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Turing’s Halting Problem

Turing’s halting problem (THP), i.e. the problem to decide whether

an arbitrary Turing machine (TM)

halts on an arbitrary input, is arguably the most (in)famous

unsolvable (by any TM) mathematical problem.

Indeed, assume, for the sake of contradiction, that there exists a TM

HALT which can decide whether a TM T (given by its code #T)

eventually stops on input x:

HALT(#T, x) =







1, if T (x) stops,

0, otherwise.

Construct a TM Q

Q(x) =







1, if HALT(x, x) = 0,

loops forever, otherwise,

and deduce the contradiction:

HALT(#Q, #Q) = 1 iff HALT(#Q, #Q) = 0.
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Why THP Would Be of Any

Interest to Mathematicians?

• The negative solution of Hilbert’s tenth problem discovered by

Matiyasevich (there is no TM deciding whether an arbitrary

Diophantine equation has or has not a solution in integers)

follows from the undecidability of THP.

• Gödel’s incompleteness theorem is another notable consequence.

• Pour-El & Richards theorem (roughly, any closed unbounded

operator on any Hilbert space takes some computable input to

some uncomputable output) is rooted in the undecidability of

THP.

• If one could solve THP, then many mathematical problems

would be automatically solved, e.g., Goldbach’s conjecture or

Riemann’s hypothesis.



2003 4

How Difficult is THP?

Take a universal (self-delimiting TM) U and, instead of asking

whether U(x) stops on an arbitrary input x, look at the probability

that U(x) stops when x is randomly chosen according to the

Lebesgue measure. The result is Chaitin’s Omega Number

ΩU =
∑

U(x) halts

2−|x|.

The number ΩU is not only uncomputable (a direct consequence of

the undecidability of THP), but also algorithmically random (its

expansion in any base is not contained in any “constructive null set”

with respect to the Lebesgue measure).

Knowing the first N bits of ΩU allows us to decide which program

of less than N bits halts, but the converse is not necessary true.

Interesting recursion-theoretical results have been recently obtained

in this area by Downey and his colleagues.
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In 1975 Chaitin has proved that if we assume that ZFC is

arithmetically sound, then ZFC can determine the value of only

finitely many bits of ΩU .

In 1999 Solovay has effectively constructed a self-delimiting TM U

such that ZFC, if arithmetically sound, cannot determine any bit of

the ΩU .

In 2000 Calude has shown that for every self-delimiting TM U we

can effectively construct a self-delimiting TM U ′ such that

• ΩU = ΩU ′ ,

• ZFC, if arithmetically sound, cannot determine more than the

initial block of 1’s of the binary expansion of ΩU .
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In 2002 Calude, Dinneen and Shu have computed the first 64 bits of

the self-delimiting TM U constructed in 1987 by Chaitin using the

following register machine instructions:

L: GOTO L2

L: JUMP R L2

L: GOBACK R

L: EQ R1 R2 L2

L: NEQ R1 R2 L2

L: RIGHT R

L: LEFT R1 R2

L: SET R1 R2

L: HALT

L: OUT R

L: DUMP
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Is it Possible to Break

Turing’s Barrier?

Turing’s proof shows that, in general (i.e. for an arbitrary pair

(T, x)), there is no algorithmic procedure capable of answering in a

finite time the infinite set of questions

“does T(x) stop in t steps”, for t = 1, 2, . . .

It is essential that HALT is a TM, so Q is itself a TM.

So, what about trying to prove that HALT is “computable by some

other type of machine”?

Taking into account that TMs are not only mathematical objects,

but also “physical devices” two natural ideas come to mind:

• relativistic machines

• quantum machines
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Relativistic Computing

Accelerate machines, which execute their n-th instruction in 2−n

seconds, may not be impossible as the same physical theory which

limits the speed of information processing by the velocity of light

maintains that time is relative to the observer.

So, if a satellite revolving with instantaneous tangential velocity

c(1− e−2t)
1

2 (c is the speed of light, t is the earth time scale) and

local time scale T , the time interval dT = e−tdt, then one second in

the satellite’s time scale corresponds to an eternity on earth as
∫∞

0
e−tdt = 1.

In 2002 Etesi and Németi observed that in Malament-Hogarth

space-times, due to infinite time contraction, it may be possible for

a computer to receive, in finite time, the answer to a yes-or-no

question from an infinite computation.

In 2002 Wiedermann and van Leeuwen have introduced the

relativistic TM and showed that RTMs whose relativistic phases can

solve the THP for TMs em recognize exactly the ∆2-sets.
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Quantum Computing

Consider the Merchant’s Problem: A merchant learns than one of

his five stacks of coins contains only false coins, γ grams heavier

than normal ones. Can he find the odd stack by a single “weighing”?

• Take one coin from the first stack, two coins from the second

stack, . . . , five coins from the last stack.

• Measure the weight of the combination of coins and obtain the

number 15 + γ × n.

• The n-th stack contains false coins.

The above solution is, in spirit, “quantum”. It consists of the

following steps:

a) preparation,

b) measurement,

c) classical calculation.

If we still have five stacks of coins, but a few (maybe none) may

contain false coins, then a possible solution is to choose 1, 2, 4, 8, 16

coins from each stack, and use the uniqueness of base two

representation.



2003 10

Variants of the Merchant’s Problem

• The Finite Problem: We have N stacks of coins and we know

that at most one stack may contain false coins. We are allowed

to take just one coin from each stack and have a single

“weighing”. Can we determine whether there is a stack

containing false coins, and in the affirmative, which?

• The Infinite Problem: We now have countable many stacks, all

of them, except at most one, containing true coins only. Can we

determine whether there is a stack containing false coins?
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A Quantum Strategy

We are given θ = 2−n and we assume that we work with a quantum

“device” with sensitivity ε = 2−m.

• First, we compute classically a time T = Tθ,ε,

• Then, we run the “device” on a random input for the time T .

The quantum “device” may or may not produce a click.

• If we get a click, then the system has false coins (in the finite

case the stack containing false coins can be located).

• If we don’t get a click, then with probability greater than 1− θ

all coins are true.

An essential part of the method is the requirement that the time

limit T is computable in a classical way.
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The Finite Problem

We consider the space RN and denote by qi the weight of a coin in

the i-th stack; if the i-th stack contains true coins, then qi = 1,

otherwise, qi = 1 + γ (γ is a rational in (0, 1)).

Consider the operator Q =
∑N

i=1 qiPi, where Pi(x) =

(0, 0, . . . , xi, 0, . . . , 0):

Q(x) = (q1P1, . . . , qNPN )(x) = (q1x1, . . . , qNxN ),

and the quadratic form induced by the t-th iteration of the operator

Q, 〈Qt(x),x〉. Note that:

• if all coins are true 〈Qt(x),x〉 = ‖ x ‖2, for all x ∈ RN ;

• if there are false coins in some stack, for some x ∈ RN ,

〈Qt(x),x〉 > ‖ x ‖2, and the value increases with every new

iteration.

We work with a “weighted Lebesgue measure” with proper

non-negative continuous density ρ, for example, the Gaussian

distribution

ρ(x) =
1

πN/2
e−
∑

N

s=1
|xs|

2

.

Hence the probability of the event {x | x1 ∈ Ω} is the integral

Prob(Ω) =
∫

Ω×RN−1 ρdm.
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Assume that time is discrete, t = 1, 2, . . .. Choose a “test” vector

x ∈ RN and assume that we have a quantum “device” which

measures the quadratic form and clicks at time T on x when

〈QT (x),x〉 > (1 + ε) ‖ x ‖2 . (1)

In this case we say that the quantum “device” has sensitivity ε.

Two cases may appear:

1. If 〈QT (x),x〉 > (1 + ε) ‖ x ‖2, then the “device” has clicked at

time T and we know for sure that there exist false coins in the

system.

2. If by the time T > 0 the “device” hasn’t (yet?) clicked, then

either all coins are true, i.e., 〈Qt(x),x〉 = ‖ x ‖2, for all t > 0, or

at time T the growth of 〈QT (x),x〉 hasn’t yet reached the

threshold (1 + ε) ‖ x ‖2.

In the first case the “device” will never click, so at each stage t the

test-vector x produces “true” information; we can call x a “true”

vector.

In the second case, the test-vector x is “lying” at time T as we do

have false coins in the system, but they were not detected at time

T ; we say that x produces “false” information at time T .

Of course, the second case may be dangerous, and indeed, classically

we cannot say anything in this case.
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If the system has false coins and they are located in the j-th stack,

then each test-vector x whose j-th coordinate is 0 produces “false”

information at any time.

If the system has false coins and they are located in the j-th stack,

xj 6= 0, but

‖ x ‖2 +((1 + γ)T − 1)|xj |2 ≤ (1 + ε) ‖ x ‖2,

then x produces “false” information at time T . If |xj | 6= 0, then x

produces “false” information for only a finite period of time, that is,

only for

T ≤ log1+γ

(

1 +
ε ‖ x ‖2

|xj |2
)

;

after this time the quantum “device” starts clicking.

Consider now the indistinguishable set at time t

Fε,t = {x ∈ RN | 〈Qt(x),x〉 ≤ (1 + ε) ‖ x ‖2}.

If the system contains only true coins, then Fε,t = RN , for all

ε > 0, t ≥ 1. If there is one stack (say, the j-th one) containing false

coins, then Fε,t is a cone Fε,t,j centered at the “false” plane xj = 0:

((1 + γ)t − 1) |xj |2 ≤ ε ‖ x ‖2 .
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A direct calculation shows that

Prob(Fε,t) ≤
3N3/4ε1/4

√
π((1 + γ)t − 1)1/4

(2)

hence,

lim
t→∞

Prob(Fε,t) = 0. (3)

In fact, the limit (3) is constructive, that is, for every S > 0 we can

construct the computable bound

TS,ε = log1+γ

(

24S34N3ε

π2
+ 1

)

such that if the system contains false coins and t ≥ TS,ε, then

Prob(Fε,t) ≤ 2−S .



2003 16

Let us now denote by N the event “the system contains no false

coins” and by Y the event “the system contains false coins”. By

P (N ) (P (Y)) we denote the a priori probability that the system

contains no false coins (the system contains false coins).

In the simplest case P (Y) = N
N+1 , P (N ) = 1− P (Y) = 1

N+1 . We

can use Bayes’ formula to obtain the a posteriori probability that the

system contains only true coins when at time t the quantum

“device” didn’t click:

Pnon-click(N ) =
P (N )

P (N ) + (1− P (N ))Prob(Fε,t)

≥ 1−N · Prob(Fε,t).

When t →∞, Prob(Ωε,t) → 0, so Pnon-click(N ) goes to 1. More

precisely, if t ≥ TS,ε, and S > log2 N , then

Pnon-click(N ) ≥ 1−N2−S .
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In conclusion,

for every integer S > log2 N we can construct a computable

time T = TS,ε such that picking up a test-vector

x ∈ RN \ {0} at random and using a quantum “device” with

sensitivity ε up to time T either:

� we get a click at some time t ≤ T , so the system

contains false coins; the j-th stack, where j is the unique

coordinate such that (QT (x)/((1 + γ)T − 1))j > xj ,

contains false coins;

� or we don’t get a click in time T , so with probability

greater than 1−N2−S all coins are true.
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The Infinite Problem

“Approximating” the Infinite Problem using the solution of the

Finite Problem doesn’t work.

We follow the same strategy but use more sophisticated

mathematical tools: the “device” (with sensitivity ε) will distinguish

the values of the iterated quadratic form

〈Qt(x),x〉 =
∞
∑

i=1

qt
i |xi|2

by observing the difference between the non-perturbed and

perturbed sequences tl, t̃l corresponding to two discrete stochastic

processes. We will work with the intersections of l2 with the discrete

Sobolev class l12 of summable sequences with the square norm

| x |21 =
∞
∑

m=1

|x
m
− x

m−1
|2,

and the discrete Sobolev class l̃12 of weighted-summable sequences

with the square norm

‖ x ‖2
1 =

∞
∑

m=1

1− δ̃m

δ̃m

|x
m
− x

m−1
|2.
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We consider two discrete stochastic processes corresponding to the

equidistant sequence of moments of time tl = l, l = 0, 1, . . . , δs = 1

and to the perturbed sequence of moments of time

t̃l =
∑l

m=0 δ̃m, δ̃m < 1.

By natural extension from cylindrical sets we can define the Wiener

measures W̃ and W on these spaces and use the following relation

between W̃ and W : for every W–measurable set Ω,

W̃ (Ω) =
1

∏∞
l=1

√
δl

∫

Ω

e
−
∑

∞

m=1

1−δ̃m

δ̃m

|xm−xm−1|
2

dW.

The indistinguishable set becomes

Fε,T = {x ∈ l2 ∩ l12 | 〈Qt(x),x〉 < ‖ x ‖2 + ε ‖ x ‖2
1 .
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In 2002 Calude and Pavlov proved that if we assume that there exist

false coins in the system, say at stack j, then

W̃ (Fε,T ) ≤
(

ε

((1 + γ)T − 1− ε) ·∏∞
m=1 δ̃m

)1/2

.

In fact,

W̃ (Fε,T ) ≤ 2−S ,

provided

t > log1+γ

(

ε2−2S

∏∞
m=1 δ̃m

+ 1 + ε

)

.

Hence

Pnon-click(N ) > 1− 1− P (N )

P (N )

·
√

ε
√

(1 + γ)T − 1− ε
√

∏∞
m=1 δ̃m

.



2003 21

Final Comments

• The undecidability of THP can be seen not only as a

fundamental barrier, but as a result showing that mathematics

is inexhaustible.

• Recent attempts to attack THP by mixing mathematics and

physics, thought in infancy, have succeeded to shed more light

on the problem, i.e. by clarifying the distinction between

halting and unending computations.

• THP is far from being completely understood; much more work,

inspiration and talent is needed in this quest.


