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Weighted Interpolation of Functions with
Isolated Singularities

G. Mastroianni and G. V. Milovanović ∗

We consider the weighted interpolation of functions with isolated singu-
larities on bounded and unbounded intervals. The cases in the weighted
Lp-norm (1 ≤ p < +∞) and also in the uniform weighted norm are
considered. Numerical examples are included.

1. Introduction

The weighted polynomial approximation of continuous functions or of smooth
functions with singular derivatives at some isolated points is of a theoretical in-
terest and often it proves to be useful in many applications. For example, such
functions occur as solutions of integral equations with discontinuous right hand
side. While there exists a wide literature about the polynomial approximation
of functions with singularities in the endpoints, the case of singular functions
with singularities at isolated points inside the interval have been studied only
recently ([1], [7], [8]).

The inner singularities add new difficulties and require a more careful ex-
amination of the behaviour of the approximating polynomial around these sin-
gularities.

In this paper we propose some interpolation processes for approximating
such functions in [−1, 1]. Some kind of necessary and sufficient conditions are
given for the convergence of such processes and the corresponding errors are
estimated in the uniform norm.

Also, we consider the case of functions which are defined almost everywhere
on the real semiaxis, are not bounded at 0 and +∞, and are not continuous
at some inner points. In this context we show that it sufficies to interpolate a
“finite section” of these functions, making economies on the computation and
obtaining the optimal error estimates.

A lot of numerical examples show the theoretical results with particular
attention to the behaviour of the error and of the weighted Lebesgue function.

∗Supported by the GNIM–INDAM, progetto speciale (Mastroianni) and by the Serbian
Ministry of Science, Technology and Development (Milovanović)



2 Weighted Interpolation

The paper is organized as follows. The basic facts on weighted approxima-
tion of functions with isolated singularities are studied in Section 2. Interpola-
tion processes on bounded and unbounded intervals are considered in Section 3
and the main results are stated there. Numerical examples are treated in Sec-
tion 4, and the proofs of the theorems from Section 3 are given in Section 5.

2. Basic Facts

Let u(x) = vγ,δ(x)|x − t0|θ be a generalized Jacobi weight with θ, γ, δ > 0,
|t0| < 1, and A := (−1, t0) ∪ (t0, 1). We denote by C0(A) the set of continuous
functions in A and introduce the space

L∞
u =

{
f ∈ C0(A): lim

x→±1

x→t0

(uf)(x) = 0
}
,

equipped with the norm

‖uf‖L∞
u

= ‖uf‖∞ = sup
|x|≤1

|(uf)(x)|.

The functions in L∞
u are in general unbounded in a neighborhood of ±1 and/or

t0. They can be smooth with singular derivatives at the aforementioned points.
For the sake of simplicity we have introduced only one interior point t0, but
a finite number of points of the same kind can be considered, whereas in this
case obvious modifications in the notations are needed.

For smoother functions in A we define the following Sobolev-type space

W∞
r =

{
f ∈ L∞

u : ‖f (r)ϕru‖∞ < +∞
}
, r ≥ 1, ϕ(x) =

√
1− x2.

In order to characterize the functions in L∞
u it is useful to introduce the

following modulus of continuity. Setting

‖·‖L∞
u (B) = ‖·‖B, B ⊂ A,

we define

Ωr
ϕ(f, t)u = sup

0<h≤t
‖u∆hϕf‖Ih ,

where

∆hϕf(x) =

r∑

k=0

(
r
k

)
(−1)kf

[
x+

(r
2
− k

)
h
√
1− x2

]

and

Ih = (−1 + 4r2h2, t0 − 4rh) ∪ (t0 + 4rh, 1− 4r2h2).
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Then, for any f ∈ L∞
u the modulus of continuity ωr

ϕ is defined as

ωr
ϕ(f, t)u = Ωr

ϕ(f, t)u +
2∑

k=0

inf
deg qk≤r

‖u(f − qk)‖Ik(t), (2.1)

where

I0 = [−1,−1 + 4r2t2], I1 = [t0 − 4rt, t0 + 4rt] , I2 = [1− 4r2t2, 1],

and t is “small” (say t < t0).
By ωr

ϕ(f, t)u we can characterize the functions in L∞
u in the following sense

f ∈ L∞
u ⇐⇒ lim

t→0
ωr
ϕ(f, t)u = 0.

Moreover, setting En(f)u = inf
p∈Pn

‖u(f − p)‖, it can be shown that (see [8])

En(f)u ≤ Cωr
ϕ(f, 1/n)u (2.2)

for any f ∈ L∞
u and for some positive constant C independent of n and f

(shortly C 6= C(n, f)).
For smoother functions in A = (−1, t0) ∪ (t0, 1), En(f)u can be estimated

as follows. Namely, setting

g(t) = sup
0<h≤t

hr‖f (r)ϕru‖Ih (2.3)

and
e(t) = inf

deg q≤r−1
‖(f − q)|t0 − · |θ‖[t0−4rt,t0+4rt], (2.4)

we have

En(f)u ≤ C
[∫ 1/n

0

g(t)

t
dt+

∫ 2/n

0

e(t)

t
dt

]
. (2.5)

Notice that if g(t) + e(t) ∼ tλ, 0 < λ < r, then also ωr
ϕ(f, t)u ∼ tλ (see [1]).

In this paper we consider also functions defined in R
+ = (0,∞) and sin-

gular in some interior point (say t0). We take the Laguerre weight w2γ(x) =
x2γ exp(−x), and set

u(x) =
√
w2γ(x) |x− t0|θ, θ, γ > 0.

Let C0
u be a collection of all continuous functions in Ã: = R

+\{t0}. Then, as
in the case of finite interval, we define the space

L∞
u =

{
f ∈ Ã: lim

x→0
x→t0

x→+∞

(uf)(x) = 0

}
,
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equipped with the norm

‖fu‖L∞
u

= ‖fu‖∞ = sup
x≥0

|(uf)(x)|.

For smoother functions we introduce the Sobolev-type space

W̃∞
r =

{
f ∈ L∞

u : ‖f (r)ϕru‖∞ < +∞
}
, r ≥ 0, ϕ(x) =

√
x.

In order to introduce an appropriate modulus of continuity, at first we
introduce the main part

Ωr
ϕ(f, t)u = sup

0<h≤t
‖u∆hϕf‖I∗

h
,

where ∆hϕ was defined before with ϕ(x) =
√
x, and

I∗h =
[
4r2h2, C/h2

]
\(t0 − 4rh, t0 + 4rh)

for some fixed C > 0.
The modulus of continuity of f ∈ L∞

u is defined as

ωr
ϕ(f, t)u = Ωr

ϕ(f, t)u + inf
deg q≤r

‖u(f − q)‖[0,4rt2]

+ inf
deg q≤r−1

‖u(f − q)‖[t0−4rt,t0+4rt] (2.6)

+ inf
deg q≤r

‖u(f − q)‖[ C/t2,+∞).

As was shown in ([2])

f ∈ L∞
u ⇐⇒ lim

t→0
ωr
ϕ(f, t)u = 0.

Besides, setting En(f)u = inf
p∈Pn

‖u(f − p)‖, we have

En(f)u ≤ Cωr
ϕ(f, 1/n)u (2.7)

for any f ∈ L∞
u and C 6= C(n, f).

As in the case of a finite interval, we can define

g∗(t) = sup
0<h≤t

hr‖f (r)ϕv‖I∗
h

and
e∗(t) = inf

deg q≤r
‖v(f − q)‖[t0−4rt,t0+4rt],

in order to obtain the following estimate

En(f)v ≤ C
[∫ 2/

√
n

0

g∗(t)

t
dt+

∫ 2/
√
n

0

e∗(t)

t
dt

]
. (2.8)
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The quantity ωr
ϕ(f, t)v can be replaced by the right-hand side of (2.8), when

the last one is of the order tλ, 0 < λ < r (see [2]).
In the sequel, it shall need the following lemma from [1]:

Lemma 2.1. Suppose that f is a function such that f (r−1) is absolutely

continuous in [t0 − a, t0 + a]\{t0} and ‖σf (r)‖[t0−a,t0+a] < +∞ for a small a
(say a < ā) and σ(x) = |x− t0|γ, γ > 0. Let |t| < a. If γ > r then

‖σf‖[−t,t] ≤ Ctr
[
‖σf (r)‖[t0−a,t0+a] + ‖σf‖[t0−a,t0+a]

]
.

However, if γ ≤ r (γ 6∈ Z) and f (r−[γ]−1)(t0) exists, there are polynomials

p ∈ Pr−[γ]−1 such that

‖σ(f − p)‖[−t,t] ≤ Ctr
[
‖σf (r)‖[t0−a,t0+a] + ‖σf‖[t0−a,t0+a]

]
,

with C 6= C(f, t).

3. Interpolation Processes on Bounded and Unbounded

Intervals

Let f ∈ L∞
u and u(x) = vγ,δ(x)|x − t0|θ (γ, δ, θ ≥ 0, |t0| < 1). If we want

to approximate the function f by a Lagrange interpolating polynomial, the
point t0 cannot be an interpolation knot, and therefore we use the following
procedure.

Let w(x) = vα,β(x)|x − t0|η be another generalized Jacobi weight and let
{pn(w)} be the corresponding sequence of orthonormal polynomials with pos-
itive leading coefficients. Let us denote by x1 < x2 < · · · < xn the zeros of
pn(w). Let xc be the closest zero to t0, i.e., |xc − t0| = min

k
|xk − t0|, and let

qs ∈ Ps be such that

‖(f − qs)| · −t0|θ‖[t0− a
n
, t0+

a
n ]

≤ 2 inf
deg q≤s

‖(f − qs)| · −t0|θ‖[t0− a
n
, t0+

a
n ]
,

with a fixed a > 0. Let ψ ∈ C∞(R) be a nondecreasing function such that

ψ(x) =

{
0, x ≤ 0

1, x ≥ 1.

Using ψ we define the functions

ψ1(x) = ψ

(
x− xc−2

xc−1 − xc−2

)
, ψ2(x) = ψ

(
x− xc+1

xc+2 − xc+1

)
, (3.1)

and
F = Ft0 = (1− ψ1)f + (1− ψ2)ψ1qs + ψ2f.
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It follows from the definition that

F =






f in [−1, xc−2] ∪ [xc+2, 1],

qs in [xc−1, xc+1],

(1 − ψ1)f + (1 − ψ2)ψ1qs in [xc−2, xc−1],

(1 − ψ2)qs + ψ2f in [xc+1, xc+2].

(3.2)

Next we interpolate the function F at the zeros x1 < x2 < · · · < xn of pn(w)
and we denote by L̃n(w,F ) the corresponding Lagrange polynomial. Recalling
(3.2) we have

L̃n(w,F, x) =
n∑

k=1

lk(x)F (xk)

=

n∑

k 6=c, c±1

lk(x)f(xk) +

c+1∑

k=c−1

lk(x)qs(xk), (3.3)

where

lk(x) =
pn(w, x)

p′n(w, xk)(x− xk)
.

Denoting by ‖ · ‖p the usual Lp norm (1 ≤ p < ∞), we can state the following

result for L̃n(w).

Theorem 3.1. Let f ∈ L∞
u , u(x) = vγ,δ(x)|x − t0|θ (γ, δ ≥ 0, 0 ≤ θ <

1, |t0| < 1), and 1 ≤ p < +∞. Then

‖uL̃m(w,F )‖p ≤ C‖uF‖∞, C 6= C(m,F ), (3.4)

if and only if

u√
wϕ

∈ Lp and

√
wϕ

u
∈ L1, ϕ(x) =

√
1− x2. (3.5)

Moreover,

‖uL̃n(w,F )‖∞ ≤ C‖uF‖∞ logn, C 6= C(n, F ), (3.6)

if and only if

u√
wϕ

∈ L∞ and




√
wϕ

u
∈ L1 or

γ =
α

2
+

5

4

δ =
β

2
+

5

4

θ =
η

2
+ 1



. (3.7)
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Corollary 3.1. Suppose that f and u satisfy the conditions in Theorem 3.1
and let

An(f) = En−1(f)u + inf
deg q≤s

‖u(f − q)‖[t0− a
n
,t0+

a
n ]
.

Then for 1 ≤ p < +∞ we have

‖u[f − L̃n(w,F )]‖p ≤ CAn(f), C 6= C(n, F ), (3.8)

if and only if (3.5) holds. Moreover,

‖u[f − L̃n(w,F )]‖∞ ≤ C lognAn(f), C 6= C(n, F ), (3.9)

if and only if (3.7) holds.

Theorem 3.1 and Corollary 3.1 will be proved in Section 5. Now, we give
some remarks.

For θ = 0, Theorem 3.1 follows directly from [11, Theorem 1], but for θ > 0
some nontrivial difficulties appear in the proof.

We deduce from the definition of ωr
ϕ that

An(f) ≤ Cωr
ϕ (f, 1/n)u .

If the function f is smooth “around” the singularity, by using (2.5), An(f) can
be estimated as follows

An(f) ≤ C
[∫ 2/n

0

g(t)

t
dt+

∫ 2/n

0

e(t)

t
dt

]
.

For example, if f(x) = sgn (x), then g(t) = 0,

e(t) = inf
deg q≤r−1

‖u(sgn − q)‖[t0−4rt,t0+4rt] ≤ C‖|t− · |θ‖[t0−4rt,t0+4rt] ∼ tθ,

and An(f) ≤ Cn−θ.

In particular, if f (r−1)(t0) exists and ‖f (r)ϕru‖ < +∞, with r ≥ 1, then
using Lemma 2.1, we can obtain an estimate for An(f) of the following form

An(f) ≤
C
nr

(
‖f (r)ϕru‖+ ‖uf‖

)
.

Moreover, if the above assumptions on f are satisfied, then we can set in (3.3)
qs(xk) = f(xk). The conditions (3.5) and (3.7) can be expressed as follows

α

2
− 1

4
− 1

p
< γ <

α

2
+

5

4
,

β

2
− 1

4
− 1

p
< δ <

β

2
+

5

4
, (3.10)

η

2
− 1

p
< θ <

η

2
+ 1
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and

α

2
− 1

4
≤ γ ≤ α

2
+

5

4
,

β

2
− 1

4
≤ δ ≤ β

2
+

5

4
, (3.11)

η

2
≤ θ ≤ η

2
+ 1,

respectively.
It is not difficult to see that the (strong) assumption 0 < θ < 1 is not

required from the conditions (3.5) and (3.7), but from the presence of the weight
u in the norm of the function (see the proof of Theorem 3.1). However, if θ ≥ 1
in the weight u, a slight modification can be made in the previous Lagrange
polynomial L̃n(w,F ). In fact, it is sufficient to interpolate the function F = Ft0

at the zeros of pn+1(w, x)/(x − xc), where xc = xn+1,c, defining the following
interpolation process

L∗
n(w,F, x) =

n∑

k=1, k 6=c

lk(x)
xk − xc
x− xc

F (xk)

=

n∑

k 6=c, c±1

lk(x)f(xk)
xk − xc
x− xc

+

c+1∑

k=c−1, k 6=c

lk(x)qs(xk)
xk − xc
x− xc

where lk is defined like in (3.3) with n+1 instead of n. For this last polynomial
the following theorem, complementary in some sense to Theorem 3.1, holds.

Theorem 3.2. Let f and u be as in Theorem 3.1 and 1 ≤ p < +∞. Then

there exists a positive constant C 6= C(n, F ) such that

‖uL∗
n(w,F )‖p ≤ C‖uF‖∞ (3.12)

if and only if

u

| · −t0|
√
wϕ

∈ Lp and
| · −t0|

√
wϕ

u
∈ L1. (3.13)

Moreover, for some positive constant C 6= C(n, f) we have

‖uL∗
n(w, f)‖∞ ≤ C‖uf‖∞ logn (3.14)

if and only if

u

| · −t0|
√
wϕ

∈ L∞ and




| · −t0|
√
wϕ

u
∈ L1 or

γ =
α

2
+

5

4

δ =
β

2
+

5

4

θ =
η

2
+ 1



. (3.15)
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We will omit the proof of this theorem since it is very similar to that of
Theorem 3.1. Of course, (3.8) and (3.9) of Corollary 3.1 hold again, setting
L∗
n(w) instead of L̃n(w), and if (3.13) replaces (3.5), and (3.15) replaces (3.7).
From (3.15) it follows

1 +
η

2
≤ θ ≤ 2 +

η

2
,

i.e., θ > 1/2 and Theorem 3.2 is not true for θ ≤ 1/2. Therefore, the interpo-
lation processes {L̃n(w,F )} and {L∗

n(w,F )} are complementary and they can
approximate every function in L∞

u . However, L̃n(w) and L
∗
n(w) use the zeros of

the generalized Jacobi polynomial and their construction (except some special
cases) requires a high computational cost, since until now only few properties
of these polynomials are known. To overcome this problem we propose a third
procedure which uses the zeros of Jacobi polynomials and which replaces L∗

n(w)
(not L̃n(w)!).

Indeed, following an idea from [3], let vα,β be the Jacobi weight and let
{pn(vα,β)} be the corresponding sequence of orthonormal polynomials with
positive leading coefficients. Given ν ∈ N, let x1 < x2 < · · · < xn+ν be
the zeros of pn+ν(v

α,β) and let us denote by xc the zero of pn+ν(v
α,β) which is

closest to t0, i.e., |xc−t0| = min
k

|xk−t0|. Moreover, let yi < · · · < xc < · · · < yν

be ν zeros of pn+ν(v
α,β) of type xc±(i−1). We set π(x) =

ν∏
i=1

(x − yi). Finally,

let Ln(v
α,β , f) be the Lagrange polynomial interpolating f ∈ L∞

u at the zeros
of pn+ν(v

α,β , x)/π(x), i.e.,

Ln(v
α,β , f, x) =

∑

xk∈B

pn+ν(v
α,β , x)f(xk)

π(x)

π(xk)

p′n+ν(v
α,β , xk)(x− xk)

,

where B = {y1, . . . , yν}.
Now, we are able to state the following theorem which is similar to the

previous one.

Theorem 3.3. Let f and u be as in Theorem 3.1 and 1 ≤ p < +∞. Then

there exists a positive constant C 6= C(n, F ) such that

‖uLn(v
α,β , f)‖p ≤ C‖uf‖∞ (3.16)

if and only if

u

| · −t0|ν
√
vα,βϕ

∈ Lp and
| · −t0|ν

√
vα,βϕ

u
∈ L1. (3.17)

Moreover, for some positive constant C 6= C(n, f) we have

‖uLn(v
α,β , f)‖∞ ≤ C‖uf‖∞ logn (3.18)
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if and only if

u

| · −t0|ν
√
vα,βϕ

∈ L∞ and




| · −t0|ν
√
vα,βϕ

u
∈ L1 or

γ =
α

2
+

5

4

δ =
β

2
+

5

4

ν = θ − 1



. (3.19)

From (3.19) it follows that θ − 1 ≤ ν ≤ θ and therefore, since ν ≥ 1, this
implies θ ≥ 1. Theorem 3.2 can be replaced in numerical applications by the
last theorem (but not by Theorem 3.1). Notice that (3.16) is equivalent to

‖u[f − Ln(v
α,β , f)]‖p ≤ CEn−1(f)u, 1 ≤ p < +∞,

and (3.18) to
‖u[f − Ln(v

α,β , f)]‖∞ ≤ CEn−1(f)u logn.

To simplify the notations we have assumed that f has only one singular point
(i.e., the weight u has only one interior zero). In the case of two or more
points, for instance if u(x) = vγ,δ(x)|x− t0|θ0 |x− t1|θ1 , we use the zeros of the
generalized Jacobi polynomials orthogonal with respect to the weight

w(x) = vα,β(x)|x − t0|η0 |x− t1|η1

and we have to construct a new function F by modifying the function f around
the singularities t0 and t1. If we use Jacobi zeros, then we consider the zeros
of pn+ν1+ν2(v

α,β) and interpolate f at the zeros of

pn+ν1+ν2(v
α,β , x)

πν1(x)πν2 (x)
,

where πν1 and πν2 are defined as before.

Also, we consider functions f ∈ L∞
v , where

v(x) =
√
w2γ(x) |x− t0|η, w2γ(x) = x2γe−x, t0 > 0, η − γ > 0.

For such functions we are not able to establish the complete results obtained in
the case of bounded intervals. In fact, very little is known about the orthogonal
polynomials with respect to the weights like |x−t0|λe−x till now and, moreover,
the behaviour of the weighted Lp-norm of the Lagrange polynomials based on
the Laguerre zeros is not much clear.

Here we propose the following procedure.

Let wα be the Laguerre weight, wα(x) = xαe−x, α > −1, x > 0. Let
{Pn(w)} be the corresponding system of orthonormal polynomials with positive
leading coefficients and let x1 < · · · < xn+ν , ν ≥ 1, be the zeros of Pn+ν(wα)
where xc := xn+ν,c is one of the closest zeros to t0. We denote by y1 < · · · <
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xc < · · · < yν the zeros of Pn+ν(wα) of the kind xc±(i−1) and set π(x) =
ν∏

i=1

(x−
yi). Moreover, let j := j(n) be such that xj = min{xk ≥ 4θ(n+ν)}, 0 < θ < 1.

Using the above introduced function ψ, we define ψj(x) := ψ
(

x−xj

xj+1−xj

)
and

fj := (1 − ψj)f . Finally, we denote by Ln+1(wα, fj) the Lagrange polynomial
interpolating the function fj at the zeros of the polynomial

4(n+ ν)− x

π(x)
Pn+ν(wα, x).

Since fj = f in (0, xj) and fj = 0 in [xj+1,+∞), we can write

Ln+1(wα, fj, x) =

j∑

k=1

xk 6∈B

l∗k(x)f(xk),

where B = {y1, . . . , yν} and

l∗k(x) =
4(n+ ν)− x

4(n+ ν)− xk

Pn+ν(wα, x)

π(x)

π(xk)

P ′
n+ν(wα, xk)(x − xk)

.

Now, we state the following result.

Theorem 3.4. Let f ∈ L∞
v , v(x) = xγ |x − t0|ηe−x/2, with γ > 0 and

η ≥ 1. Then, with M = [ θ
1+θ n], 0 < θ < 1, we have

‖v[f − Ln+1(wα, fj)]‖∞ ≤ C
[
EM (f)v logn+ e−An‖vf‖∞

]

if and only if

α

2
+

1

4
≤ γ ≤ α

2
+

5

4
and η − 1 ≤ ν ≤ η, (3.20)

where C and A are positive constants independent of n and f .

Notice that Theorem 3.4 still holds true if j = n, but the “truncation”
introduced by Ln+1(wα, fj) allows us to neglect the computation of O(n) terms
of the sum and it can be useful in the applications. Finally, we note that
an approximation of functions defined on the whole real axis and with some
singular points can be also obtained using a similar argument, but we omit
details.

4. Examples

In this section we consider a few examples in order to illustrate the previous
theoretical results, especially ones given in Theorem 3.3 (for p = +∞) and
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Theorem 3.4. All computations were performed in Mathematica 3.0 system,
using the standard machine precision known as double precision (m.p. ≈ 2.22×
10−16).

For the interval [−1, 1] we take the weight u as in Theorem 3.3, i.e., u(x) =
vγ,δ(x)|x− t0|θ, where vγ,δ(x) = (1− x)γ(1 + x)δ (Jacobi weight) and γ, δ ≥ 0,
θ ≥ 1. The interpolation nodes are zeros of the Jacobi polynomial pn+ν(v

α,β, x),
excluding ν of them which are closest to the singular point x = t0. We also
present the corresponding weighted Lebesgue function,

Λn(u, x) = u(x)

n∑

k=1

ln,k(x)

u(xk)
, (4.1)

where the interpolation nodes are denoted as xk (k = 1, . . . , n) and ln,k(x)
are the fundamental Lagrange polynomials. The behaviour of the Lebesgue
function plays an important role in interpolation processes (cf. [4]).

For the interval [0,+∞) we take the “space” weight v(x) = xγe−x/2|x−t0|η,
with γ ≥ 0 and η ≥ 1. The interpolation nodes are the zeros of the generalized
Laguerre polynomial Pn+ν(wα, x) (wα(x) = xαe−x), excluding ν of them, which
are the closest to the singular point x = t0, and adding the node 4(n + ν).
According to Theorem 3.4, a “truncation” of the Lagrange sum can be used,
taking only j terms, where j := j(n) is determined by xj = min{xk ≥ 4θ(n+ν)}
and 0 < θ ≤ 1.

-1 -0.5 0.5 1

-0.5

0.5

1

-1 -0.5 0.5 1

-0.5

0.5

1

Figure 4.1: Non-weighted (left) and weighted (right) Lagrange polynomial for
f(x) = sgn (x− 1/4) and n = 50 nodes

Example 4.1. As a first example we consider the simple function f(x) =
sgn (x−1/4) which has a singularity at the point x = t0 = 1/4. Because of that
a non-weighted Lagrange interpolation is bad. The case of such interpolation
at n = 50 Chebyshev nodes is displayed in Figure 4.1 (left).

Since the function f is regular at ±1, according to Theorem 3.3, we put γ =
δ = 0. As a weight function (Jacobi weight vα,β) we can take the Chebyshev
weight of the first kind,

w(x) = v−1/2,−1/2(x) =
1√

1− x2
,
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15

Figure 4.2: The weighted Lebesgue function for n = 50 and ν = 7 (left) and
ν = 8 (right)

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Figure 4.3: The weighted Lagrange polynomial for n = 10, 50, and 100 nodes
(left) and the uniform norm of the weighted error for n ≤ 100 (right)

because α = β = −1/2 satisfy the conditions

α

2
+

1

4
≤ γ ≤ α

2
+

5

4
and

β

2
+

1

4
≤ δ ≤ β

2
+

5

4
. (4.2)

Then, the interpolation nodes xk (k = 1, . . . , n) will be the zeros of Tn+ν(x),
excluding ν (θ − 1 ≤ ν ≤ θ) of them, which are closest to the point t0 = 1/4.

Taking θ = 8 we extract ν = 7 or ν = 8 zeros of Tn+7(x) or Tn+8(x), respec-
tively. The weighted Lebesgue functions in these cases are given in Figure 4.2.
We take in our calculation ν = 7, because this case gives slightly better results
then the second one. The corresponding weighted Lagrange polynomial in this
case for n = 50 is displayed in Figure 4.1 (right). The cases for n = 10, n = 20,
and n = 100 are shown in Figure 4.3 (left).

The uniform norm of the weighted error, ‖u[f − Ln(v
α,β , f)]‖∞, for n ≤ 100

is presented in Figure 4.3 (right) as a linear-log plot.
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Example 4.2. Consider the function f defined by

f(x) =





− e−x

√
1 + x

, for x < 0,

log
1− x

1 + x
, for x > 0.

Besides the end-point singularities, a singularity at x = t0 = 0 exists with a
jump equal to lim

x→0+
f(x)− lim

x→0−
f(x) = 1 (see Figure 4.4 (left)).

-1 -0.5 0.5 1

-12

-8

-4

-1 -0.5 0.5 1

5

Figure 4.4: The graphics x 7→ f(x) (left) and the weighted Lebesgue function
x 7→ Λn(u, x) (right) for n = 50 nodes

We put u(x) = (1 − x)3/2(1 + x)5/2|x|7/2 and α = 3/2, β = 7/2, so that
the conditions (4.2) are satisfied. Taking θ = 7/2, we must extract ν = 3
nodes from the set of all zeros of the Jacobi polynomial pn+ν(v

3/2,7/2, x). The
corresponding weighted Lebesgue function (4.1) for n = 50 is presented in
Figure 4.4 (right).

-1 -0.5 0.5 1

-8

-4

Figure 4.5: The weighted Lagrange polynomial for n = 100 nodes (left) and
the uniform norm of the weighted error for n ≤ 100 (right)

The uniform norm of the weighted error for n ≤ 100 is displayed in Fig-
ure 4.5 (right). The weighted Lagrange polynomial L100(v

3/2,7/2, f, x) is given
on the left-hand side of the same figure. Notice that for a small n, e.g. n = 10,
this polynomial is a bad approximation to f (see Figure 4.6 (left)). On the
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-1 -0.5 0.5 1

-8

-4

-1 -0.5 0.5 1

-0.4

-0.2

Figure 4.6: The weighted Lagrange polynomial x 7→ L10(v
3/2,7/2, f, x) (left)

and the corresponding functions x 7→ u(x)L10(v
3/2,7/2, f, x) and x 7→ u(x)f(x)

(right)

other side, we can see that u(x)L10(v
3/2,7/2, f, x) is very close to u(x)f(x), i.e.,

‖u[f − L10(v
3/2,7/2, f)]‖∞ ≈ 4.5× 10−3.
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Figure 4.7: The weighted Lagrange polynomial for n = 50 (left) and n = 100
nodes (right)

Example 4.3. Let

f(x) =
1√

| sin(x− 1/2)|
log

1

1− x2
.

As we can see

lim
x→±1

f(x) = +∞ and lim
x→1/2

f(x) = +∞.

We take γ = δ = 3/2 and θ = 5/2, i.e., u(x) = (1 − x2)3/2|x − 1/2|5/2,
and α = β = 3/2. Notice that ν = 2 in this case. The weighted Lagrange
polynomials for n = 50 and n = 100 are displayed in Figure 4.7. Figure 4.8
shows these polynomials and the original function x 7→ f(x) in the interval
(−1, 1) (left) and locally for x ∈ (0.4, 0.6) (right).

In Figure 4.9 we present the graphics of x 7→ u(x)L10(v
3/2,3/2, f, x) and

x 7→ u(x)f(x) (left), as well as the corresponding Lebesgue function for n = 50
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0.45 0.5 0.55 0.6

2

Figure 4.8: The graphics x 7→ Ln(v
3/2,3/2, f, x) (n = 50, 100) and x 7→ f(x) in

(−1, 1) (left) and (0.4, 0.6) (right)
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Figure 4.9: The graphics of x 7→ u(x)L10(v
3/2,3/2, f, x) and x 7→ u(x)f(x) (left)

and the Lebesgue function x 7→ Λn(u, x) for n = 50 nodes (right)

nodes (right). We mention also that the uniform norm of the weighted error
‖u[f − Ln(v

3/2,3/2, f)]‖∞ is equal to 7.49×10−3, 6.02×10−5, and 7.73×10−6,
for n = 10, 50, and 100, respectively.

Example 4.4. Let f(x) = e−x| sin 5(x−1/2)|. This function is continuous
for x ∈ [−1, 1], but there are three “critical points” in (−1, 1):

t0 =
1

2
− 2π

5
, t1 =

1

2
− π

2
, t2 =

1

2
,

in which the function f is not differentiable (see Figure 4.10).
A direct application of the Lagrange interpolation with Chebyshev nodes

gives the results in Table 4.1. In the second column of this table we give the
uniform norm of the corresponding errors ēn(x) = f(x)− L̄n(v

−1/2,−1/2, x) for
n = 10(10)100. Numbers in parentheses indicate the decimal exponents.

According to Theorem 3.3 and the corresponding comments regarding this
theorem, we put γ = δ = 0, θ0 = θ1 = θ2 = 7/2, so that

u(x) = |x− t0|7/2|x− t1|7/2|x− t2|7/2.

This allows to take the Chebyshev nodes (α = β = −1/2) as zeros of Tn+9(x)
and to extract nine points (three of them in the neighborhood of each point tk,
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Number of nodes Standard interpolation Weighted interpolation
n ‖ēn‖∞ ‖uēn‖∞ ‖uen‖∞
10 2.60(−1) 8.18(−2) 2.92(−5)
20 2.00(−1) 8.31(−3) 5.51(−6)
30 8.14(−2) 2.16(−3) 6.02(−7)
40 1.47(−1) 5.26(−3) 3.08(−7)
50 9.72(−2) 2.45(−3) 1.07(−7)
60 6.07(−2) 2.54(−3) 3.47(−8)
70 5.96(−2) 1.12(−3) 2.77(−8)
80 4.67(−2) 1.19(−4) 1.50(−8)
90 3.89(−2) 1.70(−4) 9.10(−9)
100 3.94(−2) 5.40(−4) 6.46(−9)

Table 4.1: The uniform norm of the errors in the Lagrange interpolation

k = 0, 1, 2). The weighted Lebesgue function for such distribution of nodes is
displayed in Figure 4.10 (right).
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-1 -0.5 0.5 1
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6

Figure 4.10: The graphics x 7→ f(x) (left) and the weighted Lebesgue function
x 7→ Λn(u, x) (right) for n = 60

The uniform norm of the corresponding weighted error

u(x)en(x) = u(x)[f(x) − Ln(v
−1/2,−1/2, x)]

is presented in the last column of Table 4.1. In order to compare the errors
in non-weighted and weighted interpolation, we also introduce an additional
column in this table, with the uniform norm of the previous error of standard
interpolation ēn(x) multiplied by u(x). As we can see, the advantage of the
weighted interpolation is evident.

In Figure 4.11 we give the graphics of the Lagrange interpolation polynomial
Ln(v

−1/2,−1/2, x) for n = 60 and the uniform norm ‖uen‖∞ for n ≤ 100 (see
also Table 4.1).
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-1 -0.5 0.5 1

1

2

Figure 4.11: The Lagrange polynomial x 7→ L60(v
−1/2,−1/2, x) (left) and the

uniform norm of the weighted error x 7→ u(x)[f(x)−Ln(v
−1/2,−1/2, x)] (right)

for n ≤ 100

Example 4.5. Consider the function f defined on (0,+∞) by

f(x) =
ex/4√
x

sgn (x − 10).

According to Theorem 3.4 we put γ = 3/2 and η = 2, i.e.,

v(x) = x3/2e−x/2|x− 10|2.

The graphics of x 7→ f(x) and x 7→ v(x)f(x) are displayed in Figure 4.12.
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Figure 4.12: The graphics x 7→ f(x) (left) and x 7→ v(x)f(x) (right)

For the parameters α and ν which satisfy inequalities (3.20) we can take
α = 5/2 and ν = 1. In this way, the weight wα becomes the generalized
Laguerre weight

w5/2(x) = x5/2e−x, 0 ≤ x < +∞.

In Figure 4.14 we present the graphic of the Lagrange polynomial Ln+1(w5/2, x)
multiplied by the “space” weight v(x) for n = 10, as well as the graphic of the
corresponding weighted error.
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Figure 4.13: The graphics x 7→ Ln+1(w5/2, x) (solid line) and x 7→ f(x) (broken
line) on [6, 15] (left) and [20, 40] (right) for n = 50, n = 100, n = 200, and
n = 300
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Especially, it is interesting to consider the behaviour of the Lagrange poly-
nomial Ln+1(w5/2, x) in a neighborhood of the singular point x = 10. Fig-
ure 4.13 shows the graphics of the Lagrange polynomial x 7→ Ln+1(w5/2, x)
and the function x 7→ f(x) for x ∈ [6, 15], when n = 50, 100, 200, and 300.
The behaviour of the interpolation polynomial in the interval [20, 40] is also
presented.
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Figure 4.14: The function x 7→ v(x)Ln+1(w5/2, x) (left) and the weighted error
x 7→ v(x)[f(x) − Ln+1(w5/2, x]) (right) for n = 10

The graphics of the weighted Lebesgue function x 7→ Λn+1(x) in this case
for n = 10 and n = 50 are displayed in Figure 4.15.

With a “truncation” of the Lagrange polynomial, i.e., taking only j terms,
determined by xj = min{xk ≥ 4θ(n + ν)} and 0 < θ ≤ 1, the computations
can be significantly reduced. The corresponding weighted Lebesgue function is

denoted by Λ
(θ)
n+1(x). The cases for n = 50 with dropped nodes when θ = 1/2

and θ = 1/4 are presented in Figure 4.16.
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Figure 4.15: The weighted Lebesgue function x 7→ Λn+1(x) for n = 10 (left)
and n = 50 (right)

As we can see, the corresponding weighted Lebesgue constants,

Λ
(θ)
n+1 = max

0≤x<+∞
|Λ(θ)

n+1(x)|,

for n = 50 are almost the same when θ = 1, θ = 1/2, and θ = 1/4. In
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other words, such a “truncation” in the weighted Lagrange polynomial does not
change its numerical characteristics, but significantly reduced the computation.
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Figure 4.16: The weighted Lebesgue function x 7→ Λ
(θ)
n+1(x) for n = 50 with

dropped nodes: θ = 1/2 (left) and θ = 1/4 (right)

5. Proofs of the Statements

At first, we need to prove a preliminary lemma. Let

−1 = x0 < x1 < x2 < · · · < xn < xn+1 = 1

with xk = cos θk and n (θk−1 − θk) ∼ 1. Here and in the sequel, if A,B > 0
are quantities depending on some parameters, we write A ∼ B, if and only if
there exist two positive constants M1 and M2, independent of the parameters
A and B, such that

M1 ≤
(
A

B

)±1

≤M2.

Set

Γn(x) :=

n∑

k=1,k 6=d

vµ,ν(x)
(
|x− t0|+ n−1

)ρ

vµ,ν (xk) (|xk − t0|+ n−1)ρ
∆xk

|x− xk|
,

where xd = min
k

|xk − x|, ∆xk = xk+1 − xk, µ, ν, ρ ∈ R.

In a similar way, let y1, . . . , yn be the zeros of the n-th Laguerre polynomial
pn (wα) orthogonal on (0,+∞) with respect to the weight wα(x) = xαe−x. Set

An(x) :=

n∑

k=1,k 6=d

xσ (|t0 − x|+ 1/
√
n)

τ

yσk (|t0 − yk|+ 1/
√
n)

τ
∆yk−1

|x− yk|
,

where yd = min
k

|x− yk|, ∆yk−1 = yk − yk−1 and σ, τ ∈ R.
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Lemma 5.1. Let a ∈ R
+ be a fixed number. We have

sup
|x|≤1−a/n2

Γn(x) ∼ logn (5.1)

if and only if 0 < µ, ν, ρ < 1. Moreover,

sup
a/n≤x≤4n

An(x) ∼ logn (5.2)

if and only if 0 < σ, τ < 1.

Proof. Let us prove (5.1). Since, for xk 6= xd, we have

Γn(x) =
∑

xk≤0

+
∑

xk>0

,

where in the first sum 1 − xk ∼ 1 and in the second one 1 + xk ∼ 1. Then, it
will be sufficient to estimate separately

Γ′
n =

n∑

k=1,k 6=d

(
1 + x

1 + xk

)ν ( |x− t0|+ n−1

|xk − t0|+ n−1

)ρ
∆xk

|x− xk|

and

Γ′′
n =

n∑

k=1,k 6=d

(
1− x

1− xk

)ν ( |x− t0|+ n−1

|xk − t0|+ n−1

)ρ
∆xk

|x− xk|
.

Let us consider Γ′
n. Let δ > 0 be such that ∆ = (t0 − δ, t0 + δ) ⊂ (−1, 1).

Then, Γ′
n =

∑
xk∈∆+

∑
xk /∈∆, xk 6= xd. In the first sum 1+xk ∼ 1, and in the

second one |xk − t0| + n−1 ∼ 1. Since a similar decomposition holds also for
Γ′′
n, it is sufficient to estimate separately the next three sums

n∑

k=1,k 6=d

(
1− x

1− xk

)µ
∆xk

|x− xk|
,

n∑

k=1,k 6=d

( |x− t0|+ n−1

|xk − t0|+ n−1

)ρ
∆xk

|x− xk|
,

n∑

k=1,k 6=d

(
1 + x

1 + xk

)µ
∆xk

|x− xk|
,

since µ, ν, ρ > 0. But, all these sums are equivalent to logn, when 0 ≤ µ, ν, ρ ≤
1 (see [10]).
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Moreover, if ν > 1 we have

sup
|x|≤1− a

n2

Γn(x) ≥ Γn (t0/2)

≥
∑

x1≤xk<0

vµ,ν (t0/2)
(
t0/2 + n−1

)ρ

vµ,ν (xk) (|t0 − xk|+ n−1)ρ
∆xk

|t0/2− xk|

>
vµ,ν (t0/2)

2

(
t0/2 + n−1

2

)ρ ∑

x1≤xk<0

∆xk
(1 + xk)

µ

≥ C
∫ 1/2

x1

dt

(1 + t)ν

∼ n2(ν−1) > logn,

and for ν < 0,

sup
|x|≤1− a

n2

Γn(x) ≥ Γn (x1)

> (1− x1)
µ
(1 + x1)

ν (|t0 − x1|+ n−1
)ρ

×
∑

0<xk≤t0/2

1

(1− xk)
µ
(1 + xk)

ν
(|t0 − xk|+ n−1)

ρ
∆xk

|x1 − xk|

∼ (1 + x1)
ν

∑

0<xk≤t0/2

∆xk
(1 + xk)

ν

∼ (1 + x1)
ν
∫ t0/2

0

dt

(1 + t)ν

∼ n−2ν > logn.

One can proceed in a similar way if µ < 0 or µ > 1.

Now, if ρ > 1, it is sufficient to evaluate Γn at t0/2 in order to get

Γn (t0/2) ≥ C
∑

t0−δ<xk<t0+δ

∆xk
(|t0 − xk|+ n−1)

ρ

≥ C
∫ t0

t0−δ

dt

[(t0 − t) + n−1]
ρ ∼ nρ−1.

Finally, if ρ < 0 one has

Γn

(
t0 − n−1

)
≥ n−ρ

∑

t0+δ/2<xk<t0+δ

∆xk
(|t0 − xk|+ n−1)

ρ ∼ n−ρ
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and the proof of (5.1) is complete.
We omit the proof of (5.2) because it is similar to the previous one (see [5,

Lemma 4.1]). �

Proof of Theorem 3.1. Setting

A =

(
−1 +

C
n2
, t0 −

C
n

)
∪
(
t0 +

C
n
, 1− C

n2

)
,

for any fixed C > 0, by Remez inequality we can write

‖uL̃n(w,F )‖p ≤ C‖uL̃n(w,F )‖Lp(A), 1 ≤ p ≤ +∞.

Putting g(x) = sgn (L̃n(w,F, x))|u(x)L̃n(w,F, x)|p−1 and

r(t) =

∫

A

pn(w, x) − pn(w, t)

x− t
u(x)g(x) dx

= H (pn(w)ug, t)− pn(w, t)H(ug, t),

where H denotes the Hilbert transform extended to A, we get

‖uL̃n(w,F )‖pLp(A) =
n∑

k=1

F (xk)un (xk)

p′n (w, xk)un (xk)
r (xk) ,

where un(x) = vγ,δ(x)
(
|x− t0|+ n−1

)
.

Now, for k 6= c
(
|t0 − xc| = min

k
|t0 − xk|

)
we conclude that

un (xk) ∼ u (xk) .

For x = c we have

F (xc)un (xc) = qs (xc)un

= qs (xc−1)un (xc) + un (xc)

∫ xc

xc−1

q′s(t)dt.

Now, un (xc) ≤ un (xc−1) ≤ cu (xc−1) and

|qs (xc−1)un (xc)| ≤ c‖uF‖[xc−1,xc],∞.

Moreover, for 0 < θ < 1 we get
∣∣∣∣∣un (xc)

∫ xc

xc−1

q′s(t)dt

∣∣∣∣∣ ≤ C
nθ

∫ xc+1

xc−1

|q′s(t)| |t0 − t|θ dt

|t0 − t|θ

≤ C
nθ

∥∥ q′s |t0 − ·|θ
∥∥
[xc−1,xc+1]

∫ xc+1

xc−1

dt

|t0 − t|θ

∼ C
nθ

· 1

n1−θ

∥∥ q′s |t0 − ·|θ
∥∥
[xc−1,xc+1]

≤ C‖uF‖,



G. Mastroianni and G.V. Milovanović 25

by using Markov inequality in [xc−1, xc+1].

Then, for any k = 1, . . . , n,

|un (xk)F (xk)| ≤ ‖uF‖.

Furthermore (see [11])

1

p′n (w, xk)
∼ √

wnϕ (xk) (xk+1 − xk) ,

where wn(x) = vα,β
(
|x− t0|+ n−1

)η
. By using Marcinkiewicz inequality and

Remez inequality, we get for p ∈ [1,+∞)

∥∥ uL̃n(w,F )
∥∥
p
≤ C‖uF‖

∫

A

√
wϕ(t)

u(t)
|r(t)| dt,

where the integral exists by virtue of (3.5).
Furthermore, recalling the definition of r(t), it holds

∫

A

√
wϕ(t)

u(t)
|r(t)|dt ≤

∫

A

√
wϕ(t)

u(t)
|H (pn(w)gu, t)| dt

+

∫

A

√
wϕ(t)

u(t)
|pn(w, t)| |H(gu, t)|dt =: I1 + I2.

Taking into account that |pn(w, t)| ≤ c/
√
wϕ(t) for t ∈ A, and the equality

∫

A

fHg = −
∫

A

gHf for f ∈ (Llog+L) and g ∈ L∞,

we have

I1 ≤
∫

A

u(t)√
wϕ(t)

g(t)

∣∣∣∣H
(
G1

√
wϕ

u
, t

)∣∣∣∣ dt,

I2 ≤
∫

A

1

u(t)
|H(gu, t)|dt ≤

∫

A

g(t)u(t)

∣∣∣∣H
(
G2

u
, t

)∣∣∣∣ dt,

where G1 = sgnH(. . .) and G2 = sgnH(. . .).

If 1 < p < +∞ we use [11, Lemma] and the estimate

I1 + I2 ≤ C ‖Ln(w, f)u‖p−1
p .

For p = 1, we have |g(t)| ≤ 1 and

I1 ≤
∫

A

H(G, t)dt+

∫

A

u(t)√
wϕ(t)



∫

A

∣∣∣∣∣

√
wϕ(x)

u(x) −
√
wϕ(t)

u(t)

x− t

∣∣∣∣∣ dx


 dt.
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Since

U(x) =

√
wϕ(x)

u(x)

is a generalized Jacobi weight, the internal integral is dominated by a constant
time the product of the factors of U having negative exponents. Then I1 ≤ C
since ∫

A

H(G, t)dt ≤
√
2

(∫

A

H2(G, t)dt

)1/2

≤ 2.

For I2 we use a similar argument. Thus (3.5) implies (3.4).

Let us prove that (3.4) implies (3.5). Now, from (3.4) it follows easily from
[9, Theorem 2.2] that

u√
wϕ

∈ Lp, 1 ≤ p < +∞.

We have to prove that (3.4) implies that
√
wϕ ∈ L1, i.e. that α, β, γ, δ, θ, η

satisfy (3.10). This can be done following [11, p. 688].
For θ and η, let us consider a function f with |f(x)| ≤ 1 such that f(±1) = 0,

f (xk) = 0 for xk ≤ t0 − δ and xk ≥ t0 + δ, and f (xk) = sgn (p′n (w, xk)) if
xk ∈ (t0 − δ, t0 + δ) ⊂ (−1, 1). Then

L̃n(w, f, x) = pn(w, x)
∑

t0−δ≤xk≤t0+δ

1

|p′n (w, xk)| (x− xk) un (xk)

and

|u(x)L̃n(w, f, x)| ≥ 2 |pn(w, x)u(x)|
∑

t0−δ≤xk≤t0+δ

1

|p′n (w, xk)|un (xk)

∼ |pn(w, x)u(x)|
∑

t0−δ≤xk≤t0+δ

√
wϕ (xk)

un (xk)
∆xk

∼ |pn(w, x)u(x)|
∑

t0−δ≤xk≤t0+δ

(
|xk − t0|+ n−1

)η/2−θ
∆xk

∼ |pn(w, x)u(x)|
∫ t0+δ

t0−δ

(
|t− t0|+ n−1

)η/2−θ
dt.

Then

sup
n

‖pn(w)u‖p
∫ t0+δ

t0−δ

(
|t− t0|+ n−1

)η/2−θ
dt ≤ C.

But,

‖pn(w)u‖p ∼
∥∥∥∥

u√
wϕ

∥∥∥∥
p

and η/2− θ > −1.
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To prove the second part of Theorem 3.1 it is sufficient to show that

Γn = max
x∈A

u(x)

n∑

k=1,k 6=d

|lk(x)|
un (xk)

≤ C logn

if and only if (3.11) holds. But, with wn(x) = vα,β(x)
(
|x− t0|+ n−1

)η
and

x ∈ A

Γ(x) := |pn(w, x)u(x)|
n∑

k=1,k 6=d

|lk(x)|
un (xk)

∼ |pn(w, x)
√
wnϕ(x)|


 un(x)√

wϕ(x)

n∑

k=1,k 6=d

√
wnϕ (xk)

un (xk)

∆xk
|x− xk|


 .

Using Lemma 5.1, with

µ = γ − α

2
− 1

4
, ν = δ − β

2
− 1

4
, ρ = θ − η

2
,

we deduce
Γ(x) ∼ C |pn(w, x)

√
wϕ(x)| logn

if and only if (3.11) are satisfied. Then the second part of Theorem 3.1 follows
by recalling that

∥∥ pn(w)
√
wnϕ

∥∥∼ 1. �

Proof of Corollary 3.1. Firstly, we prove inequality (3.8). We have

‖u[f − L̃n(w,F )]‖p ≤ ‖u[f − F ]‖p + ‖u[F − L̃n(w,F )]‖p.

By the definition of F , it follows

‖u[f − F ]‖p ≤ C inf
qs∈Ps

‖u[f − qs]‖L∞(t0− C
n
, t0+

C
n )
.

Moreover, for all polynomials P ∈ Pn−1, using Theorem 3.1 we get

‖u[F − L̃n(w,F )]‖p ≤ ‖u(F − P )‖p + ‖uL̃n(w,F − P )‖p

≤ C‖u(F − P )‖∞ ≤ C‖u(F − f)‖∞ + ‖u(f − P )‖∞

≤ C inf
qs∈Ps

‖u(f − qs)‖∞ + ‖u(f − P )‖∞.

Therefore, assuming that P ∈ Pn−1 minimizes the last expression, we arrive
at the estimate

‖u[f − L̃n(w,F )]‖p ≤ C[En−1(f)u,∞ + inf
qs∈Ps

‖u(f − qs)‖∞],

i.e., (3.8).
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The proof of (3.9) is similar and therefore Corollary 3.1 is proved. �

Proof of Theorem 3.3. Let d = max (t0 − y1, yr − t0) and set

A =
(
−1 +

a

n2
, t0 − 2d

)
∪
(
t0 + 2d, 1− a

n2

)
,

where a > 0 is fixed. Since the measure of [t0 − 2d, t0 + 2d] is of order n−1, we
use the Remez inequality to obtain

‖uLn(v
α,β , f)‖p ≤ C‖uLn(v

α,β , f)‖Lp(A), 1 ≤ p ≤ +∞.

Moreover, for x ∈ A, i.e., |t0 − x| > 2d and 1
n ≤ C|x− t0|, it results

|x− t0|
2

< |x− yi| ≤ C |x− t0|
2

and
π(x) ∼ |x− t0|ν , x ∈ A.

Then, letting qn(x) = Pn+ν(v
α,β , x)/π(x),

g(x) = sgnLn(v
α,β , f, x)|u(x)Ln(v

α,β , f, x)|p−1

and

r(t) =

∫

A

qn(x)− qn(t)

x− t
u(x)g(x)dx ∈ Pn−1,

we can write

‖uLn(v
α,β , f)‖Lp(A) ≤ C

n∑

k=1

xk 6∈B

|f(xk)π(xk)|
P ′
n+ν(v

α,β , xk)
|r(xk)|.

Recalling the relation

1

|P ′
n+ν(v

α,β , xk)|
∼

√
vα,βϕ(xk)(xk+1 − xk),

we get

‖uLn(v
α,β , f)‖p ≤ C‖uf‖∞

n∑

k=1

xk 6∈B

√
vα,βϕ(xk)

|xk − t0|θ−ν
|r(xk)|∆xk, 1 ≤ p < +∞.

Now, if we repeat step by step the proof of Theorem 3.1 and recalling that

|qn(x)| ≤
C

|x− t0|ν
√
vα,βϕ(x)

, x ∈ A,

the equivalence between (3.16) and (3.17) follows easily.
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Finally, we consider the case p = +∞. Let

l∗k(x) =
Pn+ν(v

α,β , x)

π(x)

π(xk)

P ′
n+ν(v

α,β , xk)(x− xk)
.

Then, denoting by xd one of the closest zeros to x, we have

u(x)
|l∗d(x)|
u(xd)

∼ 1,

u(x)
|l∗k(x)|
u(xk)

∼ |u(x)Pn+ν(v
α,β , x)|

|x− t0|ν
∆xk

vγ−
α
2
− 1

4
,δ− β

2
− 1

4 (xk)|t0 − xk|θ−ν |x− xk|
,

which implies

max
x∈A

n∑

k=1

xk 6∈B

u(x)
|l∗k(x)|
u(xk)

∼ 1 +
|u(x)Pn+ν(v

α,β , x)|
|x− t0|ν |x− τ |θ−νvσ,τ (x)

×

×
n∑

k=1

xk 6∈B

|x− τ |θ−νvσ,τ (x)∆xk
|xk − τ |θ−νvσ,τ (xk)|x − xk|

,

where

k 6= d, σ = γ − α

2
− 1

4
, τ = δ − β

2
− 1

4
.

Moreover,

|u(x)Pn+ν(v
α,β , x)|

|x− t0|ν |x− τ |θ−νvσ,τ (x)
= |v α

2
+ 1

4
,β
2
+ 1

4 (x)Pn+ν(v
α,β , x)|

and
max
x∈A

|v α
2
+ 1

4
,β
2
+ 1

4 (x)Pn+ν(v
α,β , x)| ∼ 1.

Then, using Lemma 5.1, we have

sup
‖uf‖∞=1

‖uLn(v
α,β , f)‖∞ ∼ max

x∈A

n∑

k=1

xk 6∈B

u(x)
|l∗k(x)|
u(xk)

∼ logn,

if and only if (3.19) holds. �

Proof of Theorem 3.4. We first prove that

sup
‖vfj‖=1

‖vLn+1(wα, fj)‖∞ ∼ logn (5.3)

holds if and only if

α

2
+

1

4
≤ γ ≤ α

2
+

5

4
and η − 1 ≤ ν ≤ η.
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To this end we set d := max (t0 − y1, yν − t0) and

A =

(C
n
, t0 − 2d

)
∪ (t0 + 2d, 4n).

Since the distance between the zeros in a neighborhood of t0 is of order
1/

√
n (see [5]), we can use a Remez-type inequality [7] to obtain

‖vLn+1(wα, fj)‖∞ ∼ ‖vLn+1(wα, fj)‖L∞(A)

and
|π(x)| ∼ |x− t0|ν , x ∈ A.

Moreover (cf. [5]), by easy computations we get

v(x)
|l∗d(x)|
v(xd)

∼ 1

and, for j ≥ k 6= d,

v(x)
|l∗k(x)|
v(xk)

∼
∣∣√wα(x)Pn+ν(wα, x)

∣∣ 4
√
x(4n− x) ×

×
(
x− t0
xk − t0

)η−ν (
x

xk

)γ−α
2
− 1

4 ∆xk
|x− xk|

.

Since
max
x∈A

|
√
wα(x)Pn+ν(wα, x)| 4

√
x(4n− x)| ∼ 1,

we conclude that

sup
‖fjv‖∞=1

‖Ln+1(wα, f)v‖∞ ∼ sup
‖fjv‖∞=1

‖Ln+1(wα, fj)v‖L∞(A)

∼ max
x∈A

j∑

k=1

xk 6∈B

v(x)
|l∗k(x)|
v(xk)

∼ 1 +

j∑

k=1

xk 6∈B

∣∣∣∣
x− t0
xk − t0

∣∣∣∣
η−ν (

x

xk

)γ−α
2
− 1

4 ∆xk
|x− xk|

.

By Lemma 5.1, the last sum is equivalent to logn if and only if

α

2
+

1

4
≤ γ ≤ α

2
+

5

4
and η − 1 ≤ ν ≤ η.

Now, we have

‖v[f − Ln+1(wα, fj)]‖∞ ≤ ‖v[f − fj]‖∞ + ‖v[fj − Ln(wα, fj)]‖∞.
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Letting

M =
[ θ

1 + θ
(n+ ν)

]
∼ n,

we have (see [6])

‖v[f − fj]‖∞ ≤ C
(
EM (f)v + e−An‖vf‖∞

)
.

Moreover, since for all polynomials P ∈ PM , P = Pj + ψjP , and

fj − Ln(wα, fj) = fj − P − Ln(wα, fj − Pj) + Ln(wα, ψjP )

= (fj − f) + (f − P )− Ln(wα, (f − P )j) + Ln(wα, ψjP ),

we have

‖v[fj − Ln(wα, fj)]‖∞ ≤ ‖v(f − P )‖∞ + ‖v(f − fj)‖∞

+ ‖vLn(wα, (f − P )j)‖∞ + ‖vLn(wα, ψjP )‖∞.

Taking the infimum over P ∈ PM and using (5.3), we see that the first
three terms are dominated by

C
(
EM (f)v logn+ e−An‖vf‖∞

)
.

Now, it remains to estimate the last term.

Thus,

|v(x)Ln(wα, ψjP, x)| =

∣∣∣∣∣∣

∑

k>j

v(x)
|l∗k(x)|
v(xk)

P (xk)v(xk)

∣∣∣∣∣∣

≤ ‖vP‖[4θn,4n]
∑

k>j

xk 6∈B

v(x)
|l∗k(x)|
v(xk)

.

Using Lemma 5.1 and recalling the conditions on α, β, γ, δ, ν, and η, we see
that the last sum is of order log n. Finally, using an inequality proved in [7],
we obtain

‖vP‖[4θn,∞) ≤ Ce−An‖vP‖∞ ≤ Ce−An‖vf‖∞,
since P is the polynomial of best approximation of f ∈ L∞

v . �

References

[1] M. C. De Bonis, G. Mastroianni, and M. G. Russo, Polynomial approxi-
mation with special doubling weights, submitted.



32 Weighted Interpolation

[2] M. C. De Bonis, G. Mastroianni, and M. Viggiano, K-functionals, moduli
of smoothness and weighted best approximation on the semiaxis, in Proceeding
of the “Alexits Memorial Conference” (August 1999, Budapest), to appear.

[3] A. Horvath and J. Szabados, Polynomial approximation and interpolation on
the real line with respect to general classes of weights, Results Math. 34 (1998),
120–131.

[4] G. Mastroianni and G. V. Milovanović, “Interpolation Processes and Ap-
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