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Motivation

• What makes a graph singular?

• Which substructures determine that a graph is
singular?

• To what extent can the nullity be increased by
adding vertices to a graph, while preserving the
original singular structure within the graph?
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Plan

• Substructures of Singular Graphs
(i) Cores

(ii) Singular Con�gurations

(iii) Nut Graphs

• Minimal Basis for an Eigenspace

• Graph Invariant: Core Order Sequence

• Nullity and Core Order exert mutual Control

• Extremal Singular Graphs

� Size of Substructures

� A Nut Subgraph has Maximum Size
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Singular Graph: Substructures

Singular Graph G : if ∃ x 6=0: Ax=0, x: kernel eigenvector.

Core F

Label G :(
A(F ) C′

(C′)t Q

)(
xF
0

)
=

(
0

0

)
each entry of xF 6= 0.
The induced subgraphF is a core of G .

If ∃x = xF : G is a core graph.

Singular Con�guration (SC)

A minimum # of columns of
C' determines an induced
subgraph of G .

Minimal Con�guration(MC)

A singular con�guration with
Q' =0.
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Singular Graph Nullity η

η linearly independent kernel eigenvectors with minimum support
sum determine a fundamental system of η cores of G .

The `Atoms' of Singular Graphs

There are η SCs as induced subgraphs of G .

Core F

Label G :(
A(F ) C′

(C′)t Q

)(
xF
0

)
=

(
0

0

)
each entry of xF 6= 0.

If ∃x = xF : G is a core graph.

A Structural Graph Invariant

The set of core vertices (CV):
those vertices that lie on some
core of G .
If a vertex does not lie on any
core of G , then it is said to be
core forbidden (CFV).
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Singular Graph Nullity 2

2 linearly independent kernel eigenvectors w. minimum support sum
{-2, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, -2, 1, 1, -1, 2, 0, 0, 0, 0, 0, 0}.
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Singular Graph Nullity 2

Singular Con�guration for kernel eigenvector
{-2, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}.
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Singular Graph Nullity 2

Singular Con�guration for kernel eigenvector
{0, 0, 0, 0, -2, 1, 1, -1, 2, 0, 0, 0, 0, 0, 0}.

Minimal Basis 8/ 1 Irene Sciriha



Nut Graph

A SC with no periphery.
The support is full.

Nut Graph

: A core graph of nullity one: connected & has no pendant vertex.
Nut graphs exist for all n ≥ 7.
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Minimal Basis

Support

The support wt(x) of a vector is the number of non-zero elements
in that vector.

Convention:

The vectors in a basis for a subspace are ordered according to the
monotonic non-decreasing sequence of the support of its
vectors.

Minimal Basis

The vectors x1, x2, . . . , x` in a basis for W with the smallest
support sum

∑`
i=1

wt(xi ), form a minimal basis Bmin for W .
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New Vector Space Invariant

Minimal Basis Vectors Support Sequence

I. Sciriha et al. GTNNY 1996

For Bmin: Support Sequence is t1, t2, . . . , tq
If for B : Support Sequence is s1, s2, . . . , sq,
then

∀i , ti ≤ si .

t1 t2 t3 t4 Support Sum Type
2 5 5 7 19 Minimal Basis
2 5 7 7 21 Not Minimal
2 3 7 7 19 Impossible
2 4 6 7 19 Impossible
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Maximum Support for a Minimal Basis

If Bmin for ker(A) is (x1, x2, . . . , xη), then the core-width τ
is the weight of xη: the largest support.

Minimal Basis 12/ 1 Irene Sciriha



Lemma

If x ∈ Bmin, then x has at least η(G )− 1 zero entries.

Proof.

Write the η kernel eigenvectors
of a basis B
as the rows of the η × n matrix.
: reduced by Gauss Row
Reduction to M′,
with all entries in the columns
above and below a pivot being
zero.

The set of vertices corresponding
to the pivots is a
singular�con�guration�

vertex�representation.
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Extremal Singular Graphs

Theorem

For a graph G on n vertices of nullity η and core width τ ,
τ + η ≤ n + 1.

For which graphs is the upper bound reached?

De�nition

A singular graph G on n vertices with nullity η and core width τ is

said to be extremal singular if η + τ reaches n + 1.

Minimal Basis 14/ 1 Irene Sciriha



How large can a Core in a Fundamental System be?

Corollary

A singular graph G on n vertices of nullity η cannot have a core Ft
of order t in F if t > n + 1− η.

Minimal Basis 15/ 1 Irene Sciriha



Nullity Controls Core size

Main Theorem

A graph G is extremal singular of nullity η, if and only if
• it is a core graph,
• the largest core in a fundamental system is a nut graph N and
• there are exactly η − 1 vertices of G not on N.

Minimal Basis 16/ 1 Irene Sciriha



τ controls 'atom' size

Nut Graph

A graph G is extremal singular of nullity one if and only if G is a
nut graph on τ vertices.

In an Extremal Singular Graph:

If H is a singular con�guration for a core in F , then τ ≥ |H|.

By interlacing, a SC H is grown into G by adding at least η(G )− 1
vertices.

Thus n ≥ |H|+ η(G )− 1 vertices.

Since τ + η(G ) = n + 1, |H| ≤ τ.
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Signi�cance of τ

The maximum core size τ for a minimal basis of the nullspace
of G is an invariant of G .

τ + η ≤ n + 1

In extremal singular graphs:

Each vertex is a core vertex (core graph);
The largest core, of size τ in a fundamental system is a nut
graph N;
There are exactly η − 1 vertices of G not on N;
Not only are core orders in F bounded above by τ ; the orders
of a singular con�guration 'grown' from any core of F is also
bounded above by τ .
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Each vertex is a core vertex (core graph);
The largest core, of size τ in a fundamental system is a nut
graph N;
There are exactly η − 1 vertices of G not on N;
Not only are core orders in F bounded above by τ ; the orders
of a singular con�guration 'grown' from any core of F is also
bounded above by τ .
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Malta Conference 2017

The Second Malta Conference in Graph Theory and Combinatorics
(2MCGTC-2017)

http://www.um.edu.mt/events/2mcgtc2017/
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