New Graph Invariants

Nut Graphs in Extremal Singular Graphs

Belgrade–SGA2016 May18-20 http://www.impalayu.com/sga01.

http://staff.um.edu.mt/isci1/ irene.sciriha-aquilina@um.edu.mt

Minimal Basis

Irene Sciriha

• What makes a graph singular?

• Which substructures determine that a graph is singular?

• To what extent can the nullity be increased by adding vertices to a graph, while preserving the original singular structure within the graph?

- (i) Cores
- (ii) Singular Configurations
- (iii) Nut Graphs
- Minimal Basis for an Eigenspace
- Graph Invariant: Core Order Sequence
 - Nullity and Core Order exert mutual Control
- Extremal Singular Graphs
 - Size of Substructures
 - A Nut Subgraph has Maximum Size

• Substructures of Singular Graphs (i) Cores

- (ii) Singular Configurations
- (iii) Nut Graphs
- Minimal Basis for an Eigenspace
- Graph Invariant: Core Order Sequence
 - Nullity and Core Order exert mutual Control
- Extremal Singular Graphs
 - Size of Substructures
 - A Nut Subgraph has Maximum Size

Substructures of Singular Graphs (i) Cores (ii) Singular Configurations (iii) Nut Graphs Minimal Basis for an Eigenspace Graph Invariant: Core Order Sequer Nullity and Core Order exert mutue Extremal Singular Graphs

- xtremal Singular Graphs
 - Size of Substructures
 - A Nut Subgraph has Maximum Size

- (i) Cores
- (ii) Singular Configurations
- (iii) Nut Graphs
- Minimal Basis for an Eigenspace
- Graph Invariant: Core Order Sequence
 - Nullity and Core Order exert mutual Control
- Extremal Singular Graphs
 - Size of Substructures
 - A Nut Subgraph has Maximum Size

- (i) Cores
- (ii) Singular Configurations
- (iii) Nut Graphs
- Minimal Basis for an Eigenspace
- Graph Invariant: Core Order Sequence
 - Nullity and Core Order exert mutual Control
- Extremal Singular Graphs
 - Size of Substructures
 - A Nut Subgraph has Maximum Size

- (i) Cores
- (ii) Singular Configurations
- (iii) Nut Graphs
- Minimal Basis for an Eigenspace
- Graph Invariant: Core Order Sequence
 - Nullity and Core Order exert mutual Control
- Extremal Singular Graphs
 - Size of Substructures
 - A Nut Subgraph has Maximum Size

- (i) Cores
- (ii) Singular Configurations
- (iii) Nut Graphs
- Minimal Basis for an Eigenspace
- Graph Invariant: Core Order Sequence
 - Nullity and Core Order exert mutual Control
- Extremal Singular Graphs
 - Size of Substructures
 - A Nut Subgraph has Maximum Size

- (i) Cores
- (ii) Singular Configurations
- (iii) Nut Graphs
- Minimal Basis for an Eigenspace
- Graph Invariant: Core Order Sequence
 - Nullity and Core Order exert mutual Control
- Extremal Singular Graphs
 - Size of Substructures
 - A Nut Subgraph has Maximum Size

- (i) Cores
- (ii) Singular Configurations
- (iii) Nut Graphs
- Minimal Basis for an Eigenspace
- Graph Invariant: Core Order Sequence
 - Nullity and Core Order exert mutual Control
- Extremal Singular Graphs
 - Size of Substructures
 - A Nut Subgraph has Maximum Size

- (i) Cores
- (ii) Singular Configurations
- (iii) Nut Graphs
- Minimal Basis for an Eigenspace
- Graph Invariant: Core Order Sequence
 - Nullity and Core Order exert mutual Control
- Extremal Singular Graphs
 - Size of Substructures
 - A Nut Subgraph has Maximum Size

- (i) Cores
- (ii) Singular Configurations
- (iii) Nut Graphs
- Minimal Basis for an Eigenspace
- Graph Invariant: Core Order Sequence
 - Nullity and Core Order exert mutual Control
- Extremal Singular Graphs
 - Size of Substructures
 - A Nut Subgraph has Maximum Size

Irene Sciriba

- (i) Cores
- (ii) Singular Configurations
- (iii) Nut Graphs
- Minimal Basis for an Eigenspace
- Graph Invariant: Core Order Sequence
 - Nullity and Core Order exert mutual Control
- Extremal Singular Graphs
 - Size of Substructures
 - A Nut Subgraph has Maximum Size

Irene Sciriba

Core F

Label G: $\begin{pmatrix} \mathbf{A}(F) & \mathbf{C}' \\ (\mathbf{C}')^{\mathsf{t}} & \mathbf{Q} \end{pmatrix} \begin{pmatrix} \mathbf{x}_F \\ \mathbf{0} \end{pmatrix} = \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \end{pmatrix}$ each entry of $\mathbf{x}_F \neq 0$. The induced subgraph F is a core of G If $\exists \mathbf{x} = \mathbf{x}_F$: G is a core graph.

Singular Configuration (SC)

A minimum # of columns of C' determines an induced subgraph of G.

Minimal Configuration(MC)

A singular configuration with Q' = 0.

・日本 ・ 日本 ・ 日本

Core FLabel G: $\begin{pmatrix} \mathbf{A}(F) & \mathbf{C}' \\ (\mathbf{C}')^{\mathbf{t}} & \mathbf{Q} \end{pmatrix} \begin{pmatrix} \mathbf{x}_F \\ \mathbf{0} \end{pmatrix} = \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \end{pmatrix}$ each entry of $\mathbf{x}_F \neq 0$. The induced subgraph F is a core of G. If $\exists \mathbf{x} = \mathbf{x}_F$: G is a core graph.

Singular Configuration (SC)

A minimum # of columns of C' determines an induced subgraph of G.

Minimal Configuration(MC)

A singular configuration with Q' = 0.

《口》 《聞》 《臣》 《臣》

Core F Label G: $\begin{pmatrix} \mathbf{A}(F) & \mathbf{C}' \\ (\mathbf{C}')^{\mathbf{t}} & \mathbf{Q} \end{pmatrix} \begin{pmatrix} \mathbf{x}_F \\ \mathbf{0} \end{pmatrix} = \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \end{pmatrix}$ each entry of $\mathbf{x}_F \neq 0$. The induced subgraph F is a core of G. If $\exists \mathbf{x} = \mathbf{x}_F$: G is a core graph.

Singular Configuration (SC)

A minimum # of columns of C' determines an induced subgraph of G.

Minimal Configuration(MC)

A singular configuration with Q' = 0.

・四ト ・ヨト ・ヨト

Core F Label G: $\begin{pmatrix} \mathbf{A}(F) & \mathbf{C}' \\ (\mathbf{C}')^{t} & \mathbf{Q} \end{pmatrix} \begin{pmatrix} \mathbf{x}_{F} \\ \mathbf{0} \end{pmatrix} = \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \end{pmatrix}$ each entry of $\mathbf{x}_{F} \neq 0$. The induced subgraph F is a core of G. If $\exists \mathbf{x} = \mathbf{x}_{F}$: G is a core graph.

Singular Configuration (SC)

A minimum # of columns of C' determines an induced subgraph of G.

Minimal Configuration(MC)

A singular configuration with Q' = 0.

Core F

Label G:

$$\begin{pmatrix} \mathbf{A}(F) & \mathbf{C}' \\ (\mathbf{C}')^{t} & \mathbf{Q} \end{pmatrix} \begin{pmatrix} \mathbf{x}_{F} \\ \mathbf{0} \end{pmatrix} = \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \end{pmatrix}$$
each entry of $\mathbf{x}_{F} \neq 0$.
The induced subgraph F is a core of G

If $\exists \mathbf{x} = \mathbf{x}_F$: *G* is a core graph.

Singular Configuration (SC)

A minimum # of columns of C' determines an induced subgraph of G.

Minimal Configuration(MC)

A singular configuration with Q' = 0.

Core F

Label G:

$$\begin{pmatrix} \mathbf{A}(F) & \mathbf{C}' \\ (\mathbf{C}')^{t} & \mathbf{Q} \end{pmatrix} \begin{pmatrix} \mathbf{x}_{F} \\ \mathbf{0} \end{pmatrix} = \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \end{pmatrix}$$
each entry of $\mathbf{x}_{F} \neq 0$.

The induced subgraph F is a core of G.

If $\exists \mathbf{x} = \mathbf{x}_F$: *G* is a core graph.

Singular Configuration (SC)

A minimum # of columns of C' determines an induced subgraph of G.

Minimal Configuration(MC)

A singular configuration with Q' = 0.

Core F

Label G:

$$\begin{pmatrix} \mathbf{A}(F) & \mathbf{C}' \\ (\mathbf{C}')^{t} & \mathbf{Q} \end{pmatrix} \begin{pmatrix} \mathbf{x}_{F} \\ \mathbf{0} \end{pmatrix} = \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \end{pmatrix}$$
each entry of $\mathbf{x}_{F} \neq 0$.

The induced subgraph F is a core of G.

If $\exists \mathbf{x} = \mathbf{x}_F$: *G* is a core graph.

Singular Configuration (SC)

A minimum # of columns of C' determines an induced subgraph of G.

Minimal Configuration(MC)

A singular configuration with Q' = 0.

 η linearly independent kernel eigenvectors with minimum support sum determine a **fundamental system** of η cores of G.

The 'Atoms' of Singular Graphs

There are η SCs as induced subgraphs of G.

Core F

Label G: $\begin{pmatrix} \mathbf{A}(F) & \mathbf{C}' \\ (\mathbf{C}')^{t} & \mathbf{Q} \end{pmatrix} \begin{pmatrix} \mathbf{x}_{F} \\ \mathbf{0} \end{pmatrix} = \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \end{pmatrix}$ each entry of $\mathbf{x}_{F} \neq \mathbf{0}$. If $\exists \mathbf{x} = \mathbf{x}_{F}$: G is a core graph.

A Structural Graph Invariant

The set of core vertices (CV): those vertices that lie on some core of G. If a vertex does not lie on any core of G, then it is said to be *core forbidden* (CFV).

 η linearly independent kernel eigenvectors with minimum support sum determine a **fundamental system** of η cores of G.

The 'Atoms' of Singular Graphs

There are η SCs as induced subgraphs of G.

Core F
Label G:

$$\begin{pmatrix} \mathbf{A}(F) & \mathbf{C}' \\ (\mathbf{C}')^{t} & \mathbf{Q} \end{pmatrix} \begin{pmatrix} \mathbf{x}_{F} \\ \mathbf{0} \end{pmatrix} = \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \end{pmatrix}$$

each entry of $\mathbf{x}_{F} \neq 0$.
If $\exists \mathbf{x} = \mathbf{x}_{F}$: G is a core graph.

A Structural Graph Invariant

The set of core vertices (CV): those vertices that lie on some core of G. If a vertex does not lie on any core of G, then it is said to be *core forbidden* (CFV).

 η linearly independent kernel eigenvectors with minimum support sum determine a **fundamental system** of η cores of G.

The 'Atoms' of Singular Graphs

There are η SCs as induced subgraphs of G.

Core F

Label G:

$$\begin{pmatrix} \mathbf{A}(F) & \mathbf{C}' \\ (\mathbf{C}')^{t} & \mathbf{Q} \end{pmatrix} \begin{pmatrix} \mathbf{x}_{F} \\ \mathbf{0} \end{pmatrix} = \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \end{pmatrix}$$
each entry of $\mathbf{x}_{F} \neq \mathbf{0}$.

If
$$\exists \mathbf{x} = \mathbf{x}_F$$
: G is a core graph.

A Structural Graph Invariant

The set of core vertices (CV): those vertices that lie on some core of G. If a vertex does not lie on any core of G, then it is said to be *core forbidden* (CFV).

Irene Sciriba

 η linearly independent kernel eigenvectors with minimum support sum determine a **fundamental system** of η cores of G.

The 'Atoms' of Singular Graphs

There are η SCs as induced subgraphs of G.

Core F

Label G:

$$\begin{pmatrix} \mathbf{A}(F) & \mathbf{C}' \\ (\mathbf{C}')^{t} & \mathbf{Q} \end{pmatrix} \begin{pmatrix} \mathbf{x}_{F} \\ \mathbf{0} \end{pmatrix} = \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \end{pmatrix}$$
each entry of $\mathbf{x}_{F} \neq \mathbf{0}$.

If
$$\exists \mathbf{x} = \mathbf{x}_F$$
: G is a core graph.

A Structural Graph Invariant

The set of core vertices (CV): those vertices that lie on some core of G. If a vertex does not lie on any core of G, then it is said to be *core forbidden* (CFV).

Irene Sciriba

 η linearly independent kernel eigenvectors with minimum support sum determine a **fundamental system** of η cores of *G*.

The 'Atoms' of Singular Graphs

There are η SCs as induced subgraphs of G.

Core F

Label G:

$$\begin{pmatrix} \mathbf{A}(F) & \mathbf{C}' \\ (\mathbf{C}')^{t} & \mathbf{Q} \end{pmatrix} \begin{pmatrix} \mathbf{x}_{F} \\ \mathbf{0} \end{pmatrix} = \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \end{pmatrix}$$
each entry of $\mathbf{x}_{F} \neq 0$.

If
$$\exists \mathbf{x} = \mathbf{x}_F$$
: *G* is a core graph.

A Structural Graph Invariant

The set of core vertices (CV): those vertices that lie on some core of G. If a vertex does not lie on any core of G, then it is said to be *core forbidden* (CFV).

Singular Graph Nullity 2

2 linearly independent kernel eigenvectors w. minimum support sum {-2, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, -2, 1, 1, -1, 2, 0, 0, 0, 0, 0, 0}.

Singular Graph Nullity 2

Singular Configuration for kernel eigenvector $\{-2, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\}$.

• = •

∃⇒

Singular Graph Nullity 2

Singular Configuration for kernel eigenvector $\{0, 0, 0, 0, -2, 1, 1, -1, 2, 0, 0, 0, 0, 0, 0\}$.

≣ →

< 🗗 🕨

A SC with no periphery. The support is full.

Nut Graph

: A core graph of nullity one: connected & has no pendant vertex. Nut graphs exist for all $n \ge 7$.

A SC with no periphery. The support is full.

Nut Graph

: A core graph of nullity one: connected & has no pendant vertex. Nut graphs exist for all $n \ge 7$.

Support

The **support** wt(x) of a vector is the number of non-zero elements in that vector.

Convention:

The vectors in a basis for a subspace are ordered according to the **monotonic non-decreasing sequence** of the support of its vectors.

Minimal Basis

The vectors $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_{\ell}$ in a basis for W with the smallest support sum $\sum_{i=1}^{\ell} wt(\mathbf{x}_i)$, form a **minimal basis** B_{min} for W.

Support

The **support** wt(x) of a vector is the number of non-zero elements in that vector.

Convention:

The vectors in a basis for a subspace are ordered according to the **monotonic non-decreasing sequence** of the support of its vectors.

Minimal Basis

The vectors $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_\ell$ in a basis for W with the smallest support sum $\sum_{i=1}^{\ell} wt(\mathbf{x}_i)$, form a **minimal basis** B_{min} for W.

Support

The **support** wt(x) of a vector is the number of non-zero elements in that vector.

Convention:

The vectors in a basis for a subspace are ordered according to the **monotonic non-decreasing sequence** of the support of its vectors.

Minimal Basis

The vectors $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_\ell$ in a basis for W with the smallest support sum $\sum_{i=1}^{\ell} wt(\mathbf{x}_i)$, form a **minimal basis** B_{min} for W.

Minimal Basis Vectors Support Sequence

I. Sciriha et al. GTNNY 1996

$$\forall i, t_i \leq s_i.$$

t_1	t_2	t_3	t ₄	Support Sum	Туре

Minimal Basis Vectors Support Sequence

I. Sciriha et al. GTNNY 1996

$$\forall i, t_i \leq s_i.$$

t_1	t_2	t_3	t ₄	Support Sum	Туре
2	5	5	7	19	Minimal Basis

Minimal Basis Vectors Support Sequence

I. Sciriha et al. GTNNY 1996

$$\forall i, t_i \leq s_i.$$

t_1	t_2	t_3	t ₄	Support Sum	Туре
2	5	5	7	19	Minimal Basis
2	5	7	7	21	Not Minimal

Minimal Basis Vectors Support Sequence

I. Sciriha et al. GTNNY 1996

$$\forall i, t_i \leq s_i.$$

t_1	t_2	t_3	t_4	Support Sum	Туре
2	5	5	7	19	Minimal Basis
2	5	7	7	21	Not Minimal
2	3	7	7	19	Impossible

Minimal Basis Vectors Support Sequence

I. Sciriha et al. GTNNY 1996

$$\forall i, t_i \leq s_i.$$

t_1	t_2	t ₃	t ₄	Support Sum	Туре
2	5	5	7	19	Minimal Basis
2	5	7	7	21	Not Minimal
2	3	7	7	19	Impossible
2	4	6	7	19	Impossible

Minimal Basis Vectors Support Sequence

I. Sciriha et al. GTNNY 1996

$$\forall i, t_i \leq s_i.$$

t_1	t_2	t ₃	t ₄	Support Sum	Туре
2	5	5	7	19	Minimal Basis
2	5	7	7	21	Not Minimal
2	3	7	7	19	Impossible
2	4	6	7	19	Impossible

Minimal Basis Vectors Support Sequence

I. Sciriha et al. GTNNY 1996

$$\forall i, t_i \leq s_i.$$

t_1	t_2	t ₃	t ₄	Support Sum	Туре
2	5	5	7	19	Minimal Basis
2	5	7	7	21	Not Minimal
2	3	7	7	19	Impossible
2	4	6	7	19	Impossible

Maximum Support for a Minimal Basis

If B_{min} for ker(A) is $(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_\eta)$, then the *core-width* τ is the weight of \mathbf{x}_η : the largest support.

∃ >

If $\mathbf{x} \in B_{min}$, then \mathbf{x} has at least $\eta(G) - 1$ zero entries.

Proof.

Write the η kernel eigenvectors of a basis B as the rows of the η × n matrix.
 reduced by Gauss Row Reduction to M', with all entries in the columns above and below a pivot being zero.

 The set of vertices corresponding to the pivots is a singular-configurationvertex-representation.

If $\mathbf{x} \in B_{min}$, then \mathbf{x} has at least $\eta(G) - 1$ zero entries.

Proof.

 Write the η kernel eigenvectors of a basis B as the rows of the η × n matrix.
 reduced by Gauss Row Reduction to M', with all entries in the columns above and below a pivot being zero.

 The set of vertices corresponding to the pivots is a singular-configurationvertex-representation.

If $\mathbf{x} \in B_{min}$, then \mathbf{x} has at least $\eta(G)-1$ zero entries.

Proof.

Write the η kernel eigenvectors of a basis B as the rows of the η × n matrix.
 reduced by Gauss Row Reduction to M', with all entries in the columns above and below a pivot being zero.

 The set of vertices corresponding to the pivots is a singular-configurationvertex-representation.

If $\mathbf{x} \in B_{min}$, then \mathbf{x} has at least $\eta(G)-1$ zero entries.

Proof.

- Write the η kernel eigenvectors of a basis B as the rows of the η × n matrix.
 reduced by Gauss Row Reduction to M', with all entries in the columns above and below a pivot being zero.
- The set of vertices corresponding to the pivots is a singular-configurationvertex-representation.

If $\mathbf{x} \in B_{min}$, then \mathbf{x} has at least $\eta(G)-1$ zero entries.

Proof.

- Write the η kernel eigenvectors of a basis B as the rows of the η × n matrix.
 reduced by Gauss Row Reduction to M', with all entries in the columns above and below a pivot being zero.
- The set of vertices corresponding to the pivots is a singular-configurationvertex-representation.

If $\mathbf{x} \in B_{min}$, then \mathbf{x} has at least $\eta(G) - 1$ zero entries.

Proof.

- Write the η kernel eigenvectors of a basis B as the rows of the η × n matrix.
 reduced by Gauss Row Reduction to M', with all entries in the columns above and below a pivot being zero.
- The set of vertices corresponding to the pivots is a singular-configurationvertex-representation.

• But the weight-sequence of B_{min} is entry-wise less than that of B.

Thus if $\mathbf{x} \in B_{min}$, then \mathbf{x} has at least $\eta(G) - 1$ zero entries. \Box

Irene Sciriha

Theorem

For a graph G on n vertices of nullity η and core width τ , $\tau + \eta \leq n + 1$.

For which graphs is the upper bound reached?

Definition

A singular graph G on n vertices with nullity η and core width τ is said to be **extremal singular** if $\eta + \tau$ reaches n + 1.

How large can a Core in a Fundamental System be?

15/1

Corollary

A singular graph G on n vertices of nullity η cannot have a core F_t of order t in \mathcal{F} if $t > n + 1 - \eta$.

Image: A matrix and a matrix

∃ >

Main Theorem

A graph G is extremal singular of nullity η , if and only if

- it is a core graph,
- the largest core in a fundamental system is a nut graph N and

Irene Sciriha

• there are exactly $\eta - 1$ vertices of G not on N.

A graph G is extremal singular of nullity one if and only if G is a nut graph on τ vertices.

In an Extremal Singular Graph:

If H is a singular configuration for a core in \mathcal{F} , then $au \geq |H|$.

By interlacing, a SC H is grown into G by adding at least $\eta(G)-1$ vertices.

Thus $n \ge |H| + \eta(G) - 1$ vertices.

Since $\tau + \eta(G) = n + 1$, $|H| \le \tau$.

A graph G is extremal singular of nullity one if and only if G is a nut graph on τ vertices.

In an Extremal Singular Graph:

If H is a singular configuration for a core in \mathcal{F} , then $au \geq |H|$

By interlacing, a SC H is grown into G by adding at least $\eta(G) - 1$ vertices.

Irene Sciriha

Thus $n \geq |H| + \eta(G) - 1$ vertices.

Since $\tau + \eta(G) = n + 1$, $|H| \leq \tau$.

A graph G is extremal singular of nullity one if and only if G is a nut graph on τ vertices.

In an Extremal Singular Graph:

If H is a singular configuration for a core in \mathcal{F} , then $\tau \geq |H|$.

By interlacing, a SC H is grown into G by adding at least $\eta(G) - 1$ vertices.

Thus $n \ge |H| + \eta(G) - 1$ vertices.

Since $\tau + \eta(G) = n + 1$, $|H| \leq \tau$.

A graph G is extremal singular of nullity one if and only if G is a nut graph on τ vertices.

In an Extremal Singular Graph:

If H is a singular configuration for a core in \mathcal{F} , then $\tau \geq |H|$.

By interlacing, a SC H is grown into G by adding at least $\eta(G) - 1$ vertices.

Thus $n \ge |H| + \eta(G) - 1$ vertices.

Since $\tau + \eta(G) = n + 1$, $|H| \leq \tau$.

- The maximum core size τ for a minimal basis of the nullspace of G is an invariant of G.
- $\tau + \eta \leq n+1$
- In extremal singular graphs:
 - Each vertex is a core vertex (core graph);
 - The largest core, of size τ in a fundamental system is a nut graph N;
 - ullet There are exactly $\eta-1$ vertices of G not on N;
 - Not only are core orders in *F* bounded above by *τ*; the orders of a singular configuration 'grown' from any core of *F* is also bounded above by *τ*.

- The maximum core size τ for a minimal basis of the nullspace of G is an invariant of G.
- $\tau + \eta \leq n + 1$
- In extremal singular graphs:
 - Each vertex is a core vertex (core graph);
 - The largest core, of size τ in a fundamental system is a nut graph N;
 - ullet There are exactly $\eta-1$ vertices of G not on N;
 - Not only are core orders in *F* bounded above by *τ*; the orders of a singular configuration 'grown' from any core of *F* is also bounded above by *τ*.

- The maximum core size τ for a minimal basis of the nullspace of G is an invariant of G.
- $\tau + \eta \leq n + 1$
- In extremal singular graphs:
 - Each vertex is a core vertex (core graph);
 - The largest core, of size τ in a fundamental system is a nut graph N;
 - ullet There are exactly $\eta-1$ vertices of ${\it G}$ not on ${\it N}$;
 - Not only are core orders in *F* bounded above by *τ*; the orders of a singular configuration 'grown' from any core of *F* is also bounded above by *τ*.

- The maximum core size τ for a minimal basis of the nullspace of G is an invariant of G.
- $\tau + \eta \leq n + 1$
- In extremal singular graphs:
 - Each vertex is a core vertex (core graph);
 - The largest core, of size τ in a fundamental system is a nut graph N;
 - ullet There are exactly $\eta-1$ vertices of G not on N;
 - Not only are core orders in *F* bounded above by *τ*; the orders of a singular configuration 'grown' from any core of *F* is also bounded above by *τ*.

- The maximum core size τ for a minimal basis of the nullspace of G is an invariant of G.
- $\tau + \eta \leq n + 1$
- In extremal singular graphs:
 - Each vertex is a core vertex (core graph);
 - The largest core, of size τ in a fundamental system is a nut graph N;
 - There are exactly $\eta 1$ vertices of G not on N;
 - Not only are core orders in *F* bounded above by *τ*; the orders of a singular configuration 'grown' from any core of *F* is also bounded above by *τ*.

Irene Sciriba

- The maximum core size τ for a minimal basis of the nullspace of G is an invariant of G.
- $\tau + \eta \leq n + 1$
- In extremal singular graphs:
 - Each vertex is a core vertex (core graph);
 - The largest core, of size τ in a fundamental system is a nut graph N;
 - There are exactly $\eta 1$ vertices of G not on N;
 - Not only are core orders in *F* bounded above by *τ*; the orders of a singular configuration 'grown' from any core of *F* is also bounded above by *τ*.

The Second Malta Conference in Graph Theory and Combinatorics (2MCGTC-2017)

http://www.um.edu.mt/events/2mcgtc2017/

Irene Sciriha

Minimal Basis

Minimal Basis

Minimal Basis

Minimal Basis