such that the error term
in (2.6) can be expressed in the form

EG
n,m,r(f) = n

QG
m(B2r+2)

(2r + 2)!
f (2r+2)(ξ). (2.8)

P r o o f. Suppose that f ∈ C2r[0, n], where r ≥ m.
Since the all nodes τν = τGν , ν = 1, . . . ,m, of the Gaussian rule (2.1)

belong to (0, 1), using (2.4) with x = τν and s = 2r + 1, we have

f(τν) = I1f +
2r∑
j=1

Bj(τν)

j!

[
f (j−1)(1)− f (j−1)(0)

]
− 1

(2r + 1)!

∫ 1

0
f (2r+1)(t)L2r+1(τν , t) dt,

from which, by multiplying by wν = wG
ν and summing in ν from 1 to m, we

get

m∑
ν=1

wνf(τν) =

( m∑
ν=1

wν

)∫ 1

0
f(t) dt

+
2r∑
j=1

1

j!

( m∑
ν=1

wνBj(τν)

) [
f (j−1)(1)− f (j−1)(0)

]

− 1

(2r + 1)!

∫ 1

0
f (2r+1)(t)

( m∑
ν=1

wνL2r+1(τν , t)

)
dt,

i.e.,

QG
mf = QG

m(1)

∫ 1

0
f(t) dt+

2r∑
j=1

QG
m(Bj)

j!

[
f (j−1)(1)− f (j−1)(0)

]
+ EG

m,r(f),

where

EG
m,r(f) = − 1

(2r + 1)!

∫ 1

0
f (2r+1)(t)QG

m (L2r+1( · , t)) dt.

Since ∫ 1

0
Bj(x) dx =

{
1, j = 0,

0, j ≥ 1,
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and

QG
m(Bj) =

m∑
ν=1

wνBj(τν) =

{
1, j = 0,

0, 1 ≤ j ≤ 2m− 1,

because the Gauss-Legendre formula is exact for all algebraic polynomials
of degree at most 2m− 1, the previous formula becomes

QG
mf −

∫ 1

0
f(t) dt =

2r∑
j=2m

QG
m(Bj)

j!

[
f (j−1)(1)− f (j−1)(0)

]
+ EG

m,r(f). (2.9)

Notice that for Gauss-Legendre nodes and weights the following equali-
ties

τν + τm−ν+1 = 1, wν = wm−ν+1 > 0, ν = 1, . . . ,m,

hold, as well as

wνBj(τν) + wm−ν+1Bj(τm−ν+1) = wνBj(τν)(1 + (−1)j),

which is equal to zero for odd j. Also, if m is odd, then τ(m+1)/2 = 1/2 and
Bj(1/2) = 0 for each odd j. Thus, the quadrature sum

QG
m(Bj) =

m∑
ν=1

wνBj(τν) = 0

for odd j, so that (2.9) becomes

QG
mf −

∫ 1

0
f(t) dt =

r∑
j=m

QG
m(B2j)

(2j)!

[
f (2j−1)(1)− f (2j−1)(0)

]
+ EG

m,r(f).

(2.10)
Now, for the (shifted) composite Gauss-Legendre formula we have

G(n)
m f − Inf =

n−1∑
k=0

[
QG

mf(k + · )−
∫ k+1

k
f(t) dt

]

=
n−1∑
k=0

[
QG

mf(k + · )−
∫ 1

0
f(k + x) dx

]
.

Finally, using (2.10) we obtain

G(n)
m f − Inf =

n−1∑
k=0


r∑

j=m

QG
m(B2j)

(2j)!

[
f (2j−1)(k + 1)− f (2j−1)(k)

]
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+EG
m,r(f(k + · ))

}
=

r∑
j=m

QG
m(B2j)

(2j)!

[
f (2j−1)(n)− f (2j−1)(0)

]
+ EG

n,m,r(f),

where EG
n,m,r(f) is given by

EG
n,m,r(f) = − 1

(2r + 1)!

∫ 1

0

(n−1∑
k=0

f (2r+1)(k + t)

)
QG

m (L2r+1( · , t)) dt. (2.11)

Since L2r+1(x, t) = B∗
2r+1(x− t)−B∗

2r+1(x) and

B∗
2r+1(τν) = B2r+1(τν), B∗

2r+1(τν − t) = − 1

2r + 2

d

dt
B∗

2r+2(τν − t),

we have

QG
m (L2r+1( · , t)) = QG

m

(
B∗

2r+1( · − t)
)
−QG

m

(
B∗

2r+1( · )
)

= − 1

2r + 2
QG

m

(
d

dt
B∗

2r+2( · − t)

)
,

because QG
m (B2r+1( · )) = 0. Then for (2.11) we get

(2r + 2)!EG
n,m,r(f) =

∫ 1

0

(n−1∑
k=0

f (2r+1)(k + t)

)
QG

m

(
d

dt
B∗

2r+2( · − t)

)
dt.

By using an integration by aprts, the right-hand side reduces to

RHS = F (t)QG
m

(
B∗

2r+2( · − t)
) ∣∣∣1

0
−
∫ 1

0
QG

m

(
B∗

2r+2( · − t)
)
F ′(t) dt,

where

F (t) =
n−1∑
k=0

f (2r+1)(k + t).

Since B∗
2r+2(τν − 1) = B∗

2r+2(τν) = B2r+2(τν), we have

F (t)QG
m

(
B∗

2r+2( · − t)
) ∣∣∣1

0
= (F (1)− F (0))QG

m

(
B∗

2r+2( · )
)

= QG
m (B2r+2( · ))

∫ 1

0
F ′(t) dt,
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so that

RHS =

∫ 1

0

[
QG

m (B2r+2( · ))−QG
m

(
B∗

2r+2( · − t)
)]

F ′(t) dt.

Since

(−1)r−mQG
m

[
B2r+2( · )−B∗

2r+2( · − t)
]
> 0, 0 < t < 1, (2.12)

there exists an η ∈ (0, 1) such that

RHS = F ′(η)

∫ 1

0
QG

m

[
B2r+2( · )−B∗

2r+2( · − t)
]
dt.

Because of continuity of f (2r+2) on [0, n] we conclude that there exists also
ξ ∈ (0, n) such that F ′(η) = nf (2r+2)(ξ).

Because of
∫ 1
0 QG

m

[
B∗

2r+2( · − t)
]
dt = 0, we finally obtain that

(2r + 2)!EG
n,m,r(f) = nf (2r+2)(ξ)

∫ 1

0
QG

m [B2r+2( · )] dt,

i.e., (2.8). 2

Remark 2.1 Let gGm,r(t) be the left-hand side in (2.12). Typical graphs

of functions gGm,r(t) for some selected values of r ≥ m ≥ 1 are presented in
Figure 2.1.

Now we consider some special cases of the formula (2.6) for some typical
values of m. For a given m, by G(m) we denote the sequence of coefficients
which appear in the sum on the right-hand side in (2.6), i.e.,

G(m) = {QG
m(B2j)}∞j=m =

{
QG

m(B2m), QG
m(B2m+2), Q

G
m(B2m+4), . . .

}
.

These Gaussian sums we can calculate very easy by using Mathematica
Package OrthogonalPolynomials. In the sequel we mention cases when
1 ≤ m ≤ 7.

Case m = 1. Here τG1 = 1/2 and wG
1 = 1, so that, according to (2.7),

QG
1 (B2j) = B2j(1/2) = (21−2j − 1)B2j ,

and (2.6) reduces to (1.7). Thus,

G(1) =

{
− 1

12
,

7

240
,− 31

1344
,
127

3840
,− 2555

33792
,
1414477

5591040
,−57337

49152
,
118518239

16711680
, . . .

}
.
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Fig. 2.1. Graphs of t 7→ gGm,r(t), r = m (solid line), r = m + 1 (dashed line), and

r = m+ 2 (dotted line), when m = 1, m = 2 (top), and m = 3, m = 4 (bottom)

Case m = 2. Here

τG1 =
1

2

(
1− 1√

3

)
, τG2 =

1

2

(
1 +

1√
3

)
and wG

1 = wG
2 =

1

2
,

so that

QG
2 (B2j) =

1

2

(
B2j(τ

G
1 ) +B2j(τ

G
2 )
)
= B2j(τ

G
1 ).

In this case, the sequence of coefficients is

G(2)=

{
− 1

180
,

1

189
,− 17

2160
,

97

5346
,− 1291411

21228480
,
16367

58320
,−243615707

142767360
, . . .

}
.

Case m = 3. Here

τG1 =
1

10

(
5−

√
15
)
, τG2 =

1

2
, τG3 =

1

10

(
5 +

√
15
)

wG
1 =

5

18
, wG

2 =
4

9
, wG

3 =
5

18
,

so that

QG
3 (B2j) =

5

9
B2j(τ

G
1 ) +

4

9
B2j(τ

G
2 )
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and

G(3) =

{
− 1

2800
,

49

72000
,− 8771

5280000
,

4935557

873600000
,− 15066667

576000000
,
3463953717

21760000000
, . . .

}
.

Case m = 4. The corresponding sequence of coefficients is

G(4)=

{
− 1

44100
,

41

565950
,− 3076

11704875
,

93553

75631500
,− 453586781

60000990000
, . . .

}
.

Case m = 5. Here

G(5)=

{
− 1

698544
,

205

29719872
,− 100297

2880541440
,

76404959

352578272256
, . . .

}
.

Case m = 6. Here

G(6)=

{
− 1

11099088
,

43

70436520
,− 86221

21074606784
,

147502043

4534139665440
, . . .

}
.

Case m = 7. Here

G(7) =

{
− 1

176679360
,

1603

31236910848
,− 14669711

33282622264320
,+

5003171345

1147724953030656
, . . .

}
.

3. Euler-Maclaurin formula based on the composite Lobatto formula

We can also consider the corresponding Gauss-Lobatto quadrature for-
mula ∫ 1

0
f(x) dx =

m+1∑
ν=0

wL
ν f(τ

L
ν ) +RL

m(f), (3.1)

with the nodes τ0 = τL0 = 0, τm+1 = τLm+1 = 1, and others internal nodes
τν = τLν , ν = 1, . . . ,m, which are zeros of the shifted (monic) Jacobi poly-
nomial,

πm(x) =

(
2m+ 2

m

)−1

P (1,1)
m (2x− 1),

orthogonal on the interval (0, 1) with respect to the weight function x 7→
x(1−x). Degree of its algebraic precision is d = 2m+1, i.e., RL

m(f) = 0 for
all algebraic polynomials of degree ≤ 2m+ 1.
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In construction of the Gauss-Lobatto formula

QL
m(f) =

m+1∑
ν=0

wL
ν f(τ

L
ν ), (3.2)

we can use parameters of the corresponding Gaussian formula∫ 1

0
g(x)x(1− x) dx =

m∑
ν=1

ŵG
ν g(τ̂

G
ν ) + R̂G

m(g),

which can be calculated from an eigenvalue problem for the symmetric tridi-
agonal Jacobi matrix (2.2), in this case, with the three-term recurrence co-
efficients,

α̂k = 1/2, β̂k =
1

4
· k(k + 2)

(2k + 1)(2k + 3)
, k ∈ N.

The nodes of the Gauss-Lobatto quadrature formula (3.1) are τL0 = 0,
τLν = τ̂Gν , ν = 1, . . . ,m, τLm+1 = 1, and the corresponding weights (cf. [18,
pp. 330–331]) are

wL
ν =

ŵG
ν

τ̂Gν (1− τ̂Gν )
, ν = 1, . . . ,m,

and

wL
0 =

1

2
−

m∑
ν=1

ŵG
ν

τ̂Gν
, wL

m+1 =
1

2
−

m∑
ν=1

ŵG
ν

1− τ̂Gν
.

The corresponding composite rule is

L(n)
m f =

n−1∑
k=0

QL
mf(k + ·) =

m+1∑
ν=0

wL
ν

n−1∑
k=0

f(k + τLν ),

i.e.,

L(n)
m f = (wL

0 + wL
m+1)

n∑
k=0

′′
f(k) +

m∑
ν=1

wL
ν

n−1∑
k=0

f(k + τLν ). (3.3)

As in the Gauss-Legendere case, there exists a symmetry of nodes and
weights, i.e.,

τLν + τLm+1−ν = 1, wL
ν = wL

m+1−ν > 0, ν = 0, 1, . . . ,m+ 1,

so that the Gauss-Lobatto quadrature sum

QL
m(Bj) =

m+1∑
ν=0

wL
ν Bj(τ

L
ν ) = 0
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for each odd j.
Using the same arguments as before, we can state and prove the following

result.

Theorem 3.1 For n,m, r ∈ N (m ≤ r) and f ∈ C2r[0, n] we have

L(n)
m f − Inf =

r∑
j=m+1

QL
m(B2j)

(2j)!

[
f (2j−1)(n)− f (2j−1)(0)

]
+EL

n,m,r(f), (3.4)

where L
(n)
m f is given by (3.3), and QL

mB2j denotes the basic Gauss-Lobatto
quadrature sum (3.2) applied to the Bernoulli polynomial x 7→ B2j(x), i.e.,

QL
m(B2j) =

m+1∑
ν=0

wL
ν B2j(τ

L
ν ) = −RL

m(B2j),

where RL
m(f) is the remainder term in (3.1).

If f ∈ C2r+2[0, n] then there exists ξ ∈ (0, n), such that the error term
in (3.4) can be expressed in the form

EL
n,m,r(f) = n

QL
m(B2r+2)

(2r + 2)!
f (2r+2)(ξ).

Remark 3.1 As in Remark 2.1 we have gLm,r(t) > 0 for 0 < t < 1, where

gLm,r(t) := (−1)r−mQL
m

[
B2r+2( · )−B∗

2r+2( · − t)
]
.

Typical graphs of gLm,r(t) for some selected values of r ≥ m + 1 ≥ 1 are
presented in Figure 3.1.

In the sequel we give the sequence of coefficients L(m) which appear in
the sum on the right-hand side in (3.4), i.e.,

L(m) = {QL
m(B2j)}∞j=m+1 =

{
QL

m(B2m+2), Q
L
m(B2m+4), Q

L
m(B2m+6), . . .

}
,

obtained by using Mathematica Package OrthogonalPolynomials, for
some typical values of m.

Case m = 0. This is a case of the standard Euler-Maclaurin formula
(1.1), for which τL0 = 0 and τL1 = 1, with wL

0 = wL
1 = 1/2. The sequence of

coefficients is

L(0) =

{
1

6
,− 1

30
,
1

42
,− 1

30
,
5

66
,− 691

2730
,
7

6
,−3617

510
,
43867

798
,−174611

330
,
854513

138
, . . .

}
,
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Fig. 3.1. Graphs of t 7→ gLm,r(t), r = m+1 (solid line), r = m+2 (dashed line), and

r = m+ 3 (dotted line), when m = 0, m = 1 (top), and m = 2, m = 3 (bottom)

which is, in fact, the sequence of Bernoulli numbers {B2j}∞j=1.

Case m = 1. In this case τL0 = 0, τL1 = 1/2, and τ2 = 1, with the
corresponding weights wL

0 = 1/6, wL
1 = 2/3, and wL

2 = 1/6, which is, in
fact, the Simpson formula (1.8). The sequence of coefficients is

L(1) =

{
1

120
,− 5

672
,

7

640
,− 425

16896
,
235631

2795520
,−3185

8192
,
19752437

8355840
,−958274615

52297728
, . . .

}
.

Case m = 2. Here

τL0 = 0, τL1 =
1

10
(5−

√
5), τL2 =

1

10
(5 +

√
5), τL3 = 1

and wL
0 = wL

3 = 1/12, wL
1 = wL

2 = 5/12, and the sequence of coefficients is

L(2) =

{
1

2100
,− 1

1125
,

89

41250
,− 25003

3412500
,
3179

93750
,− 2466467

11953125
,
997365619

623437500
, . . .

}
.

Case m = 3. Here

τL0 = 0, τL1 =
1

14
(7−

√
31), τL2 =

1

2
, τL3 =

1

14
(7 +

√
31), τL4 = 1
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and

wL
0 =

1

20
, wL

1 =
49

180
, wL

2 =
16

45
, wL

3 =
49

180
, wL

4 =
1

20
,

and the sequence of coefficients is

L(3) =

{
1

35280
,− 65

724416
,

38903

119857920
,− 236449

154893312
,

1146165227

122882027520
, . . .

}
.

Case m = 4. The corresponding sequence of coefficients is

L(4) =

{
1

582120
,− 17

2063880
,

173

4167450
,− 43909

170031960
,

160705183

79815002400
, . . .

}
.

Case m = 5. Here

L(5) =

{
1

9513504
,− 49

68999040
,

5453

1146917376
,− 671463061

17766424811520
, . . .

}
.

Case m = 6. In this case the corresponding sequence of coefficients is

L(6) =

{
1

154594440
,− 50

854134281
,

16331

32502560805
,− 19490189

3922888023054
, . . .

}
.

Case m = 7. Here

L(7) =

{
1

2502957600
,− 29

6216496000
,

89209

1786424640000
,− 776272933

1291329811200000
, . . .

}
.
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