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Definitions
Cospectrality of adjacency based matrices (A, L, Q)
Cospectrality of distance based matrices (D, DL, DQ)

Examples of graphs defined by their spectra
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Definitions

Let G = (V, E) be a graph on n vertices.

@ The adjacency matrix: A = (ajj)

o J1 ifjeE
%= 0  ifijeE

@ The A-spectrum of G is the spectrum of A and denoted
()\1,)\2,...,)\,,), with \;1 > o > ... > A\,

For more details see:
[D. Cvetkovi¢, M. Doob, H. Sachs, Spectra of Graphs-Theory and Applications,
Verlag, Heidelberg-Leipzig, 1995]
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Definitions

@ The Laplacian: L = Diag — A, where Diag is the diagonal
matrix of G's degrees and A the adjacency matrix.

@ The L-spectrum of G is the spectrum of L and denoted
(/’L17/‘I/27” . 7Mn)' Wlth H1 Z 2 Z 2 Mn-
For a survey see:

[R. Merris, Laplacian matrices of graphs: a survey. Linear Algebra Appl.
197/198 (1994) 143-176]
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Definitions

Q@-spectrum

@ The signless Laplacian: @ = Diag + A, where Diag is the
diagonal matrix of G's degrees and A the adjacency matrix.

@ The @-spectrum of G is the spectrum of @ and denoted
(1,G2,--.,Gn), with g1 > g2 > ... > q,.

For more details see:

[D. Cvetkovi¢, S. K. Simi¢, Towards a Spectral Theory of Graphs Based on the
Signless Laplacian. I. Publ. Inst. Math. (Beograd) 85(99) (2009) 19-33]

[D. Cvetkovi¢, S. K. Simi¢, Towards a Spectral Theory of Graphs Based on the
Signless Laplacian. Il. Linear Algebra Appl. 432 (2010) 2257-2272]

[D. Cvetkovi¢, S. K. Simi¢, Towards a Spectral Theory of Graphs Based on the
Signless Laplacian. Ill. Appl. Anal. Discrete Math. 4 (2010) 156-166]
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Definitions

D-spectrum

@ The distance matrix of G is D = (dj;), where dj; is the distance
(length of a shortest path) between the vertices i and j.

@ The D-spectrum of G is the spectrum of D and denoted
(81,82,...,8,7), with 91 > 0r, > ... > 9,.

For a survey see:

[M. Aouchiche, P. Hansen, Linear Algebra Appl. 458, 2014]

[D. Stevanovi¢, A. lli¢, in: Math. Chem. Monogr., vol.12, Univ. of Kragujevac,
Kragujevac, 2010]
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Definitions

@ The transmission T(v) of a vertex v is

T(v)=> d(u,v)

uev

@ The distance Laplacian of G is DL = Tr — D, where Tr is the
diagonal matrix of transmissions in G

o The Dt-spectrum of G is the spectrum of D and denoted
(0L, 0%, ...,0L), with oF > 95 > ... > oL,

For more details see:

[M. Aouchiche, P. Hansen, Two Laplacians for the Distance Matrix of a Graph.
Linear Algebra Appl. 439 (2013) 21-33]

[M. Aouchiche, P. Hansen, Some properties of the distance Laplacian
eigenvalues of a graph. Czech. Math. Journal, 64 (2014) 751-761]
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Definitions

D@-spectrum

@ The distance Laplacian of G is D = Tr + D, where Tr is the
diagonal matrix of transmissions in G

@ The D@-spectrum of G is the spectrum of D and denoted
(02,08, ...,09), with 92 > a8 > ... > d9.

For more details see:

[M. Aouchiche, P. Hansen, Two Laplacians for the Distance Matrix of a Graph.
Linear Algebra Appl. 439 (2013) 21-33]

[M. Aouchiche, P. Hansen, On the distance signless Laplacian of a graph,
Linear and Multilinear Algebra, 64 (2016) 1113-1123]
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Definitions

Cospectrality

For a given graph matrix M

@ two graphs are M-cospectral if they share the same
M-spectrum

@ isomorphic graphs are trivially M-cospectral, for any graph
matrix M

@ two M-cospectral non isomorphic graphs are called
M-cospectral mates or M-mates

If My, M,, ..., My are graph matrices, two graphs are
(M1, My, ..., Mg)-mates if they are M;-mates forall i =1,2,... k.
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Cospectrality of adjacency based matrices

A-Cospectrality

@ Which graphs are determined by their A-spectrum? posed in
[Giinthard, Primas, Helv. Chim. Acta 39, 1956]

@ Giinthard and Primas conjectured: There are no A-mates

@ Refutation over the class of trees in [Collatz, Sinogowitz, Abh.
Math. Sem. Univ. Hamburg 21, 1957]

Two A-cospectral trees.
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Cospectrality of adjacency based matrices

A-Cospectrality

@ Refutation for general graphs in Cvetkovi¢'s Thesis, Univ.
Beograd, 1971

Two A-cospectral graphs.
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Cospectrality of adjacency based matrices

A-Cospectrality

@ Refutation for connected graphs in [Baker, J. Math. Phys. 7,
1966]

Two A-cospectral connected graphs.
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Cospectrality of adjacency based matrices

A-Cospectrality

First infinite family of trees with a A-mate was proposed in [Schwenk, In:
Harary (Ed.), New Directions in the Theory of Graphs, 1973]

Other constructions in

[van Dam, Haemers, Linear Algebra Appl. 373, 2003]

[van Dam, Haemers, Koolen, Linear Algebra Appl. 423, 2007]
[Godsil, McKay, Lecture Notes in Math., Vol. 560, 1976]
[Godsil, McKay, Aequationes Mathematicae 25, 1982]
[Haemers, Spence, European J Combinatorics 25, 2004]
[Johnson, Newman, J. Combin. Theory B 28, 1980]
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Cospectrality of adjacency based matrices

A-Cospectrality

Surprise : asymptotically every tree has a A-mate
Proved in [Schwenk, In: Harary (Ed.), New Directions in the
Theory of Graphs, 1973]

Number of graphs with a A-mate was studied and the following
table was taken from [Brouwer, Spence, Elec J of Combinatorics

16, 2009]

Nb of vertices 5 6 7 8 9 10 11 12
Nb of graphs 34 1561044 |12346 | 274668 | 12005168 | 1018997864 | 165091172592
Nb of graphs withamate| 2| 10| 110| 1722 | 51039 | 2560606 | 215331676 | 31067572481
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Cospectrality of adjacency based matrices

L-Cospectrality

Two L—cospectral graphs.

For more about L-cospectrality, see

[Fujii, Katsuda, Discrete Math. 207, 1999]

[Haemers, Spence, European J Combinatorics 25, 2004]
[Halbeisen, Hungerbiihler, J. Graph Theory 31, 1999]
[Merris, Linear and Multilinear Algebra 43, 1997]
[Merris, Linear Algebra Appl. 197/198, 1994]

[Tan, Interdisciplinary Information Sciences 4, 1998]
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Cospectrality of adjacency based matrices

Q-Cospectrality

Two (J-cospectral graphs.

For more about Q-cospectrality, see

[Cvetkovi¢, Simi¢, Publ. Inst. Math. (Beograd) 85(99), 2009]
[van Dam, Haemers, Linear Algebra Appl. 373, 2003]
[Haemers, Spence, European J. Combinatorics 25, 2004]
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Cospectrality of distance based matrices

D-Cospectrality
The study of D-Cospectrality evolved in a similar way as for
A-cospectrality
In [McKay, Ars Combinatoria 3, 1977]:
@ The smallest D-mates (17 vertices)

@ Construction of an infinite family of trees with a mate

@ Proof of asymptotically every tree has a D-mate

Belgrade, May 18-20, 2016
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Cospectrality of distance based matrices

D-Cospectrality

We used Nauty to enumerate all trees on up to 20 vertices
(https://cs.anu.edu.au/~bdm/nauty)

We used AutoGraphiX Il to evaluate their D-spectra
(https://www.gerad.ca/~gillesc/)

@ 2 D-mates over 48629 trees on 17 vertices

2 pairs D-mates over 123867 trees on 18 vertices (can be
obtained using Mckay's method)

6 pairs D-mates over 317955 trees on 19 vertices (4 can be
obtained using Mckay’s method)

14 pairs D-mates over 823065 trees on 20 vertices (9 can be
obtained using Mckay’s method)
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Cospectrality of distance based matrices

D-Cospectrality

Example of D-mates that cannot be obtained using McKay's Method

D-cospectral trees on 19 vertices.
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Cospectrality of distance based matrices

D-Cospectrality

Pairs, by column, of D-mates that can be obtained using McKay’s Method
/’ S s

}“Iﬁ«r{ >)—/ I‘:}- Wants,
\{Iﬂ/ SR, \ﬂ«/.
S M < THH J‘\’/ ./Yj‘-
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Cospectrality of distance based matrices

D-Cospectrality

[Stevanovi¢, Ili¢, in: Math. Chem. Monogr., 12, Univ. of Kragujevac,
2010] suggests

Conjecture  There exists no pair of distance noncospectral trees Ty
and T5, such that 81(7_1) = 81(7—2)

It was tested, in the same paper, on trees on up to 20 vertices and
chemical trees on up to 24 vertices
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Cospectrality of distance based matrices

D-Cospectrality

Based on the enumeration (Nauty for generation, AutoGraphiX Il for
evaluation) of connected graphs on up to 20 vertices

@ no D-mates with fewer than 7 vertices (141 graphs)
@ 22 D-mates over 853 graphs on 7 vertices
@ 658 D-mates over 11117 graphs on 8 vertices (8 triplets)

@ 25058 D-mates over 261080 graphs on 9 vertices
(up to 10 graphs with the same D-spectrum)

1389984 D-mates over 11716571 graphs on 10 vertices
(up to 21 graphs with the same D-spectrum)
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Cospectrality of distance based matrices

D"-Cospectrality

The only triplet of D'-mates on 7 vertices
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Cospectrality of distance based matrices

D"-Cospectrality

Based on the enumeration (Nauty for generation, AutoGraphiX Il for
evaluation) of connected graphs on up to 20 vertices

@ no D!-mates with fewer than 7 vertices (141 graphs)
@ 43 D-mates over 853 graphs on 7 vertices (1 triplet)

@ 745 D'-mates over 11117 graphs on 8 vertices
(up to 4 graphs with the same D‘-spectrum)

19778 D'-mates over 261080 graphs on 9 vertices
(up to 8 graphs with the same D‘-spectrum)

787851 D!'-mates over 11716571 graphs on 10 vertices
(up to 16 graphs with the same D-spectrum)
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Cospectrality of distance based matrices

D@-Cospectrality

The only pair of D®-mates on 5 vertices
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Cospectrality of distance based matrices

DQ-Cospectrality

Based on the enumeration (Nauty for generation, AutoGraphiX Il for
evaluation) of connected graphs on up to 20 vertices

@ no D@-mates with fewer than 5 vertices (8 graphs)
@ 2 D% mates over 21 graphs on 5 vertices

@ 6 D?-mates over 112 graphs on 6 vertices

@ 38 D®-mates over 853 graphs on 7 vertices

@ 453 D®-mates over 11117 graphs on 8 vertices (11 triplets)

8168 D?-mates over 261080 graphs on 9 vertices
(up to 4 graphs with the same D®-spectrum)

319324 D®-mates over 11716571 graphs on 10 vertices
(up to 9 graphs with the same D®-spectrum)
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Cospectrality of distance based matrices

Comparison

For all graphs on 10 vertices, repartition of the size of families sharing the same
M-spectrum
Family size D ot DY
2 583922 | 345065 148101
3 46300 20010 5978
4 14369 6947 1138
5 1905 819 87
6 1714 580 26
7 288 138 4
8 283 82 1
9 45 30 1
10 64 17 0
11 33 6 0
12 10 5 0
13 2 5 0
14 4 2 0
15 3 1 0
16 2 2 0
21 1 0 0
[ Towl | 1380084 | 787851 | 319324 |
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Cospectrality of distance based matrices

Comparison

Proportions of mates among all graphs on up to 10 vertices
n D DL DY
3 0 0 0
4 0 0 0
5 0 0 | 0.095238095
6 0 0 | 0.053571429
7 | 0.025791325 | 0.050410317 | 0.044548652
8 0.05918863 | 0.067014482 | 0.040748403
9 | 0.095978244 | 0.075754558 0.03128543
10 | 0.118634027 | 0.067242455 | 0.027254049
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Cospectrality of distance based matrices

Comparison

Number of spectra for graphs on up to

10 vertices

n | #of graphs | #of D-spectra | # of Dl —spectra | # of DY-spectra
3 2 2 2 2
[ 6 6 6 6
5 21 21 21 20
6 112 112 112 109
7 853 842 831 834
8 11117 10784 10730 10885
9 261080 247984 251007 256900
10 11716571 10975532 11302429 11552583
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Cospectrality of distance based matrices

Cospectrality involving 2 Or 3 matrices

For all graphs on up to 10 vertices

1 [N, DY [M(D, DY [N(D, D) | M(D, DY) [[N(DF, DY) [MDE, DY) [[N(D, DL, DY) M(D, DL, DY)

3-7 0 1 0 1 0 1 0 1

8 0 1 0 1 90 2 0 I

9 32 2 0 1 1965 7>)3 0 I

10 9449 [ (15%) 3 7712 )3 61909 | (343%) 3 7622 @x)3
(19x) 4
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Cospectrality of distance based matrices

Cospectrality involving 2 Or 3 matrices

The 4 triplets of (D, D', D?)-mates on 10 vertices (columns)
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Cospectrality of distance based matrices

Graphs determined by their D-spectrum

Theorem From distance Laplacian spectrum of G, we can deduce the following:
(i) The number n of vertices of G.

(ii) The Wiener index of G.
(iii) The number of connected components of the complement G.

Corollary The following graphs are determined by their distance Laplacian spectra:
the complete graph K,
the graph K, — e obtained from K, by the deletion of an edge;

the path Py,
the comet Co,3.

Theorem The k-partite graphonn = m + n - - - + 11x vertices, Km‘ m,...n;» 15 determined by
its distance Laplacian spectrum.
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Cospectrality of distance based matrices

Graphs determined by their D®-spectrum

Theorem From signless distance Laplacian spectrum of a G, we can deduce the following:
(i) The number n of vertices of G.
(ii) The Wiener index of G.
(iit) Whether G is transmission regular:

Corollary The following graphs are determined by their distance signless Laplacian spectra.
a) the complete graph K,;
b) the graph K, — e obtained from K, by the deletion of an edge;
c) the path P,;
d) the comet Co,3.

Theorem The cycle Cy, is determined by its signless Laplacian distance spectrum.
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