Cospectrality of graphs with respect to distance matrices

Pierre Hansen

GERAD and HEC Montreal, Canada

Joint work with

Mustapha Aouchiche

Cospectrality of distance matrices

Pierre Hansen

(本間) (本語) (本語)

Outline

- Definitions
- Cospectrality of adjacency based matrices (A, L, Q)
- Cospectrality of distance based matrices (D, D^L, D^Q)
- Examples of graphs defined by their spectra

イロト イポト イヨト イヨト

э

A-spectrum

Let G = (V, E) be a graph on *n* vertices.

• The adjacency matrix: $A = (a_{ij})$

$$a_{ij} = \left\{ egin{array}{ccc} 1 & ext{if } ij \in E \ 0 & ext{if } ij
ot\in E \end{array}
ight.$$

• The A-spectrum of G is the spectrum of A and denoted $(\lambda_1, \lambda_2, \ldots, \lambda_n)$, with $\lambda_1 \ge \lambda_2 \ge \ldots \ge \lambda_n$.

For more details see: [D. Cvetković, M. Doob, H. Sachs, Spectra of Graphs-Theory and Applications, Verlag, Heidelberg-Leipzig, 1995]

イロト イポト イヨト イヨト

L-spectrum

- The Laplacian: L = Diag A, where Diag is the diagonal matrix of G's degrees and A the adjacency matrix.
- The *L*-spectrum of *G* is the spectrum of *L* and denoted $(\mu_1, \mu_2, \ldots, \mu_n)$, with $\mu_1 \ge \mu_2 \ge \ldots \ge \mu_n$.

For a survey see: [R. Merris, Laplacian matrices of graphs: a survey. Linear Algebra Appl. 197/198 (1994) 143-176]

イロト イヨト イヨト イヨト

Q-spectrum

- The signless Laplacian: Q = Diag + A, where Diag is the diagonal matrix of G's degrees and A the adjacency matrix.
- The Q-spectrum of G is the spectrum of Q and denoted (q_1, q_2, \ldots, q_n) , with $q_1 \ge q_2 \ge \ldots \ge q_n$.

For more details see:

[D. Cvetković, S. K. Simić, Towards a Spectral Theory of Graphs Based on the Signless Laplacian. I. Publ. Inst. Math. (Beograd) 85(99) (2009) 19-33]
[D. Cvetković, S. K. Simić, Towards a Spectral Theory of Graphs Based on the Signless Laplacian. II. Linear Algebra Appl. 432 (2010) 2257-2272]
[D. Cvetković, S. K. Simić, Towards a Spectral Theory of Graphs Based on the Signless Laplacian. III. Appl. Anal. Discrete Math. 4 (2010) 156-166]

イロト イポト イヨト イヨト

D-spectrum

- The distance matrix of G is $D = (d_{ij})$, where d_{ij} is the distance (length of a shortest path) between the vertices i and j.
- The D-spectrum of G is the spectrum of D and denoted (∂₁, ∂₂,..., ∂_n), with ∂₁ ≥ ∂₂ ≥ ... ≥ ∂_n.

For a survey see: [M. Aouchiche, P. Hansen, Linear Algebra Appl. 458, 2014] [D. Stevanović, A. Ilić, in: Math. Chem. Monogr., vol.12, Univ. of Kragujevac, Kragujevac, 2010]

イロト イポト イヨト イヨト

D^L-spectrum

• The transmission T(v) of a vertex v is

$$T(v) = \sum_{u \in V} d(u, v)$$

- The distance Laplacian of G is $D^L = Tr D$, where Tr is the diagonal matrix of transmissions in G
- The D^L -spectrum of G is the spectrum of D and denoted $(\partial_1^L, \partial_2^L, \ldots, \partial_n^L)$, with $\partial_1^L \ge \partial_2^L \ge \ldots \ge \partial_n^L$.

For more details see:

[M. Aouchiche, P. Hansen, Two Laplacians for the Distance Matrix of a Graph. Linear Algebra Appl. 439 (2013) 21-33]
[M. Aouchiche, P. Hansen, Some properties of the distance Laplacian

eigenvalues of a graph. Czech. Math. Journal, 64 (2014) 751-761]

・ロッ ・雪 ・ ・ ヨ ・ ・

э

D^Q -spectrum

- The distance Laplacian of G is $D^Q = Tr + D$, where Tr is the diagonal matrix of transmissions in G
- The D^Q -spectrum of G is the spectrum of D and denoted $(\partial_1^Q, \partial_2^Q, \dots, \partial_n^Q)$, with $\partial_1^Q \ge \partial_2^Q \ge \dots \ge \partial_n^Q$.

For more details see: [M. Aouchiche, P. Hansen, Two Laplacians for the Distance Matrix of a Graph. Linear Algebra Appl. 439 (2013) 21-33] [M. Aouchiche, P. Hansen, On the distance signless Laplacian of a graph, Linear and Multilinear Algebra, 64 (2016) 1113-1123]

イロト イポト イヨト イヨト

Cospectrality

For a given graph matrix M

- two graphs are *M*-cospectral if they share the same *M*-spectrum
- isomorphic graphs are trivially *M*-cospectral, for any graph matrix *M*
- two *M*-cospectral non isomorphic graphs are called *M*-cospectral mates or *M*-mates

If M_1, M_2, \ldots, M_k are graph matrices, two graphs are (M_1, M_2, \ldots, M_k) -mates if they are M_i -mates for all $i = 1, 2, \ldots, k$.

イロト イポト イヨト イヨト

A-Cospectrality

- Which graphs are determined by their A-spectrum? posed in [Günthard, Primas, Helv. Chim. Acta 39, 1956]
- Günthard and Primas conjectured: There are no A-mates
- Refutation over the class of trees in [Collatz, Sinogowitz, Abh. Math. Sem. Univ. Hamburg 21, 1957]

• • = • • = •

A-Cospectrality

• Refutation for general graphs in Cvetković's Thesis, Univ. Beograd, 1971

Two A-cospectral graphs.

Cospectrality of dist	ance matrices
-----------------------	---------------

・ 「 ・ ・ こ ・ ・ こ ・ ・

A-Cospectrality

• Refutation for connected graphs in [Baker, J. Math. Phys. 7, 1966]

Two A-cospectral connected graphs.

Cospectrality of distance matrices

Pierre Hansen

Belgrade, May 18-20, 2016

▶ < 프 ▶ < 프 ▶</p>

12 / 33

A-Cospectrality

First infinite family of trees with a A-mate was proposed in [Schwenk, In: Harary (Ed.), New Directions in the Theory of Graphs, 1973]

Other constructions in [van Dam, Haemers, Linear Algebra Appl. 373, 2003] [van Dam, Haemers, Koolen, Linear Algebra Appl. 423, 2007] [Godsil, McKay, Lecture Notes in Math., Vol. 560, 1976] [Godsil, McKay, Aequationes Mathematicae 25, 1982] [Haemers, Spence, European J Combinatorics 25, 2004] [Johnson, Newman, J. Combin. Theory B 28, 1980]

Cospectrality of distance matrices

・ロト ・回ト ・ヨト ・ヨト

A-Cospectrality

Surprise : asymptotically every tree has a A-mate Proved in [Schwenk, In: Harary (Ed.), New Directions in the Theory of Graphs, 1973]

Number of graphs with a A-mate was studied and the following table was taken from [Brouwer, Spence, Elec J of Combinatorics 16, 2009]

Nb of vertices	5	6	7	8	9	10	11	12
Nb of graphs	34	156	1044	12346	274668	12005168	1018997864	165091172592
Nb of graphs with a mate	2	10	110	1722	51039	2560606	215331676	31067572481

・ 同 ト ・ ヨ ト ・ ヨ ト

Two *L*-cospectral graphs.

For more about L-cospectrality, see

[Fujii, Katsuda, Discrete Math. 207, 1999] [Haemers, Spence, European J Combinatorics 25, 2004] [Halbeisen, Hungerbühler, J. Graph Theory 31, 1999] [Merris, Linear and Multilinear Algebra 43, 1997] [Merris, Linear Algebra Appl. 197/198, 1994] [Tan, Interdisciplinary Information Sciences 4, 1998]

・ロト ・四ト ・ヨト ・ヨト

・ロト ・回ト ・ヨト ・ヨト

D-Cospectrality

The study of *D*-Cospectrality evolved in a similar way as for *A*-cospectrality

- In [McKay, Ars Combinatoria 3, 1977]:
 - The smallest *D*-mates (17 vertices)

- Construction of an infinite family of trees with a mate
- Proof of asymptotically every tree has a D-mate

D-Cospectrality

We used *Nauty* to enumerate all trees on up to 20 vertices (https://cs.anu.edu.au/~bdm/nauty) We used *AutoGraphiX III* to evaluate their *D*-spectra (https://www.gerad.ca/~gillesc/)

- 2 D-mates over 48629 trees on 17 vertices
- 2 pairs *D*-mates over 123867 trees on 18 vertices (can be obtained using Mckay's method)
- 6 pairs *D*-mates over 317955 trees on 19 vertices (4 can be obtained using Mckay's method)
- 14 pairs *D*-mates over 823065 trees on 20 vertices (9 can be obtained using Mckay's method)

・ロト ・ 一日 ・ ・ ヨ ト ・ ・ ヨ ト ・

Cospectrality of distance based matrices

D-Cospectrality

Example of D-mates that cannot be obtained using McKay's Method

Cospectrality of distance matrices

Pierre Hansen

Belgrade, May 18-20, 2016

< ∃⇒

19 / 33

Cospectrality of distance based matrices

D-Cospectrality

Pairs, by column, of D-mates that can be obtained using McKay's Method

Cospectrality of distance matrices

Pierre Hansen

Belgrade, May 18-20, 2016

20 / 33

D-Cospectrality

[Stevanović, Ilić, in: Math. Chem. Monogr., 12, Univ. of Kragujevac, 2010] suggests

Conjecture There exists no pair of distance noncospectral trees T_1 and T_2 , such that $\partial_1(T_1) = \partial_1(T_2)$

It was tested, in the same paper, on trees on up to 20 vertices and chemical trees on up to 24 vertices

イロト イヨト イヨト イヨト

D-Cospectrality

Based on the enumeration (Nauty for generation, AutoGraphiX III for evaluation) of connected graphs on up to 20 vertices

- no D-mates with fewer than 7 vertices (141 graphs)
- 22 D-mates over 853 graphs on 7 vertices
- 658 D-mates over 11117 graphs on 8 vertices (8 triplets)
- 25058 *D*-mates over 261080 graphs on 9 vertices (up to 10 graphs with the same *D*-spectrum)
- 1389984 *D*-mates over 11716571 graphs on 10 vertices (up to 21 graphs with the same *D*-spectrum)

・ロト ・ 日 ・ ・ ヨ ・ ・ モ ・ ・

Cospectrality of distance based matrices

D^L -Cospectrality

(日本) (日本) (日本)

э

D^L -Cospectrality

Based on the enumeration (Nauty for generation, AutoGraphiX III for evaluation) of connected graphs on up to 20 vertices

- no D^L-mates with fewer than 7 vertices (141 graphs)
- 43 D^L-mates over 853 graphs on 7 vertices (1 triplet)
- 745 *D^L*-mates over 11117 graphs on 8 vertices (up to 4 graphs with the same *D^L*-spectrum)
- 19778 *D^L*-mates over 261080 graphs on 9 vertices (up to 8 graphs with the same *D^L*-spectrum)
- 787851 *D^L*-mates over 11716571 graphs on 10 vertices (up to 16 graphs with the same *D^L*-spectrum)

・ロト ・回ト ・ヨト ・ヨト

Cospectrality of distance based matrices

Cospectrality of distance matrices

Pierre Hansen

Belgrade, May 18-20, 2016

・ 同 ト ・ ヨ ト ・ ヨ ト …

25 / 33

э

D^Q -Cospectrality

Based on the enumeration (Nauty for generation, AutoGraphiX III for evaluation) of connected graphs on up to 20 vertices

- no D^Q-mates with fewer than 5 vertices (8 graphs)
- 2 D^Q-mates over 21 graphs on 5 vertices
- 6 D^Q-mates over 112 graphs on 6 vertices
- 38 D^Q-mates over 853 graphs on 7 vertices
- 453 D^Q-mates over 11117 graphs on 8 vertices (11 triplets)
- 8168 D^Q-mates over 261080 graphs on 9 vertices (up to 4 graphs with the same D^Q-spectrum)
- 319324 D^Q-mates over 11716571 graphs on 10 vertices (up to 9 graphs with the same D^Q-spectrum)

(1日) (1日) (日)

Comparison

For all graphs on 10 vertices, repartition of the size of families sharing the same M-spectrum

Family size	\mathcal{D}	\mathcal{D}^L	\mathcal{D}^Q
2	583922	345065	148101
3	46300	20010	5978
4	14369	6947	1138
5	1905	819	87
6	1714	580	26
7	288	138	4
8	283	82	1
9	45	30	1
10	64	17	0
11	33	6	0
12	10	5	0
13	2	5	0
14	4	2	0
15	3	1	0
16	2	2	0
21	1	0	0
Total	1389984	787851	319324

Cospectrality of distance matrices

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

э

Comparison

Proportions of mates among all graphs on up to 10 vertices

n	\mathcal{D}	\mathcal{D}^L	\mathcal{D}^Q
3	0	0	0
4	0	0	0
5	0	0	0.095238095
6	0	0	0.053571429
7	0.025791325	0.050410317	0.044548652
8	0.05918863	0.067014482	0.040748403
9	0.095978244	0.075754558	0.03128543
10	0.118634027	0.067242455	0.027254049

Cospectrality of distance matrices

Pierre Hansen

Belgrade, May 18-20, 2016

イロト イヨト イヨト イヨト

28 / 33

Comparison

Number of spectra for graphs on up to 10 vertices

п	# of graphs	# of \mathcal{D} –spectra	# of \mathcal{D}^L –spectra	# of \mathcal{D}^Q –spectra
3	2	2	2	2
4	6	6	6	6
5	21	21	21	20
6	112	112	112	109
7	853	842	831	834
8	11117	10784	10730	10885
9	261080	247984	251007	256900
10	11716571	10975532	11302429	11552583

Cospectrality of distance matrices

Pierre Hansen

イロン 不得と 不良と 不良とう

29 / 33

Cospectrality involving 2 Or 3 matrices

For all graphs on up to 10 vertices

п	$N(\mathcal{D}, \mathcal{D}^L)$	$M(\mathcal{D}, \mathcal{D}^L)$	$N(\mathcal{D}, \mathcal{D}^Q)$	$M(\mathcal{D}, \mathcal{D}^Q)$	$N(\mathcal{D}^L, \mathcal{D}^Q)$	$M(\mathcal{D}^L, \mathcal{D}^Q)$	$N(\mathcal{D}, \mathcal{D}^L, \mathcal{D}^Q)$	$M(\mathcal{D}, \mathcal{D}^L, \mathcal{D}^Q)$
3 – 7	0	1	0	1	0	1	0	1
8	0	1	0	1	90	2	0	1
9	32	2	0	1	1965	(7×) 3	0	1
10	9449	(15×) 3	7712	(4×) 3	61909	(343×) 3	7622	(4×) 3
						(19×) 4		

イロト イポト イヨト イヨト

Cospectrality involving 2 Or 3 matrices

The 4 triplets of (D, D^L, D^Q) -mates on 10 vertices (columns)

Cospectrality of distance matrices

Pierre Hansen

Belgrade, May 18-20, 2016

Cospectrality of distance based matrices

Graphs determined by their D^L-spectrum

Theorem From distance Laplacian spectrum of G, we can deduce the following:

- (i) The number n of vertices of G.
- (ii) The Wiener index of G.
- (iii) The number of connected components of the complement \overline{G} .

Corollary The following graphs are determined by their distance Laplacian spectra: the complete graph K_n ; the graph $K_n - e$ obtained from K_n by the deletion of an edge; the path P_n ; the comet $Co_{n,3}$.

Theorem The k-partite graph on $n = n_1 + n_2 \cdots + n_k$ vertices, $K_{n_1,n_2,...,n_k}$, is determined by its distance Laplacian spectrum.

Cospectrality of distance matrices

Graphs determined by their D^Q -spectrum

Theorem From signless distance Laplacian spectrum of a G, we can deduce the following:

- (i) The number n of vertices of G.
- (ii) The Wiener index of G.
- (iii) Whether G is transmission regular.

Corollary The following graphs are determined by their distance signless Laplacian spectra:

- a) the complete graph K_n ;
- b) the graph K_n e obtained from K_n by the deletion of an edge;
- c) the path P_n ;
- d) the comet $Co_{n,3}$.

Theorem The cycle C_n is determined by its signless Laplacian distance spectrum.

イロト イポト イヨト イヨト