New Graph Invariants

Nut Graphs in Extremal Singular Graphs

Belgrade–SGA2016 May18-20
http://www.impalayu.com/sga01.php

University of Malta
Irene Sciriha

http://staff.um.edu.mt/isci1/
irene.sciriha-aquilina@um.edu.mt
Motivation

• What makes a graph singular?
• Which substructures determine that a graph is singular?
• To what extent can the nullity be increased by adding vertices to a graph, while preserving the original singular structure within the graph?
Plan

- **Substructures of Singular Graphs**
 - (i) Cores
 - (ii) Singular Configurations
 - (iii) Nut Graphs
- Minimal Basis for an Eigenspace
- Graph Invariant: Core Order Sequence
- Nullity and Core Order exert mutual Control
- Extremal Singular Graphs
 - Size of Substructures
 - A Nut Subgraph has Maximum Size
Plan

- **Substructures of Singular Graphs**
 - (i) Cores
 - (ii) Singular Configurations
 - (iii) Nut Graphs
- Minimal Basis for an Eigenspace
- Graph Invariant: Core Order Sequence
 - Nullity and Core Order exert mutual Control
- Extremal Singular Graphs
 - Size of Substructures
 - A Nut Subgraph has Maximum Size
Plan

- Substructures of Singular Graphs
 (i) Cores
 (ii) Singular Configurations
 (iii) Nut Graphs
- Minimal Basis for an Eigenspace
- Graph Invariant: Core Order Sequence
 - Nullity and Core Order exert mutual Control
- Extremal Singular Graphs
 - Size of Substructures
 - A Nut Subgraph has Maximum Size
Plan

- Substructures of Singular Graphs
 (i) Cores
 (ii) Singular Configurations
 (iii) Nut Graphs
- Minimal Basis for an Eigenspace
 - Graph Invariant: Core Order Sequence
 - Nullity and Core Order exert mutual Control
- Extremal Singular Graphs
 - Size of Substructures
 - A Nut Subgraph has Maximum Size
Plan

- **Substructures of Singular Graphs**
 1. Cores
 2. Singular Configurations
 3. Nut Graphs
- **Minimal Basis for an Eigenspace**
- **Graph Invariant: Core Order Sequence**
 - Nullity and Core Order exert mutual Control
 - Extremal Singular Graphs
 - Size of Substructures
 - A Nut Subgraph has Maximum Size
Plan

- Substructures of Singular Graphs
 (i) Cores
 (ii) Singular Configurations
 (iii) Nut Graphs
- Minimal Basis for an Eigenspace
- Graph Invariant: Core Order Sequence
 - Nullity and Core Order exert mutual Control
 - Extremal Singular Graphs
 - Size of Substructures
 - A Nut Subgraph has Maximum Size
Plan

- Substructures of Singular Graphs
 (i) Cores
 (ii) Singular Configurations
 (iii) Nut Graphs
- Minimal Basis for an Eigenspace
- Graph Invariant: Core Order Sequence
 - Nullity and Core Order exert mutual Control
- Extremal Singular Graphs
 - Size of Substructures
 - A Nut Subgraph has Maximum Size
Plan

- Substructures of Singular Graphs
 (i) Cores
 (ii) Singular Configurations
 (iii) Nut Graphs
- Minimal Basis for an Eigenspace
- Graph Invariant: Core Order Sequence
 - Nullity and Core Order exert mutual Control
- Extremal Singular Graphs
 - Size of Substructures
 - A Nut Subgraph has Maximum Size
Plan

- Substructures of Singular Graphs
 (i) Cores
 (ii) Singular Configurations
 (iii) Nut Graphs
- Minimal Basis for an Eigenspace
- Graph Invariant: Core Order Sequence
 - Nullity and Core Order exert mutual Control
- Extremal Singular Graphs
 - Size of Substructures
 - A Nut Subgraph has Maximum Size
Plan

- Substructures of Singular Graphs
 (i) Cores
 (ii) Singular Configurations
 (iii) Nut Graphs
- Minimal Basis for an Eigenspace
- Graph Invariant: Core Order Sequence
 - Nullity and Core Order exert mutual Control
- Extremal Singular Graphs
 - Size of Substructures
 - A Nut Subgraph has Maximum Size
Plan

- **Substructures of Singular Graphs**
 - (i) Cores
 - (ii) Singular Configurations
 - (iii) Nut Graphs
- **Minimal Basis for an Eigenspace**
- **Graph Invariant: Core Order Sequence**
 - Nullity and Core Order exert mutual Control
- **Extremal Singular Graphs**
 - Size of Substructures
 - A Nut Subgraph has Maximum Size
Plan

- Substructures of Singular Graphs
 (i) Cores
 (ii) Singular Configurations
 (iii) Nut Graphs
- Minimal Basis for an Eigenspace
- Graph Invariant: Core Order Sequence
 - Nullity and Core Order exert mutual Control
- Extremal Singular Graphs
 - Size of Substructures
 - A Nut Subgraph has Maximum Size
Singular Graph G: if $\exists \ x \neq 0: \ Ax = 0$, x: kernel eigenvector.

Core F

Label G:

$$
\begin{pmatrix}
A(F) & C' \\
(C')^t & Q
\end{pmatrix}
\begin{pmatrix}
x_F \\
0
\end{pmatrix}
= \begin{pmatrix}
0 \\
0
\end{pmatrix}
$$

Each entry of $x_F \neq 0$.

The induced subgraph F is a core of G.

If $\exists x = x_F : G$ is a core graph.

Singular Configuration (SC)

A minimum # of columns of C' determines an induced subgraph of G.

Minimal Configuration (MC)

A singular configuration with $Q' = 0$.

Singular Graph G: if $\exists x \neq 0: Ax = 0$, x: kernel eigenvector.

Core F

Label G:
$$
\begin{pmatrix}
A(F) & C' \\
(C')^t & Q
\end{pmatrix}
\begin{pmatrix} x_F \\ 0 \end{pmatrix} =
\begin{pmatrix} 0 \\ 0 \end{pmatrix}
$$
each entry of $x_F \neq 0$.
The induced subgraph F is a core of G.

If $\exists x = x_F$: G is a core graph.
Singular Graph G: if $\exists \ x \neq 0: \ Ax = 0$, x: kernel eigenvector.

Core F

Label G:
\[
\begin{pmatrix}
A(F) & C' \\
(C')^t & Q
\end{pmatrix}
\begin{pmatrix}
x_F \\
0
\end{pmatrix}
= \begin{pmatrix}
0 \\
0
\end{pmatrix}
\]

each entry of $x_F \neq 0$.

The induced subgraph F is a core of G.

If $\exists x = x_F$: G is a core graph.

Singular Configuration (SC)
A minimum # of columns of C' determines an induced subgraph of G.

Minimal Configuration (MC)
A singular configuration with $Q' = 0$.
Singular Graph G: if $\exists \mathbf{x} \neq 0: \mathbf{A}\mathbf{x} = 0$, \mathbf{x}: kernel eigenvector.

Core F

Label G:

$$
\begin{pmatrix}
\mathbf{A}(\mathbf{F}) & \mathbf{C}' \\
(\mathbf{C}')^t & \mathbf{Q}
\end{pmatrix}
\begin{pmatrix}
\mathbf{x}_F \\
0
\end{pmatrix} =
\begin{pmatrix}
\mathbf{0} \\
\mathbf{0}
\end{pmatrix}
$$

each entry of $\mathbf{x}_F \neq 0$.

The induced subgraph F is a core of G.

If $\exists \mathbf{x} = \mathbf{x}_F : G$ is a core graph.

Singular Configuration (SC): A minimum # of columns of C' determines an induced subgraph of G.

Minimal Configuration (MC): A singular configuration with $Q' = 0$.
Singular Graph G: if $\exists \ x \neq 0: \ Ax = 0$, x: kernel eigenvector.

Core F

Label G:

\[
\begin{pmatrix}
A(F) & C' \\
(C')^t & Q
\end{pmatrix}
\begin{pmatrix}
x_F \\
0
\end{pmatrix}
= \begin{pmatrix}
0 \\
0
\end{pmatrix}
\]

Each entry of $x_F \neq 0$.

The induced subgraph F is a core of G.

If $\exists x = x_F$: G is a core graph.

Singular Configuration (SC)

A minimum # of columns of C' determines an induced subgraph of G.

Minimal Configuration (MC)

A singular configuration with $Q' = 0$.
Singular Graph G: if $\exists x \neq 0: Ax = 0$, x: kernel eigenvector.

Core F
Label G:
$\begin{pmatrix} A(F) & C' \\ (C')^t & Q \end{pmatrix} \begin{pmatrix} x_F \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$
each entry of $x_F \neq 0$.
The induced subgraph F is a core of G.
If $\exists x = x_F : G$ is a core graph.

Singular Configuration (SC)
A minimum # of columns of C' determines an induced subgraph of G.

Minimal Configuration (MC)
A singular configuration with $Q' = 0$.

Minimal Basis 4/1 Irene Sciriha
Singular Graph G: if $\exists x \neq 0: Ax = 0$, x: kernel eigenvector.

Core F

Label G:

$$
\begin{pmatrix}
A(F) & C' \\
(C')^t & Q
\end{pmatrix}
\begin{pmatrix}
x_F \\
0
\end{pmatrix}
= \begin{pmatrix}
0 \\
0
\end{pmatrix}
$$

each entry of $x_F \neq 0$.

The induced subgraph F is a core of G.

If $\exists x = x_F$: G is a core graph.

Singular Configuration (SC)

A minimum # of columns of C' determines an induced subgraph of G.

Minimal Configuration (MC)

A singular configuration with $Q' = 0$.

Minimal Basis 4/1 Irene Sciriha
Singular Graph Nullity η

η linearly independent kernel eigenvectors with minimum support sum determine a fundamental system of η cores of G.

The ‘Atoms’ of Singular Graphs

There are η SCs as induced subgraphs of G.

Core F

Label G:

$$
\begin{pmatrix}
A(F) & C' \\
(C')^t & Q
\end{pmatrix}
\begin{pmatrix}
x_F \\
0
\end{pmatrix}
=
\begin{pmatrix}
0 \\
0
\end{pmatrix}
$$

each entry of $x_F \neq 0$.

If $\exists x = x_F : \ G \text{ is a core graph.}$

A Structural Graph Invariant

The set of core vertices (CV): those vertices that lie on some core of G.

If a vertex does not lie on any core of G, then it is said to be core forbidden (CFV).
Singular Graph Nullity η

η linearly independent kernel eigenvectors with minimum support sum determine a **fundamental system** of η cores of G.

The ‘Atoms’ of Singular Graphs

There are η SCs as induced subgraphs of G.

Core F

Label G:

\[
\begin{pmatrix}
A(F) & C' \\
(C')^t & Q
\end{pmatrix}
\begin{pmatrix}
x_F \\
0
\end{pmatrix}
= \begin{pmatrix}
0 \\
0
\end{pmatrix}
\]

Each entry of $x_F \neq 0$.

If $\exists x = x_F : G$ is a core graph.

A Structural Graph Invariant

The set of core vertices (CV): those vertices that lie on some core of G. If a vertex does not lie on any core of G, then it is said to be core forbidden (CFV).
Singular Graph Nullity η

η linearly independent kernel eigenvectors with minimum support sum determine a **fundamental system** of η cores of G.

The ‘Atoms’ of Singular Graphs

There are η SCs as induced subgraphs of G.

Core F

Label G:

\[
\begin{pmatrix}
A(F) & C' \\
(C')^t & Q
\end{pmatrix}
\begin{pmatrix}
x_F \\
0
\end{pmatrix} =
\begin{pmatrix}
0 \\
0
\end{pmatrix}
\]

each entry of $x_F \neq 0$.

If $\exists x = x_F : G$ is a **core graph**.

A Structural Graph Invariant

The set of core vertices (CV): those vertices that lie on some core of G.

If a vertex does not lie on any core of G, then it is said to be core forbidden (CFV).
Singular Graph Nullity \(\eta \)

\(\eta \) linearly independent kernel eigenvectors with minimum support sum determine a fundamental system of \(\eta \) cores of \(G \).

The ‘Atoms’ of Singular Graphs

There are \(\eta \) SCs as induced subgraphs of \(G \).

Core \(F \)

Label \(G \):

\[
\begin{pmatrix}
A(F) & C'\\
(C')^t & Q
\end{pmatrix}
\begin{pmatrix}
x_F \\
0
\end{pmatrix}
= \begin{pmatrix}
0 \\
0
\end{pmatrix}
\]
each entry of \(x_F \neq 0 \).

If \(\exists x = x_F \): \(G \) is a core graph.

A Structural Graph Invariant

The set of core vertices (CV): those vertices that lie on some core of \(G \).

If a vertex does not lie on any core of \(G \), then it is said to be core forbidden (CFV).
The 'Atoms' of Singular Graphs

There are η SCs as induced subgraphs of G.

Core F

Label G:

\[
\begin{pmatrix}
A(F) & C' \\
(C')^t & Q
\end{pmatrix}
\begin{pmatrix}
x_F \\
0
\end{pmatrix}
= \begin{pmatrix}
0 \\
0
\end{pmatrix}
\]

each entry of $x_F \neq 0$.

If $\exists x = x_F : G$ is a core graph.

A Structural Graph Invariant

The set of core vertices (CV): those vertices that lie on some core of G.

If a vertex does not lie on any core of G, then it is said to be core forbidden (CFV).
2 linearly independent kernel eigenvectors w. minimum support sum
{-2, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, -2, 1, 1, -1, 2, 0, 0, 0, 0, 0, 0}.
Singular Configuration for kernel eigenvector
\{-2, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0\}.
Singular Configuration for kernel eigenvector
\{0, 0, 0, 0, -2, 1, 1, -1, 2, 0, 0, 0, 0, 0, 0\}.
Nut Graph

A SC with no periphery.
The support is full.

Nut Graph

: A core graph of nullity one: connected & has no pendant vertex.
Nut graphs exist for all \(n \geq 7 \).
Nut Graph

A SC with no periphery.
The support is full.

Nut Graph

: A core graph of nullity one: connected & has no pendant vertex. Nut graphs exist for all $n \geq 7$.
Support

The support $wt(x)$ of a vector is the number of non-zero elements in that vector.

Convention:

The vectors in a basis for a subspace are ordered according to the monotonic non-decreasing sequence of the support of its vectors.

Minimal Basis

The vectors x_1, x_2, \ldots, x_ℓ in a basis for W with the smallest support sum $\sum_{i=1}^\ell wt(x_i)$, form a minimal basis B_{min} for W.
Support

The **support** $wt(x)$ of a vector is the number of non-zero elements in that vector.

Convention:

The vectors in a basis for a subspace are ordered according to the **monotonic non-decreasing sequence** of the support of its vectors.

Minimal Basis

The vectors x_1, x_2, \ldots, x_ℓ in a basis for W with the smallest **support sum** $\sum_{i=1}^\ell wt(x_i)$, form a **minimal basis** B_{min} for W.
Support
The support \(wt(x) \) of a vector is the number of non-zero elements in that vector.

Convention:
The vectors in a basis for a subspace are ordered according to the monotonic non-decreasing sequence of the support of its vectors.

Minimal Basis
The vectors \(x_1, x_2, \ldots, x_\ell \) in a basis for \(W \) with the smallest support sum \(\sum_{i=1}^\ell wt(x_i) \), form a minimal basis \(B_{\text{min}} \) for \(W \).
For B_{min}: Support Sequence is t_1, t_2, \ldots, t_q
If for B: Support Sequence is s_1, s_2, \ldots, s_q, then
$\forall i, \quad t_i \leq s_i$.

<table>
<thead>
<tr>
<th>t_1</th>
<th>t_2</th>
<th>t_3</th>
<th>t_4</th>
<th>Support Sum</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>19</td>
<td>Minimal Basis</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>7</td>
<td>7</td>
<td>21</td>
<td>Not Minimal</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>7</td>
<td>7</td>
<td>19</td>
<td>Impossible</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>19</td>
<td>Impossible</td>
</tr>
</tbody>
</table>
For B_{min}: Support Sequence is t_1, t_2, \ldots, t_q

If for B: Support Sequence is s_1, s_2, \ldots, s_q, then

$$\forall i, \ t_i \leq s_i.$$
New Vector Space Invariant

Minimal Basis Vectors Support Sequence

I. Sciriha et al. GTNNY 1996

For B_{min}: Support Sequence is t_1, t_2, \ldots, t_q
If for B: Support Sequence is s_1, s_2, \ldots, s_q,
then
\[\forall i, \quad t_i \leq s_i. \]

<table>
<thead>
<tr>
<th>t_1</th>
<th>t_2</th>
<th>t_3</th>
<th>t_4</th>
<th>Support Sum</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>19</td>
<td>Minimal Basis</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>7</td>
<td>7</td>
<td>21</td>
<td>Not Minimal</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>7</td>
<td>7</td>
<td>19</td>
<td>Impossible</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>19</td>
<td>Impossible</td>
</tr>
</tbody>
</table>
For B_{min}: Support Sequence is t_1, t_2, \ldots, t_q

If for B: Support Sequence is s_1, s_2, \ldots, s_q,

then

$\forall i, \ t_i \leq s_i.$

<table>
<thead>
<tr>
<th>t_1</th>
<th>t_2</th>
<th>t_3</th>
<th>t_4</th>
<th>Support Sum</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>19</td>
<td>Minimal Basis</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>7</td>
<td>7</td>
<td>21</td>
<td>Not Minimal</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>7</td>
<td>7</td>
<td>19</td>
<td>Impossible</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>19</td>
<td>Impossible</td>
</tr>
</tbody>
</table>
New Vector Space Invariant

I. Sciriha et al. GTNNY 1996

For B_{min}: Support Sequence is t_1, t_2, \ldots, t_q
If for B: Support Sequence is s_1, s_2, \ldots, s_q,
then
\[\forall i, \quad t_i \leq s_i. \]

<table>
<thead>
<tr>
<th>t_1</th>
<th>t_2</th>
<th>t_3</th>
<th>t_4</th>
<th>Support Sum</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>19</td>
<td>Minimal Basis</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>7</td>
<td>7</td>
<td>21</td>
<td>Not Minimal</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>7</td>
<td>7</td>
<td>19</td>
<td>Impossible</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>19</td>
<td>Impossible</td>
</tr>
</tbody>
</table>
For B_{min}: Support Sequence is t_1, t_2, \ldots, t_q
If for B: Support Sequence is s_1, s_2, \ldots, s_q, then
\[\forall i, \quad t_i \leq s_i. \]

<table>
<thead>
<tr>
<th>t_1</th>
<th>t_2</th>
<th>t_3</th>
<th>t_4</th>
<th>Support Sum</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>19</td>
<td>Minimal Basis</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>7</td>
<td>7</td>
<td>21</td>
<td>Not Minimal</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>7</td>
<td>7</td>
<td>19</td>
<td>Impossible</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>19</td>
<td>Impossible</td>
</tr>
</tbody>
</table>
I. Sciriha *et al.* GTNNY 1996

For B_{min}: Support Sequence is t_1, t_2, \ldots, t_q

If for B: Support Sequence is s_1, s_2, \ldots, s_q

then

$$\forall i, \ t_i \leq s_i.$$

<table>
<thead>
<tr>
<th>t_1</th>
<th>t_2</th>
<th>t_3</th>
<th>t_4</th>
<th>Support Sum</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>19</td>
<td>Minimal Basis</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>7</td>
<td>7</td>
<td>21</td>
<td>Not Minimal</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>7</td>
<td>7</td>
<td>19</td>
<td>Impossible</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>19</td>
<td>Impossible</td>
</tr>
</tbody>
</table>
Maximum Support for a Minimal Basis

If B_{min} for $\ker(A)$ is $(x_1, x_2, \ldots, x_\eta)$, then the core-width τ is the weight of x_η: the largest support.
Lemma

If $x \in B_{min}$, then x has at least $\eta(G) - 1$ zero entries.

Proof.

- Write the η kernel eigenvectors of a basis B as the rows of the $\eta \times n$ matrix.
 - reduced by Gauss Row Reduction to M', with all entries in the columns above and below a pivot being zero.
- The set of vertices corresponding to the pivots is a singular--configuration--vertex--representation.
Lemma

If $x \in B_{min}$, then x has at least $\eta(G) - 1$ zero entries.

Proof.

- Write the η kernel eigenvectors of a basis B as the rows of the $\eta \times n$ matrix. Reduced by Gauss Row Reduction to M', with all entries in the columns above and below a pivot being zero.

- The set of vertices corresponding to the pivots is a singular–configuration–vertex–representation.
Lemma

If \(x \in B_{\text{min}} \), then \(x \) has at least \(\eta(G) - 1 \) zero entries.

Proof.

- Write the \(\eta \) kernel eigenvectors of a basis \(B \) as the rows of the \(\eta \times n \) matrix.
 - reduced by Gauss Row Reduction to \(M' \),
 - with all entries in the columns above and below a pivot being zero.

- The set of vertices corresponding to the pivots is a
Lemma

If $x \in B_{min}$, then x has at least $\eta(G) - 1$ zero entries.

Proof.

- Write the η kernel eigenvectors of a basis B as the rows of the $\eta \times n$ matrix. Reduced by Gauss Row Reduction to M', with all entries in the columns above and below a pivot being zero.

- The set of vertices corresponding to the pivots is a singular-configuration-vertex-representation.
Lemma

If \(x \in B_{min} \), then \(x \) has at least \(\eta(G) - 1 \) zero entries.

Proof.

- Write the \(\eta \) kernel eigenvectors of a basis \(B \) as the rows of the \(\eta \times n \) matrix. Reduced by Gauss Row Reduction to \(M' \), with all entries in the columns above and below a pivot being zero.

- The set of vertices corresponding to the pivots is a singular–configuration–vertex–representation.
Lemma

If $x \in B_{\min}$, then x has at least $\eta(G) - 1$ zero entries.

Proof.

- Write the η kernel eigenvectors of a basis B as the rows of the $\eta \times n$ matrix.

- Reduced by Gauss Row Reduction to M', with all entries in the columns above and below a pivot being zero.

- The set of vertices corresponding to the pivots is a singular-configuration-vertex-representation.

- But the weight-sequence of B_{\min} is entry-wise less than that of B.

Thus if $x \in B_{\min}$, then x has at least $\eta(G) - 1$ zero entries.
Theorem

For a graph G on n vertices of nullity η and core width τ, $\tau + \eta \leq n + 1$.

For which graphs is the upper bound reached?

Definition

A singular graph G on n vertices with nullity η and core width τ is said to be extremal singular if $\eta + \tau$ reaches $n + 1$.

Irene Sciriha
How large can a Core in a Fundamental System be?

Corollary

A singular graph G on n vertices of nullity η cannot have a core F_t of order t in \mathcal{F} if $t > n + 1 - \eta$.
Main Theorem

A graph G is extremal singular of nullity η, if and only if

- it is a core graph,
- the largest core in a fundamental system is a nut graph N and
- there are exactly $\eta - 1$ vertices of G not on N.
A graph G is extremal singular of nullity one if and only if G is a nut graph on τ vertices.

In an Extremal Singular Graph:

If H is a singular configuration for a core in \mathcal{F}, then $\tau \geq |H|$.

By interlacing, a SC H is grown into G by adding at least $\eta(G) - 1$ vertices.

Thus $n \geq |H| + \eta(G) - 1$ vertices.

Since $\tau + \eta(G) = n + 1$, $|H| \leq \tau$.

τ controls 'atom' size
A graph G is extremal singular of nullity one if and only if G is a nut graph on τ vertices.

In an Extremal Singular Graph:

If H is a singular configuration for a core in \mathcal{F}, then $\tau \geq |H|$.

By interlacing, a SC H is grown into G by adding at least $\eta(G) - 1$ vertices.

Thus $n \geq |H| + \eta(G) - 1$ vertices.

Since $\tau + \eta(G) = n + 1$, $|H| \leq \tau$.

\[\tau \] controls ’atom’ size
Nut Graph

A graph G is extremal singular of nullity one if and only if G is a nut graph on τ vertices.

In an Extremal Singular Graph:

If H is a singular configuration for a core in \mathcal{F}, then $\tau \geq |H|$.

By interlacing, a SC H is grown into G by adding at least $\eta(G) - 1$ vertices.

Thus $n \geq |H| + \eta(G) - 1$ vertices.

Since $\tau + \eta(G) = n + 1$, $|H| \leq \tau$.
A graph G is extremal singular of nullity one if and only if G is a nut graph on τ vertices.

If H is a singular configuration for a core in \mathcal{F}, then $\tau \geq |H|$.

By interlacing, a SC H is grown into G by adding at least $\eta(G) - 1$ vertices.

Thus $n \geq |H| + \eta(G) - 1$ vertices.

Since $\tau + \eta(G) = n + 1$, $|H| \leq \tau$.
The maximum core size \(\tau \) for a minimal basis of the nullspace of \(G \) is an invariant of \(G \).

\[\tau + \eta \leq n + 1 \]

In extremal singular graphs:

- Each vertex is a core vertex (core graph);
- The largest core, of size \(\tau \) in a fundamental system is a nut graph \(N \);
- There are exactly \(\eta - 1 \) vertices of \(G \) not on \(N \);
- Not only are core orders in \(\mathcal{F} \) bounded above by \(\tau \); the orders of a singular configuration 'grown' from any core of \(\mathcal{F} \) is also bounded above by \(\tau \).
Significance of τ

- The maximum core size τ for a minimal basis of the nullspace of G is an invariant of G.
- $\tau + \eta \leq n + 1$
- In extremal singular graphs:
 - Each vertex is a core vertex (core graph);
 - The largest core, of size τ in a fundamental system is a nut graph N;
 - There are exactly $\eta - 1$ vertices of G not on N;
 - Not only are core orders in F bounded above by τ; the orders of a singular configuration 'grown' from any core of F is also bounded above by τ.

Significance of τ

- The maximum core size τ for a minimal basis of the nullspace of G is an invariant of G.
- $\tau + \eta \leq n + 1$
- In extremal singular graphs:
 - Each vertex is a core vertex (core graph);
 - The largest core, of size τ in a fundamental system is a nut graph N;
 - There are exactly $\eta - 1$ vertices of G not on N;
 - Not only are core orders in F bounded above by τ; the orders of a singular configuration 'grown' from any core of F is also bounded above by τ.
The maximum core size τ for a minimal basis of the nullspace of G is an invariant of G.

$\tau + \eta \leq n + 1$

In extremal singular graphs:

- Each vertex is a core vertex (core graph);
- The largest core, of size τ in a fundamental system is a nut graph N;
- There are exactly $\eta - 1$ vertices of G not on N;
- Not only are core orders in \mathcal{F} bounded above by τ; the orders of a singular configuration 'grown' from any core of \mathcal{F} is also bounded above by τ.
The maximum core size τ for a minimal basis of the nullspace of G is an invariant of G.

$\tau + \eta \leq n + 1$

In extremal singular graphs:

- Each vertex is a core vertex (core graph);
- The largest core, of size τ in a fundamental system is a nut graph N;
- There are exactly $\eta - 1$ vertices of G not on N;
- Not only are core orders in \mathcal{F} bounded above by τ; the orders of a singular configuration 'grown' from any core of \mathcal{F} is also bounded above by τ.
The maximum core size τ for a minimal basis of the nullspace of G is an invariant of G.

$\tau + \eta \leq n + 1$

In extremal singular graphs:

- Each vertex is a core vertex (core graph);
- The largest core, of size τ in a fundamental system is a nut graph N;
- There are exactly $\eta - 1$ vertices of G not on N;
- Not only are core orders in \mathcal{F} bounded above by τ; the orders of a singular configuration 'grown' from any core of \mathcal{F} is also bounded above by τ.
The Second Malta Conference in Graph Theory and Combinatorics
(2MCGTC-2017)

http://www.um.edu.mt/events/2mcgtc2017/