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Let A be a C∗-algebra and let M be a right A-module. This means that (M, +)
is an Abelian group, and there exists an exterior multiplication: if x ∈ M and
a ∈ A, then x · a ∈ M. This multiplication satisfies the same axioms as the scalar
multiplication in vector spaces.

Additionally, if A does not have the unit, we assume that the scalar multiplication
of elements in M exists. If λ ∈ C and x ∈ M, then we write equivalently xλ =
λx ∈ M. If A has the unit, then the scalar multiplication follows easily from the
multiplication by elements of A.

Definition 0.1. Let M be a module over a C∗-algebra A. Suppose that there exists
an A-valued inner product 〈·, ·〉 : M×M→ A, satisfying the following:

(1) 〈x, x〉 ≥ 0 in A for all x ∈M;
(2) 〈x, y〉 = 〈y, x〉∗ for all x, y ∈M;
(3) 〈x, ya〉 = 〈x, y〉a for all x, y ∈M and all z ∈ A.
Then M is a Hilbert pre-module over A.

Definition 0.2. If M is a pre-Hilbert module over A, and M is complete with
respect to the norm ‖ · ‖M, then M is a Hilbert C∗-module over A, or M is a
Hilbert C∗ A-module.

Example 0.1. If A is a C∗-algebra, then A is itself a Hilbert module, since the
inner product is given by 〈a, b〉 = a∗b for all a, b ∈ A.

More generally, let J be a right ideal of A. Then J is a Hilbert module over A,
if the inner product is given by 〈a, b〉 = a∗b.

Example 0.2. Let Mm×n denotes the set of all complex matrices of the form m×n.
Then Am×n is a right Mn×n-module. The norm ‖.‖ can be defined as ‖A‖Am×n =
‖AA∗‖.

On the other hand, we can consider Am×n as a left Am×m-module, and the natural
norm is defined as ‖A‖Am×n = ‖A∗A‖.

We know that both norms are the same!
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Let M,N be Hilbert C∗-modules over a C∗-algebra A. A mapping T : M→N
is called operator if T is a bounded C-linear A-homomorphism from M to N , i.e.
T satisfies:

T (x+y) = T (x)+T (y), T (λx) = λT (x), T (xa) = T (x)a, x, y ∈M, a ∈ A, λ ∈ C,

and there exists some M ≥ 0 such that

‖T (x)‖M ≤ M‖x‖N , x ∈M.

The norm of T is given by

‖T‖ = inf{M ≥ 0 : ‖T (x)‖M ≤ M‖x‖N , for all x ∈M}.

The set of all operators from M to N is denoted by HomA(M,N ). Particularly,
EndA(M) = HomA(M,M).

Lemma 0.1. EndA(M) is a Banach algebra.

We shall see that the question of adjoint operators is not trivial.

Lemma 0.2. Let M be a Hilbert A-module, and let T : M→M and T ∗ : M→M
be A-linear mappings such that

〈x, Ty〉 = 〈T ∗x, y〉 for all x, y ∈M.

Then T, T ∗ ∈ EndA(M).

Definition 0.3. An operator T ∈ HomA(M,N ) is adjointable, if there exists and
operator T ∗ ∈ HomA(N ,M) such that for all x ∈ M and all y ∈ N the following
holds:

〈Tx, y〉 = 〈x, T ∗y〉.
There exists operators that are not adjointable.
The set of all adjointable operators from M to N is denoted by Hom∗

A(M,N ).
We see that End∗A(M) is a C∗-algebra.

Theorem 0.1. For T ∈ End∗A(M) the following conditions are equivalent:
(1) T is a positive element in the C∗-algebra End∗A(M);
(2) For all x ∈M the element Tx is positive in the C∗-algebra A.

Theorem 0.2. Let T : M → N be a linear map. Then the following statements
are equivalent:

(1) T is bounded and A-homomorphism;
(2) There exists a constant K ≥ 0 such that the inequality 〈Tx, Tx〉 ≤ K〈x, x〉

holds in A for all x ∈M.
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Lemma 0.3. Let A be a unital C∗-algebra and let r : A → A be a linear map such
that for some constant K ≥ 0 the inequality r(a)∗r(a) ≤ Ka∗a holds for all a ∈ A.
Then r(a) = r(1)a for all a ∈ A.

Example 0.3. LetM = N⊕L be the orthogonal decomposition of Hilbert modules.
Define P : M→M to be the projection from M onto N parallel to L. Then P is
bounded, ‖P‖ = 1 and P ∗ = P . Hence, P ∈ End∗A(M).

Theorem 0.3. (Misčenko) LetM,N be Hilbert A-modules, and let T ∈ Hom∗
A(M,N )

such that R(T ) is closed in N . Then the following hold:
(1) N(T ) is a complemented submodule of M and N(T )⊥ = R(T ∗);
(2) R(T ) is a complemented module of N and R(T )⊥ = N(T ∗);
(3) T ∗ also has a closed range.

LetM,N be Hilbert modules, and let T ∈ HomA(M,N ), or T ∈ Hom∗
A(M,N ).

T is generalized invertible, if there exists some T1 ∈ Hom(N ,M) such that
TT1T = T .

We can also require that S satisfies all Penrose eqautions, in order to obtain the
Moore-Penrose inverse of T .

Outer inverse with prescribed range and null-module:
Let T ∈ Hom∗

A(M,N ), and let K and H be submodules of M and N , respec-
tively. Find U ∈ HomA(N ,M) such that the following hold:

UTU = U, R(U) = K, N(U) = H.

If such U exists, then U = T
(2)
K,H .

Equivalent conditions (Xu, Zhang):

N = A(K)⊕H, N(T ) ∩K = {0}, M = T ∗(H⊥)⊕K⊥), N(T ∗) ∩H⊥ = {0}.

The notion for the commutators follows: [U, V ] = UV − V U , for appropriate
choice of operators U and V .

LetM,N ,L be Hilbert modules, and let A ∈ Hom∗(N ,L) and B ∈ Hom∗(M,N )
have closed ranges, such that AB also has a closed range. Find necessary and suffi-
cient conditions such that the reverse order law holds:

(AB)† = B†A†.

A new result follows.
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Theorem 0.4. If A ∈ Hom∗(N ,L), B ∈ Hom∗(M,N ) and AB ∈ Hom∗(M,N )
have closed ranges, then the following statements are equivalent:

(1) (AB)† = B†A†;
(2) [A†A,BB∗] = 0 and [A∗A,BB†] = 0;
(3) R(A∗AB) ⊂ R(B) and R(BB∗A∗) ⊂ R(A∗);
(4) A∗ABB∗ has a commuting Moore-Penrose inverse.
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