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L. V. Stefanović and G. V. Milovanović
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Abstract. It is well-known that the convergence of Weierstrass method for simultaneous
finding polynomial zeros is quadratic in the case of simple zeros but only linear in the case of
multiple zeros. Using Gauss-Seidel approach the convergence can be accelerated. Introducing the
mean of the components converging to the same zero, in this paper we give a modified method
which enables the multiplicity order of the zeros to be determined during the algorithm. In
addition, the method presented has a fast convergence. Comparison with a similar method [5] is
performed in a few numerical examples.

1. Introduction

Let

P (z) =

n
∑

i=0

aiz
n−i , ai ∈ R (i = 0, 1, . . . , n) , an 6= 0 ,

be a monic complex polynomial of degree n and let w1, . . . , wn be exact zeros of
this polynomial, and z1, . . . , zn their approximations, respectively. Since, for a fixed
j ∈ {1, . . . , n},

P (z) =

n
∏

i=1

(z − wi) = (z − wj)

n
∏

i=1

i6=j

(z − wi) ,

we have

wj = z −
P (z)

n
∏

i=1

i6=j

(z − wi)

.
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Then, for z = zj and wi ≈ zi, we obtain

wj ≈ zj −
P (zj)

∏

i=1

i6=j

(zj − zi)
(j = 1, . . . , n) .

This suggests us to construct the following iterative method for the simulataneous
finding of all polynomial zeros,

(1) z
(m+1)
j = z

(m)
j −

P
(

z
(m)
j

)

∏

i=1

i6=j

(

z
(m)
j − z

(m)
i

)

(j = 1, . . . , n ; m = 0, 1, . . . ) ,

which is known as Weierstrass’ method ([11]). The same iterative method was
derived in many different ways by several authors (see, for example, [3], [2], [7],
[8], [4]). In the case when all zeros wi are simple and if zi are reasonably close
approximations of these zeros wi (i = 1, . . . , n), the method (1) has quadratic
convergence. In the case of multiple zeros the method (1) converges only linearly
(cf. [10]).

Consider a monic polynomial P of degree n,

P (z) =

n
∑

i=0

aiz
n−i =

k
∏

s=1

(z − ξs)
νs (ai ∈ R)

with real or complex zeros ξ1, . . . , ξk (k ≤ n) having the order of multiplicity
ν1, . . . , νk respectively, where ν1 + · · · + νk = n. Let Y = [y1 . . . yn]

T be a vec-
tor, so-called vector of means , defined by

(2) yj =
1

νh

∑

i∈Ih

zi , j ∈ Ih = {i|wi = ξh} , h = 1, . . . , k .

Using the vector Y , Fraigniaud [5] gave a modification of the iterative method (1)

and showed that the sequence Y (m) =
[

y
(m)
1 . . . y

(m)
n

]T
(m = 0, 1, . . . ) satisfies the

equality

(3)
∥

∥Y (m+1) − w
∥

∥ = O
(

∥

∥Z(m) − w
∥

∥

2
)

,

where w = [w1 . . . wn]
T i Z(m) =

[

z
(m)
1 . . . z

(m)
n

]T
. In the paper [5] the property

given by (3) was called the Quadratic-Like Convergence of the Mean, and was
noted QLCM.

Starting from the Weierstrass method (1), with the so-called Gauss-Seidel ap-
proach, and using a modification by the vector Y , in this paper we give an algorithm



for finding polynomial zeros. Numerical examples are included in order to compare
results obtained by this method and by the method from [5].

2. Iterative method

Applying the Gauss-Seidel approach to the acceleration of the method (1) we
obtain the following iterative method

(4) z
(m+1)
i = z

(m)
i −

P (z
(m)
i )

i−1
∏

j=1

(

z
(m)
i − z

(m+1)
j

)

n
∏

j=i+1

(

z
(m)
i − z

(m)
j

)

= z
(m)
i −∆z

(m)
i ,

which was considered in the papers [1] (real case) and [9] (interval case). This
method has R-order of convergence greater than 2 for simple zeros and greater
than 1 for multiple zeros.

As in [5], suppose that the approximations z
(m)
1 , . . . , z

(m)
n are pairwise distinct.

Using the vector of means, we will modify the method (4) in the following sense.
If ih = mini∈Ih i, in each iterative step m we determine the index i(h,m) = ih +

(m mod νh) for every h = 1, . . . , k. Then, after finding z
(m+1)
1 , . . . , z

(m+1)
n by

(4), we change the component z
(m+1)
i(h,m) by (1/νh)

∑

i∈Ih
z
(m+1)
i . Evidently, for this

modification we need multiplicities νi (i = 1, . . . , k) of the zeros ξ1, . . . , ξk. A
practical way for estimating these multiplicities was given in [5] and based on the
fact that

lim
m→∞

∆z
(m+1)
i

∆z
(m)
i

=
νi − 1

νi
(i = 1, . . . , n) .

Therefore, our algorithm can be expressed in the following form:

1◦ Find some starting approximations z
(0)
1 , . . . , z

(0)
n of zeros w1, . . . , wn.

2◦ Use the method (4) and in each iteration calculate the ratio

∆z
(m+1)
i

∆z
(m)
i

(i = 1, . . . , n ; m = 0, 1, . . . ) .

Stop this process for m = M if

(5)

∣

∣

∣

∣

∆z
(M)
i

∆z
(M−1)
i

−
∆z

(M−1)
i

∆z
(M−2)
i

∣

∣

∣

∣

< ε , i = 1, . . . , n ,

where ε is a given required accuracy. From ratios ∆z
(M)
i /∆z

(M−1)
i which converge

to the same value rh, determine ⌊1/(1− rh)⌋ (⌊x⌋ is the closest integer to x), and
take it as the multiplicity νh (h = 1, . . . , k).



3◦ Split the components z
(M)
i (i = 1, . . . , n) converging towards the same zero

into groups, and set them as starting approximations z
(0)
i (i = 1, . . . , n) for the next

two steps.

4◦ For each h = 1, . . . , k, calculate the index i(h,m) = ih + (m mod νh) and

replace the corresponding component z
(m)
i(h,m) by (1/νh)

∑

i∈Ih
z
(m)
i (m = 0, 1, . . . ).

5◦ Apply the method (4) and Step 4◦ (in the scope of one iteration) to the previous

obtained vector
[

z
(m)
1 . . . z

(m)
n

]T
(m = 0, 1, . . . ), until all components z

(m)
i (i =

1, . . . , n) achieve a given required accuracy.

This modification of the accelerated Weierstrass method has some adventages
over the method given in [5] (F-method in the sequel). Namely, because of faster
convergence of method with Gauss–Seidel approach, inequality (5) achieves here
with a smaller M , so that Step 2◦ requires less iterations than the corresponding
step in [5]. Apart from the faster convergence, this modified method is more suitable
for programming and, also, occupy less computer storage space because the new
approximations take positions of the previous ones. The number of all operations
which are necessary in realization of one iteration of this method is the same as
in the F-method, so that the computational efficiency cannot be smaller than one
of F-method. On the other hand, the proposed method converges also faster than
accelerated Weierstrass method, which is obviously based on the arguments from
[5].

3. Numerical results

In a few examples we will illustrate the previous consideration and compare our
results with ones obtained by the method (4) and F-method. In these examples
we take the starting approximations obtained by a simple algorithm from [6]. All
computations were performed in double precision arithmetic using FORTRAN 77.

Example 1. We consider the polynomial

P (z) = z4 − 2z2 + 1 = (z − 1)2(z + 1)2

with exact zeros ξ1 = w1 = w2 and ξ2 = w3 = w4 having the order of multiplicity
ν1 = ν2 = 2. Regarding to [6], for starting values we take:

(6)
z
(0)
1 = (0.0, 0.35669) , z

(0)
2 = (−0.35669, 0.0) ,

z
(0)
3 = (0.0,−0.35669) , z

(0)
4 = (0.35669, 0.0) .

Step 2◦, with an accuracy ε = 10−2, is realized in 10 iterations, where

z
(10)
1 = (0.99989, 0.00127) , z

(10)
2 = (−1.00014, 0.00164) ,

z
(10)
3 = (−0.99991,−0.00101) , z

(10)
4 = (1.00006,−0.00079) .



Starting from these approximations in order to obtain the zeros ξ1,2 with 5 exact
decimals we need 3 additional iterations (i.e., three applications of Step 5◦). Thus,
the total number of iterations is 13. On the other hand, starting from the same
values (6), the method (4) gives ξ1,2 (with the same accuracy) after 17, while the
F-method even after 65 iterations.

With the starting values z
(0)
1 = (0.9, 0.3), z

(0)
2 = (1.1,−0.2), z

(0)
3 = (−0.8, 0.3),

z
(0)
4 = (−1.2, 0.1), which were taken in [5], the F-method needs 6, the method (4)
12, and our method 8 iterations, wherefrom one can see that these methods are
sensitive to the choice of starting values. Notice that it is not clear how to select
the previous starting values (i.e., which algorithm to use), because the author of [5]
mentioned only reference [6] in that context.

Example 2. The polynomial

P (z) = z5 + z4 − 2z3 − 2z2 + z + 1 = (z − 1)2(z + 1)3

has exact zeros ξ1 = w1 = w2 = 1 and ξ2 = w3 = w4 = w5 = −1 with their
multiplicities ν1 = 2 and ν2 = 3. Set

(7)

z
(0)
1 = (0.32189, 0.99069) , z

(0)
2 = (−0.84273, 0.61228) ,

z
(0)
3 = (−0.84273,−0.61228) , z

(0)
4 = (0.32189,−0.99069) ,

z
(0)
5 = (1.04167, 0.0) .

Under conditions same as in Example 1, the F-method gives requested results in
84 iterations, method (4) in 23, and our method in 21 iterations. In this case, it
is interesting that the basic Weierstrass method (1) converges faster than the F-
method. Namely, it gives the corresponding results in 79 iterations. As in Example
1, the starting values from [5] give an advantage over our method.

Example 3. Consider now the polynomial

P (z) = z6 + (−4 + 4i)z5 + (2− 16i)z4 + (12 + 24i)z3 + (−23− 16i)z2

+ (16 + 4i)z − 4 = (z − 1)4(z + 2i)2

with a double complex zero ξ1 = w1 = w2 = −2i and a real zero of multiplicity
four, ξ2 = w3 = w4 = w5 = w6 = 1. Set ε = 10−2 and take starting approximations
regarding to [6]. Now, Step 2◦ is realized in 15 and 22 iterations in our and the
F-method, respectively. For an accuracy of 3 exact decimals, Step 5◦ needs only 2
iterations in our method, and 15 in the second one.

If we take starting approximations (similar to the choice in [5])

z
(0)
1 = (1.1, 0.1) , z

(0)
2 = (1.2,−0.2) , z

(0)
3 = (0.9, 0.3) ,

z
(0)
4 = (0.8,−0.1) , z

(0)
5 = (0.1,−2.2) , z

(0)
6 = (−0.2,−1.9) ,



the F-method needs 18, and our method 13 iterations.

All examples point out that F-method is much more sensitive to the choice of
starting values than our method. Since in [5] the algorithm for the starting values
was not given, the method presented is, in general case, more effective. However,
the starting values problem for method in [5] is still open.

Finally, based on the practical tests, one can notice that in both methods (F-
method and our one) the number of iterations increases with the order of multiplic-
ity.
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[5] Fraigniaud, P.: The Durand–Kerner polynomials roots–finding method in case

of multiple roots, BIT 31 (1991), 112–123.

[6] Guggenheimer, H.: Initial approximations in Durand–Kerner’s root finding

method, BIT 26 (1986), 537–539.

[7] Kerner, I. O.: Ein Gesamtschrittverfahren zur Berechnung der Nullstellen von

Polynomen, Numer. Math. 8 (1966), 290–294.

[8] Pasquini, L. and Trigiante, D.: A globally convergent method for simultane-

ously finding polynomial roots, Math. Comput. 44 (1985), 135–149.
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