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Random Geometric Graphs
Definition (“uniform model”)
Let In = {x1, x2, . . . , xn} be n points uniformly and independently
distributed in [0, 1]d . The random geometric graph has the node
set In, and the edge set where every two nodes are adjacent if
within distance ||xi − xj || ≤ r(n).

Figure : Number of nodes n = 200 and r ′ = 0.075, r ′′ = 0.1, r ′′′ = 0.125.
As r increases, the graph evolves (in the number of edges).
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Random Geometric Graphs
Definition (“Poisson model”)
Let Xλ = {x1, x2, x3, . . . } be a Poisson point process in Rd with
intensity λ > 0. Let n ∈ N. The random geometric graph has the
node set Xλ ∩ [0, n1/d ]d , and the edge set where every two nodes
are adjacent if within distance ||xi − xj || ≤ r(n).

Figure : volume 200 and r = 1, densities: λ′ = 1, λ′′ = 1.25, λ′′′ = 1.5.
As λ increases, the graph evolves (both the number of nodes and edges).
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The structure of RGGs
As r increases, two sharp thresholding phenomena appear w.h.p.

I n · rc(n)d = λc (Fig. 2) the largest component giant of order n
(sparse regime; constant degree)

I n · rt(n)d = γ−1
d log n (Fig. 3) connectedness (dense regime)

I λc not known!
I dim=2: experimentally λc ≈ 1.44 Quintanilla, Torquato ’97;

exact bounds λc ∈ [0.696, 3.372] Meester, Roy ’96;
improvement λc > 4/(3

√
3) ≈ 0.7698 Kong, Yeh ’06.
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Why RGGs?

Good model for:

1. Wireless networks
two radios can communicate only if within range of each other

2. Relational data-sets
higher dimensional data-set {x1, x2, x3, . . . } ⊂ Rd ,
where coordinates of xi represent attributes,
distance ‖xi − xj‖ measures the similarity among elements.

3. Cluster analysis
dividing a large collection of individuals into groups

4. Statistical physics
finite range interaction model

Gilbert ’61, Penrose ’03.
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Chromatic number
I Minimal number of colors χ(G) needed to color all nodes of a

given graph G , so adjacent nodes receive different colors.
I Applications: assigning radio frequencies, job scheduling, etc.

Figure : A small and sparse RGG, with n = 10, exp. deg. 2.6, and χ = 4.
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Chromatic number of RGGs

Result by McDiarmid, Müller ’05, ’09:

χ(Gn,r ) = Θ

 log n
log
(

log n
nrd

)
 .

In the thermodynamic limit, when nrd = const,

χ(Gn,r ) = Θ

( log n
log log n

)
−→∞ .

Additional inspiration to use only a constant k number of colors!
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Why sparse regime?

I Our question much harder in the sparse regime.
For a connected graph (dense regime) the answer tends to 0.

I Wireless networks:
capacity = f (number of users n, number of channels χ)
increasing in n, decreasing in χ

I Many (real) networks (data sets) are ‘very sparse’;
experiments on networks 5K-14M nodes and 6K-100M edgees
Leskovec et all ’09.
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Main Question

What is the maximum number of nodes in a sparse Random
Geometric Graph that can be properly colored with a constant
number k of colors?

Maximum Mk,r (V ), given any k, d ∈ N, set of nodes V , and r > 0.

Optimization problem: Mk,r (V ) is the maximum and integer.
There are |V |k+1 configurations. Interested when |V | → ∞.
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Sub-additivity:

V1

V2

Mk,r (V1 ∪ V2) ≤ Mk,r (V1) + Mk,r (V2), for any V1, V2.
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There is no scale-invariance (i.e. homogeneity),

Mk,r (αV ) 6= αMk,r (V ) .

Figure : V Figure : V → 1.25V Figure : V → 0.75V
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Why are scale-invariance and sub-additivity important?

Consider any function L that maps a finite subset of points
x1, x2, x3, . . . from Rd to R+, and is monotone, scale-invariant,
translation-invariant, and sub-additive.

Theorem (Steele, PTCO Theorem 3.1.1)
If xi are independent random variables with the uniform
distribution on [0, 1]d then with probability one

lim
n→∞

n−(1−1/d)L (x1, x2, . . . , xn) = βL(d) ,

where βL(d) is a positive constant, which depends both on the
dimension d and the functional L.
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Representative example

Euclidean traveling salesman problem (TSP)

lim
n→∞

n−(1−1/d)LTSP (x1, x2, . . . , xn) = β(d)

∫
x∈Rd

f (x)dx

Beardwood, Halton, Hammersley ’59.
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Our object Mk,r (V ) is neither scale-invariant nor smooth!
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Existing frameworks
to obtain weak and strong law of large numbers, central limit
theorem, etc. on some ‘well behaved’ Euclidean functionals

I Steele “Probability Theory and Combinatorial Optimization”
I Rhee-Talagrand isoperimetric inequalities for smooth

functionals (e.g. TSP, MST)
I boundary zero cost methods: Frieze, Yukich, “Probabilistic

analysis of the TSP”, ’02
I (i) Laws of large numbers for smooth, superadditive Euclidean

functionals (Thm 8.1)
(ii) General ‘umbrella theorem’ for smooth, subadditive
Euclidean functionals (Thm 8.3)
Yukich “Limit theorems in discrete stochastic geometry”, ’09

I stabilization methods: Penrose, Yukich, Baryshnikov
I . . .

16 / 28 Milan Bradonjić Asymptotic Laws for Maximum Coloring of Sparse RGGs



Our Probabilistic Objectives:

As t →∞ and n→∞, examine mean, variance, laws of large
numbers, and limiting distribution of the following objects:

Poisson case: Fk,λ(t) := Mk,1([0, t]d ∩ Xλ) ,

Uniform case: Hk,ν(n) := Mk, d
√
ν/n(In) .

Hurdle:

Fk,λ(t) and Hk,ν(n) are maximum colorings: global, non-stabilizing
functionals. Dependency propagates through local interactions.
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Proposition
For any k ≥ 1, λ > 0, the limit of E

{
Fk,λ(t)/λtd

}
exists and

equals

ak,λ := lim
t→∞

E
{

Fk,λ(t)/λtd
}

= inf
t>0

E
{

Fk,λ(t)/λtd
}
.

Proposition
For any k ≥ 1, ν > 0, the limit of E

{
Hk, d
√
ν/n(n)/n

}
exists

lim
n→∞

E
{

Hk, d
√
ν/n(n)/n

}
= ak,ν .

Note. The expectations of the coloring ratios tend to the same
limiting object (depends on k and density).
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Convergence in probability

Proposition
For any k ≥ 1, λ > 0, the random variable Fk,λ(t)/λtd converges
to ak,λ in probability as t →∞:

(∀δ > 0) P
{∣∣∣∣Fk,λ(t)

λtd − ak,λ

∣∣∣∣ ≥ δ} t→∞−→ 0 .

Proposition
For any k ≥ 1, ν > 0, the random variable Hk, d

√
ν/n(n)/n

converges to ak,ν in probability as n→∞.
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to conclude this part

In the limit as t →∞ and n→∞:

convergence of expectations:

E {Fk,λ(t)}
λtd → ak,λ and

E
{

Hk, d
√
ν/n(n)

}
n → ak,ν

On average, the constant fraction of nodes ak,λ (i.e. ak,ν) can be
properly assigned one of k colors.

convergence in probability:

Fk,λ(t)

λtd
p−→ ak,λ and

Hk, d
√
ν/n(n)

n
p−→ ak,ν

The maximum number of colored nodes is concentrated for both
models.
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I We know Fk,λ(t) is concentrated ‘around’ ak,λλtd

(for any t > 0).

I Can we further describe Fk,λ(t)?

I What can we say about the variance σ2(t) := Var {Fk,λ(t)} ?
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Variance

Lemma
For all λ, d , k,

inf
t>3

σ2(t)

td > 0.

Lemma
For any λ, d , k, t,

σ2(t) ≤ λtd .

Volume is the right order

Proposition
For all λ > 0 and d , k ∈ N, asymptotically as t tends to ∞, we
have

σ2(t) = Θ(td ) .
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Constant ak,λ

I In the limit, the constant ak,λ fraction can be properly colored.
I For dim=1

ak,λ = 1− P {Poisson(λ) = k}
P {Poisson(λ) ≤ k}︸ ︷︷ ︸

the Erlang loss probability
I For dim=1, if both k and λ grow large, but finite,

ak,λ ≈ max{k/λ, 1} .

I For dim ≥ 2, we have non-tight bounds.

I Not knowing ak,λ is similar to the βd -paradigm in TSP.
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Simulations
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Simulations

I No guaranties that the global maximum can be found
(algorithmically)

I Lower bounds on the coloring ratio for finite volume (number
of nodes)

I Relate these results to the real asymptotic values of ak,λ?
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Questions

I Extend work to other functionals

I Values of the constant ak,λ

I Models with long range interaction

27 / 28 Milan Bradonjić Asymptotic Laws for Maximum Coloring of Sparse RGGs



Happy Birthday prof. Cvetković!

Thank You

ect.bell-labs.com/who/milan
milan@research.bell-labs.com
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