Spectral and combinatorial properties of lexicographic powers of graphs

Domingos M. Cardoso¹

Joint work with Nair Abreu², Paula Carvalho¹, Cybele Vinagre³

¹CIDMA - Center for Research and Development in Mathematics and Applications, Department of Mathematics, Univ. of Aveiro, Portugal

²PEP/COPPE, Univ. Federal do Rio de Janeiro, Brasil

³Instituto de Matemática e Estatística, Univ. Federal Fluminense, Rio de Janeiro, Brasil

Spectra of graphs and applications 2016 - A Conference in honor of Professor Dragos Cvetković for his 75th birthday

Domingos M. Cardoso (Univ. of Aveiro)

Outline

- The spectra
- The Laplacian spectra

3 Some combinatorial properties of the lexicographic powers of graphs

4 References

Notation

- G = (V(G), E(G)) is a simple graph of order *n* and size *m*, vertex set V(G) and edge set E(G).
- $A_G = (a_{ij})$ is the adjacency matrix of G, that is, is the $n \times n$ matrix with $a_{ij} = \begin{cases} 1 & \text{if } ij \in E(G) \\ 0 & otherwise \end{cases}$;
- D_G is the diagonal matrix whose diagonal elements are the degrees d_1, \ldots, d_n of the vertices of G;
- $L_G = D_G A_G$ is the Laplacian matrix of G.

- The eigenvalues of A_G and L_G are indexed in nonincreasing order, i.e.,
 - $\lambda_1(G) \geq \lambda_2(G) \geq \cdots \geq \lambda_n(G);$
 - $\mu_1(G) \ge \mu_2(G) \ge \cdots \ge \mu_n(G) = 0.$

- The eigenvalues of A_G and L_G are indexed in nonincreasing order, i.e.,
 - $\lambda_1(G) \geq \lambda_2(G) \geq \cdots \geq \lambda_n(G);$
 - $\mu_1(G) \ge \mu_2(G) \ge \cdots \ge \mu_n(G) = 0.$

Notice that since A_G and L_G are symmetric, all their eigenvalues are real and, by Geršgorin's theorem, the eigenvalues of L_G are nonnegative.

• The eigenvalues of A_G and L_G are indexed in nonincreasing order, i.e.,

•
$$\lambda_1(G) \geq \lambda_2(G) \geq \cdots \geq \lambda_n(G);$$

• $\mu_1(G) \geq \mu_2(G) \geq \cdots \geq \mu_n(G) = 0.$

Notice that since A_G and L_G are symmetric, all their eigenvalues are real and, by Geršgorin's theorem, the eigenvalues of L_G are nonnegative.

• The eigenvalue $\mu_{n-1}(G)$ is the algebraic connectivity of G.

- The eigenvalues of A_G and L_G are indexed in nonincreasing order, i.e.,
 - $\lambda_1(G) \ge \lambda_2(G) \ge \cdots \ge \lambda_n(G);$ • $\mu_1(G) \ge \mu_2(G) \ge \cdots \ge \mu_n(G) = 0.$

Notice that since A_G and L_G are symmetric, all their eigenvalues are real and, by Geršgorin's theorem, the eigenvalues of L_G are nonnegative.

• The eigenvalue $\mu_{n-1}(G)$ is the algebraic connectivity of G.

• The all one vector j is the eigenvector of L_G associated to $\mu_n(G)$ and the multiplicity of $\mu_n(G)$ is equal to the number of components of G.

Definition

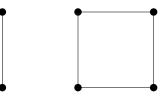
- its vertex set is the cartesian product $V(H) \times V(G)$
- and $(x_1, y_1) \sim (x_2, y_2)$ whenever $x_1 \sim x_2$ or $(x_1 = x_2 \text{ and } y_1 \sim y_2)$.

Definition

The *lexicographic product* of two graphs H and G is the graph $H \cdot G$ (also called the graph *composition* and denoted H[G]) where

- its vertex set is the cartesian product $V(H) \times V(G)$
- and $(x_1, y_1) \sim (x_2, y_2)$ whenever $x_1 \sim x_2$ or $(x_1 = x_2 \text{ and } y_1 \sim y_2)$.

This operation was introduced by Harary(1959) and Sabidussi (1959).

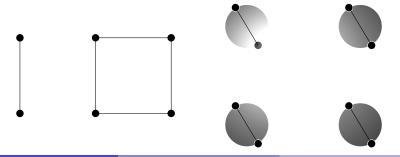


Definition

The *lexicographic product* of two graphs H and G is the graph $H \cdot G$ (also called the graph *composition* and denoted H[G]) where

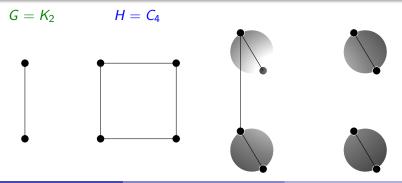
- its vertex set is the cartesian product $V(H) \times V(G)$
- and $(x_1, y_1) \sim (x_2, y_2)$ whenever $x_1 \sim x_2$ or $(x_1 = x_2 \text{ and } y_1 \sim y_2)$.

The lexicographic product is associative but it is not commutative.



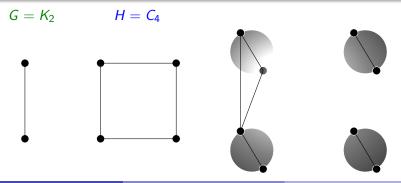
Definition

- its vertex set is the cartesian product $V(H) \times V(G)$
- and $(x_1, y_1) \sim (x_2, y_2)$ whenever $x_1 \sim x_2$ or $(x_1 = x_2 \text{ and } y_1 \sim y_2)$.



Definition

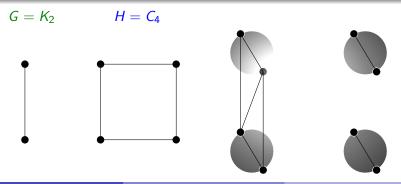
- its vertex set is the cartesian product $V(H) \times V(G)$
- and $(x_1, y_1) \sim (x_2, y_2)$ whenever $x_1 \sim x_2$ or $(x_1 = x_2 \text{ and } y_1 \sim y_2)$.



Definition

The *lexicographic product* of two graphs H and G is the graph $H \cdot G$ (also called the graph *composition* and denoted H[G]) where

- its vertex set is the cartesian product $V(H) \times V(G)$
- and $(x_1, y_1) \sim (x_2, y_2)$ whenever $x_1 \sim x_2$ or $(x_1 = x_2 \text{ and } y_1 \sim y_2)$.

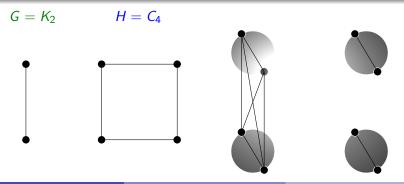


. . lexicographic powers of graphs

Definition

The *lexicographic product* of two graphs H and G is the graph $H \cdot G$ (also called the graph *composition* and denoted H[G]) where

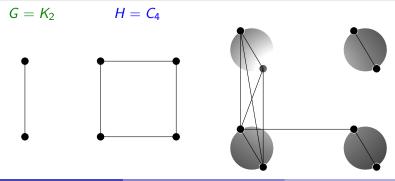
- its vertex set is the cartesian product $V(H) \times V(G)$
- and $(x_1, y_1) \sim (x_2, y_2)$ whenever $x_1 \sim x_2$ or $(x_1 = x_2 \text{ and } y_1 \sim y_2)$.



. . lexicographic powers of graphs

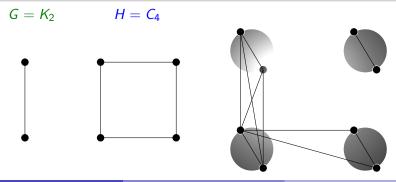
Definition

- its vertex set is the cartesian product $V(H) \times V(G)$
- and $(x_1, y_1) \sim (x_2, y_2)$ whenever $x_1 \sim x_2$ or $(x_1 = x_2 \text{ and } y_1 \sim y_2)$.



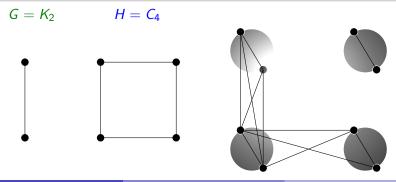
Definition

- its vertex set is the cartesian product $V(H) \times V(G)$
- and $(x_1, y_1) \sim (x_2, y_2)$ whenever $x_1 \sim x_2$ or $(x_1 = x_2 \text{ and } y_1 \sim y_2)$.



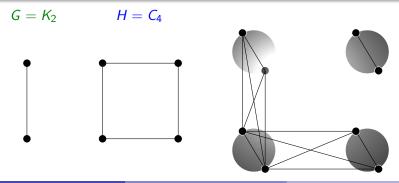
Definition

- its vertex set is the cartesian product $V(H) \times V(G)$
- and $(x_1, y_1) \sim (x_2, y_2)$ whenever $x_1 \sim x_2$ or $(x_1 = x_2 \text{ and } y_1 \sim y_2)$.



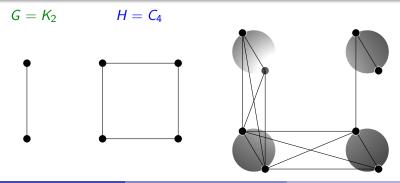
Definition

- its vertex set is the cartesian product $V(H) \times V(G)$
- and $(x_1, y_1) \sim (x_2, y_2)$ whenever $x_1 \sim x_2$ or $(x_1 = x_2 \text{ and } y_1 \sim y_2)$.



Definition

- its vertex set is the cartesian product $V(H) \times V(G)$
- and $(x_1, y_1) \sim (x_2, y_2)$ whenever $x_1 \sim x_2$ or $(x_1 = x_2 \text{ and } y_1 \sim y_2)$.



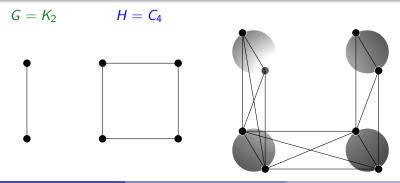
Definition

- its vertex set is the cartesian product $V(H) \times V(G)$
- and $(x_1, y_1) \sim (x_2, y_2)$ whenever $x_1 \sim x_2$ or $(x_1 = x_2 \text{ and } y_1 \sim y_2)$.



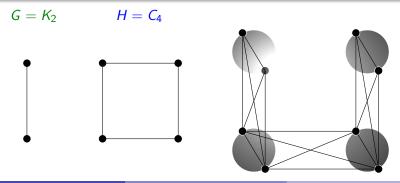
Definition

- its vertex set is the cartesian product $V(H) \times V(G)$
- and $(x_1, y_1) \sim (x_2, y_2)$ whenever $x_1 \sim x_2$ or $(x_1 = x_2 \text{ and } y_1 \sim y_2)$.



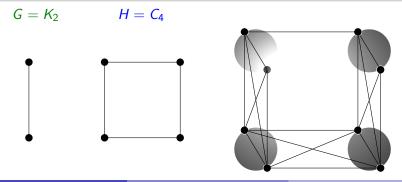
Definition

- its vertex set is the cartesian product $V(H) \times V(G)$
- and $(x_1, y_1) \sim (x_2, y_2)$ whenever $x_1 \sim x_2$ or $(x_1 = x_2 \text{ and } y_1 \sim y_2)$.



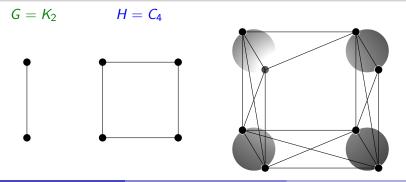
Definition

- its vertex set is the cartesian product $V(H) \times V(G)$
- and $(x_1, y_1) \sim (x_2, y_2)$ whenever $x_1 \sim x_2$ or $(x_1 = x_2 \text{ and } y_1 \sim y_2)$.



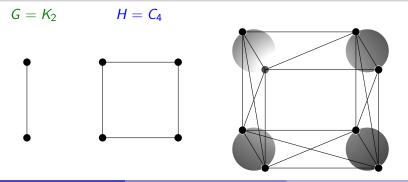
Definition

- its vertex set is the cartesian product $V(H) \times V(G)$
- and $(x_1, y_1) \sim (x_2, y_2)$ whenever $x_1 \sim x_2$ or $(x_1 = x_2 \text{ and } y_1 \sim y_2)$.



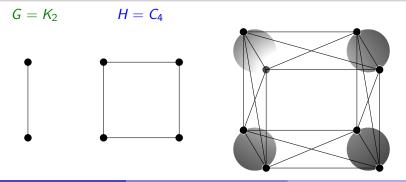
Definition

- its vertex set is the cartesian product $V(H) \times V(G)$
- and $(x_1, y_1) \sim (x_2, y_2)$ whenever $x_1 \sim x_2$ or $(x_1 = x_2 \text{ and } y_1 \sim y_2)$.



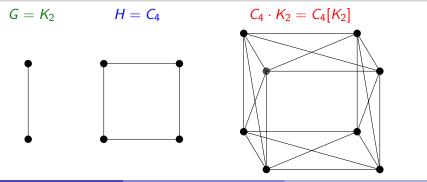
Definition

- its vertex set is the cartesian product $V(H) \times V(G)$
- and $(x_1, y_1) \sim (x_2, y_2)$ whenever $x_1 \sim x_2$ or $(x_1 = x_2 \text{ and } y_1 \sim y_2)$.



Definition

- its vertex set is the cartesian product $V(H) \times V(G)$
- and $(x_1, y_1) \sim (x_2, y_2)$ whenever $x_1 \sim x_2$ or $(x_1 = x_2 \text{ and } y_1 \sim y_2)$.



From [C., Freitas, Martins, Robbiano, 2013] we can deduce the theorem.

From [C., Freitas, Martins, Robbiano, 2013] we can deduce the theorem.

Theorem

If G is a p-regular graph of order m and H is graph of order n, then

$$\sigma_{A}(H[G]) = n(\sigma_{A}(G) \setminus \{p\}) \cup \sigma(mA_{H} + pI),$$

where $n(\sigma_A(G) \setminus \{p\})$ means that the multiset $(\sigma_A(G) \setminus \{p\})$ is repeated *n* times.

From [C., Freitas, Martins, Robbiano, 2013] we can deduce the theorem.

Theorem

If G is a p-regular graph of order m and H is graph of order n, then

$$\sigma_{\mathcal{A}}(\mathcal{H}[\mathcal{G}]) = n(\sigma_{\mathcal{A}}(\mathcal{G}) \setminus \{p\}) \cup \sigma(m\mathcal{A}_{\mathcal{H}} + p\mathcal{I}),$$

where $n(\sigma_A(G) \setminus \{p\})$ means that the multiset $(\sigma_A(G) \setminus \{p\})$ is repeated *n* times.

 $\sigma_A(K_2) \setminus \{1\} = \{-1\}$ with multiplicity n = 4

$$\sigma_A(K_2) = \{1, -1\}$$

$$\sigma_A(C_4) = \{2, 0, 0, -2\}$$

$$m = 2$$

$$n = 4$$

$$p = 1$$

So

From [C., Freitas, Martins, Robbiano, 2013] we can deduce the theorem.

Theorem

If G is a p-regular graph of order m and H is graph of order n, then

$$\sigma_{\mathcal{A}}(\mathcal{H}[\mathcal{G}]) = n(\sigma_{\mathcal{A}}(\mathcal{G}) \setminus \{p\}) \cup \sigma(m\mathcal{A}_{\mathcal{H}} + p\mathcal{I}),$$

where $n(\sigma_A(G) \setminus \{p\})$ means that the multiset $(\sigma_A(G) \setminus \{p\})$ is repeated *n* times.

$$\sigma_A(K_2) = \{1, -1\}$$

$$\sigma_A(C_4) = \{2, 0, 0, -2\}$$

$$m = 2$$

$$n = 4$$

$$p = 1$$

So

$$\sigma_A(K_2) \setminus \{1\} = \{-1\}$$

with multiplicity $n = 4$
 $2 \times 2 + 1 = 5$

From [C., Freitas, Martins, Robbiano, 2013] we can deduce the theorem.

Theorem

If G is a p-regular graph of order m and H is graph of order n, then

$$\sigma_{\mathcal{A}}(\mathcal{H}[\mathcal{G}]) = n(\sigma_{\mathcal{A}}(\mathcal{G}) \setminus \{p\}) \cup \sigma(m\mathcal{A}_{\mathcal{H}} + p\mathcal{I}),$$

where $n(\sigma_A(G) \setminus \{p\})$ means that the multiset $(\sigma_A(G) \setminus \{p\})$ is repeated *n* times.

$$\sigma_A(K_2) = \{1, -1\}$$

$$\sigma_A(C_4) = \{2, 0, 0, -2\}$$

$$m = 2$$

$$n = 4$$

$$p = 1$$

So

$$\sigma_A(K_2) \setminus \{1\} = \{-1\}$$

with multiplicity $n = 4$
 $2 \times 2 + 1 = 5$
 $2 \times 0 + 1 = 1$ (twice)

From [C., Freitas, Martins, Robbiano, 2013] we can deduce the theorem.

Theorem

If G is a p-regular graph of order m and H is graph of order n, then

$$\sigma_{\mathcal{A}}(\mathcal{H}[\mathcal{G}]) = n(\sigma_{\mathcal{A}}(\mathcal{G}) \setminus \{p\}) \cup \sigma(m\mathcal{A}_{\mathcal{H}} + p\mathcal{I}),$$

where $n(\sigma_A(G) \setminus \{p\})$ means that the multiset $(\sigma_A(G) \setminus \{p\})$ is repeated *n* times.

$$\sigma_A(K_2) = \{1, -1\}$$

$$\sigma_A(C_4) = \{2, 0, 0, -2\}$$

$$m = 2$$

$$n = 4$$

$$p = 1$$

So

$$\sigma_A(K_2) \setminus \{1\} = \{-1\}$$

with multiplicity $n = 4$
 $2 \times 2 + 1 = 5$
 $2 \times 0 + 1 = 1$ (twice)
 $2 \times (-2) + 1 = -3$

From [C., Freitas, Martins, Robbiano, 2013] we can deduce the theorem.

Theorem

If G is a p-regular graph of order m and H is graph of order n, then

$$\sigma_{\mathcal{A}}(\mathcal{H}[\mathcal{G}]) = n(\sigma_{\mathcal{A}}(\mathcal{G}) \setminus \{p\}) \cup \sigma(m\mathcal{A}_{\mathcal{H}} + p\mathcal{I}),$$

where $n(\sigma_A(G) \setminus \{p\})$ means that the multiset $(\sigma_A(G) \setminus \{p\})$ is repeated *n* times.

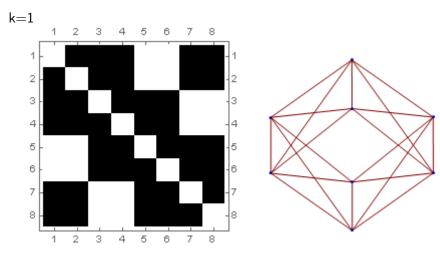
$$\begin{aligned} \sigma_A(K_2) &= \{1, -1\} & \sigma_A(K_2) \setminus \{1\} = \{-1\} \\ \sigma_A(C_4) &= \{2, 0, 0, -2\} & \text{with multiplicity } n = 4 \\ m &= 2 & \text{So} & 2 \times 2 + 1 = 5 \\ n &= 4 & 2 \times 0 + 1 = 1 \text{ (twice)} \\ p &= 1 & 2 \times (-2) + 1 = -3 \\ \sigma_A(C_4[K_2]) &= \{5, 1, 1, -3, -1, -1, -1, -1\} \end{aligned}$$

Arbitrary number of iterations of the lexicographic product

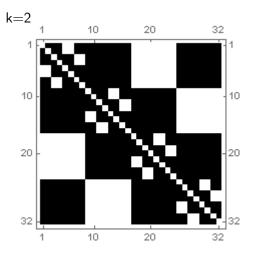
$$\begin{array}{rcl} H^0[G] &=& G, \\ H^1[G] &=& H[G] \\ H^2[G] &=& H[H[G]], \\ &\vdots \\ H^k[G] &=& H[H^{k-1}[G]] \end{array}$$

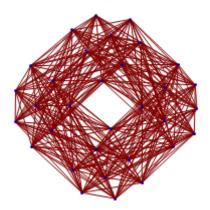
(we assume that the graph H is connected, and then, for $k \ge 1$, $H^k[G]$ is connected).

Example: Adjacency Matrix and graph for $C_4^k[K_2]$

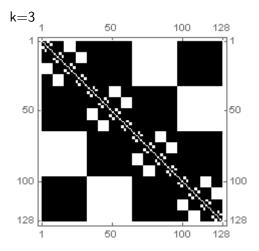


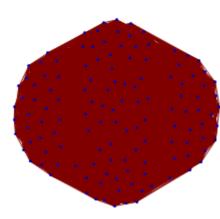
Example: Adjacency Matrix and graph for $C_4^k[K_2]$



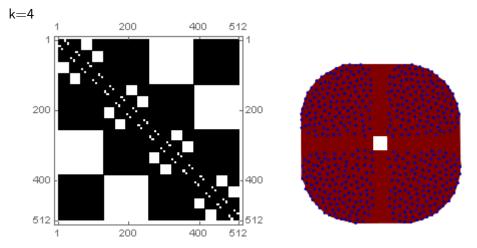


Example: Adjacency Matrix and graph for $C_4^k[K_2]$





Example: Adjacency Matrix and graph for $C_{4}^{k}[K_{2}]$



Iterated lexicographic products of graphs

Theorem

Let *G* be a connected *p*-regular graph of order *m* with *s* distinct eigenvalues such that $\sigma_A(G) = \{p, \lambda_2^{\lceil g_2 \rceil}(G), \ldots, \lambda_s^{\lceil g_s \rceil}(G)\}$ and let *H* be a connected *q*-regular graph of order *n* with *t* distinct eigenvalues such that $\sigma_A(H) = \{q, \lambda_2^{\lceil h_2 \rceil}(H), \ldots, \lambda_t^{\lceil h_t \rceil}(H)\}$, then $H^k[G]$ is a r_k -regular graph of order ν_k , such that

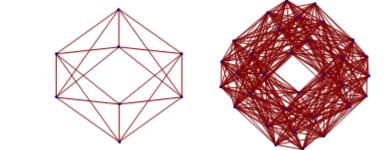
$$\mathbf{r}_{\mathbf{k}} = \mathbf{m}q\frac{n^{k}-1}{n-1} + \mathbf{p}, \qquad \mathbf{\nu}_{\mathbf{k}} = \mathbf{m}n^{k},$$

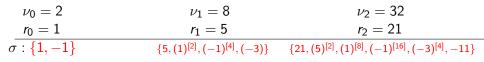
$$\sigma_{\mathcal{A}}(\mathcal{H}^{k}[G]) = \left\{\lambda_{2}^{[n^{k}g_{2}]}(G), \ldots, \lambda_{s}^{[n^{k}g_{s}]}(G)\right\} \cup \left\{mq\frac{n^{k}-1}{n-1}+p\right\} \cup \Lambda_{k}$$

where, for $k \ge 1$, $\Lambda_{k} = \bigcup_{i=0}^{k-1} \Big\{ (mn^{i}\lambda_{2}(H) + r_{i})^{[n^{k-1-i}h_{2}]}, \dots, (mn^{i}\lambda_{t}(H) + r_{i})^{[n^{k-1-i}h_{t}]} \Big\}.$

Example: the spectrum of $H^k[G] = C_4^k[K_2]$.

Notice that $H = C_4$ and $G = K_2(m = 2, n = 4, p = 1 \text{ and } q = 2)$ k = 0 k = 1 k = 2





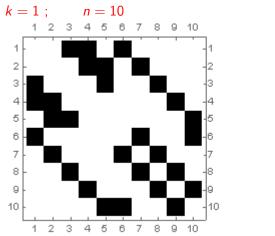
Spectra of powers of lexicographic products of graphs

Corollary

Let H be a connected q-regular graph of order n with t distinct eigenvalues such that $\sigma_A(H) = \{q, \lambda_2^{[h_2]}(H), \ldots, \lambda_t^{[h_t]}(H)\}$. Then H^k is a r_k -regular graph of order ν_k , such that

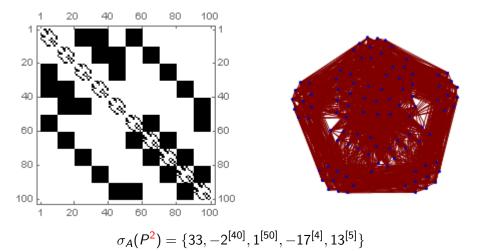
for $k \geq 1$.

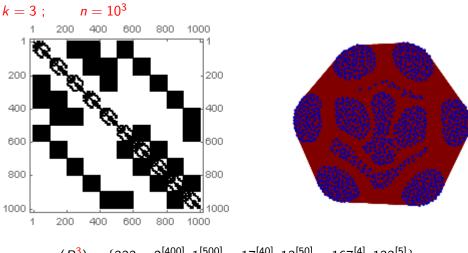
The number of distinct eigenvalues of H^k is not greater that (t-1)k+1.





k = 2; $n = 10^2$





 $\sigma_{\mathcal{A}}(\mathcal{P}^{\mathbf{3}}) = \{333, -2^{[400]}, 1^{[500]}, -17^{[40]}, 13^{[50]}, -167^{[4]}, 133^{[5]}\}$

And, ... for k = 10; $n = 10^{10}$

$\sigma_A(P^{10})$	=	$\Big\{ 3333333333, -2^{[4000000000]}, 1^{[5000000000]},$
		$-17^{[400000000]}, 13^{[500000000]},$
		$-167^{[40000000]}, 133^{[50000000]},$
		$-1667^{[4000000]}, 1333^{[5000000]},$
		$-16667^{[400000]}, 13333^{[500000]},$
		$-166667^{[40000]}, 133333^{[50000]},$
		$-1666667^{[4000]}, 1333333^{[5000]},$
		$-16666667^{[400]}, 13333333^{[500]},$
		$-166666667^{[40]}, 133333333^{[50]},$
		$-1666666667^{[4]}, 1333333333^{[5]} \Big\}$

k	Spectrum of P ^k		
k = 1	$3, 1^{[5]}, -2^{[4]}$		
<i>k</i> = 2	33, 13[5], 1[50], -2[40], -17[4]		
<i>k</i> = 3	$333, 133^{[5]}, 13^{[50]}, 1^{[500]}, -2^{[400]}, -17^{[40]}, -167^{[4]}$		
k = 100	$3 \times \sum_{i=0}^{99} 10^{i}, \qquad 1^{[5 \times 10^{99}]}, \ -2^{[4 \times 10^{99}]},$ $\left(10^{m} + 3 \sum_{i=0}^{m-1} 10^{i} \right)^{[5 \times 10^{99-m}]}, \ m = 1, \dots, 99,$ $- \left(7 + 10^{m} + 6 \sum_{i=1}^{m-1} 10^{i} \right)^{[4 \times 10^{99-m}]}, \ m = 1, \dots, 99.$		

Notice that the graph P^k has 10^k vertices, in particular P^{100} has the googol number of vertices 10^{100} . All the computations were done by Mathematica and lasted just a few seconds.

Domingos M. Cardoso (Univ. of Aveiro)

The Laplacian spectra of lexicographic compositions

From [C., Freitas, Martins, Robbiano, 2013] we can also deduce the following result.

Theorem

Let G be a graph of order m and H a graph of order n, then

$$\sigma_L(H[G]) = \left(\bigcup_{j=1}^n (md_H(j) + (\sigma_L(G) \setminus \{0\}))\right) \cup m\sigma_L(H).$$

The Laplacian spectra of lexicographic compositions

Theorem

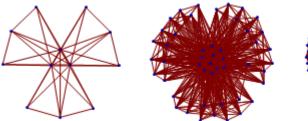
Let G be a connected graph of order m and H be a connected graph of order n. Then $H^k[G]$ is a graph of order $\nu_k = mn^k$, and

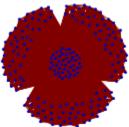
$$\sigma_L(\boldsymbol{H^k[G]}) = \Omega_{\boldsymbol{G}}^k \cup \Omega_{\boldsymbol{H}}^k,$$

where

$$\Omega_{G}^{k} = \bigcup_{(j_{1},j_{2},\dots,j_{k})\in[n]^{k}} \left(\sigma_{L}(G)\setminus\{0\} + m\sum_{i=1}^{k} n^{i-1}d_{H}(j_{i})\right)$$
$$\Omega_{H}^{k} = \bigcup_{i=2}^{k} \left(\bigcup_{(j_{i},\dots,j_{k})\in[n]^{k-i+1}} \left(mn^{i-2}\sigma_{L}(H)\setminus\{0\} + m\sum_{r=i}^{k} n^{r-1}d_{H}(j_{r})\right)\right) \bigcup mn^{k-1}\sigma_{L}(H)$$
for $k \geq 1$.

Example: $H^k[G]$ with $H = K_{1,3}$, $G = P_3$ $\sigma_L(K_{1,3}) = \{4, 1, 1, 0\};$ $\sigma_L(P_3) = \{3, 1, 0\};$ n = 4; m = 3 k = 1 k = 2 k = 3 $\nu_1 = 12$ $\nu_2 = 48$ $\nu_3 = 192$





Example: $H^k[G]$ with $H = K_{1,3}$, $G = P_3$ $\sigma_L(K_{1,3}) = \{4, 1, 1, 0\};$ $\sigma_L(P_3) = \{3, 1, 0\};$ n = 4; m = 3 k = 1 k = 2 k = 3 $\nu_1 = 12$ $\nu_2 = 48$ $\nu_3 = 192$



Lexicographic powers of graphs

Now, let us consider the case G = H.

Corollary

Let *H* be a connected graph of order *n*. Then H^k is a graph of order $\nu_k = n^k$, such that

$$\sigma_{L}(\boldsymbol{H}^{k}) = \bigcup_{i=1}^{k-1} \left(\bigcup_{(j_{i},\dots,j_{k-1})\in[n]^{k-i}} \left(n^{i-1}\sigma_{L}(\boldsymbol{H})\setminus\{0\} + \sum_{r=i}^{k-1} n^{r}d_{H}(j_{r}) \right) \right) \bigcup n^{k-1}\sigma_{L}(\boldsymbol{H})$$

for $k \geq 1$.

Lexicographic powers of graphs

Example: $H = K_{1,3}$: n = 4, $\sigma_L(K_{1,3}) = \{4, 1, 1, 0\}$.

 $H^3 = K_{1,3}^3$ is a graph of order

$$v_3 = 4^3 = 64$$

with

$$\sigma_{L}(\mathcal{K}_{1,3}^{3}) = \bigcup_{i=1}^{2} \left(\bigcup_{(j_{i},j_{2})\in[4]^{3-i}} \left(4^{i-1}\sigma_{L}(\mathcal{K}_{1,3}) \setminus \{0\} + \sum_{r=i}^{2} 4^{r}d_{H}(j_{r}) \right) \right) \bigcup 4^{2}\sigma_{L}(\mathcal{K}_{1,3})$$

which gives $\sigma_L(K_{1,3}^3) =$

 $\left\{ 64^{[3]}, 61^{[2]}, 56^{[2]}, 53^{[6]}, 52^{[2]}, 32^{[6]}, 29^{[6]}, 24^{[9]}, 21^{[18]}, 20^{[6]}, 16^{[2]}, 0 \right\}$

Laplacian index

$$\mu_1(H^k) = n^{k-1}\mu_1(H).$$

• Algebraic connectivity

$$\mu_{n^{k}-1}(H^{k}) = n^{k-1}\mu_{n-1}(H).$$

• Minimum and maximum degree

$$\delta(H^k) = \delta(H) \frac{n^k - 1}{n - 1}$$
 and $\Delta(H^k) = \Delta(H) \frac{n^k - 1}{n - 1}$

Stability number

As $\alpha(H[G]) = \alpha(H) \alpha(G)$ [Geller, 1975], where G is an arbitrary graph

$$\alpha(H^k) = \alpha(H)^k.$$

Furthermore, from the spectral upper bound [(Godsil (2008) and Lu (2007)] for an arbitrary graph G

$$\alpha(G) \leq n \; \frac{\mu_1(G) - \delta(G)}{\mu_1(G)},$$

we obtain,

$$\begin{aligned} \alpha(H^k) &\leq n^k \frac{\mu_1(H^k) - \delta(H^k)}{\mu_1(H^k)} \\ &= n^k \frac{\mu_1(H) - \delta(H)}{\mu_1(H)}. \end{aligned}$$

• Vertex connectivity

As the lexicographic product H[G] is connected if and only if H is a connected graph [Harary and Wilcox, 1967] if both G and H are not complete [Geller and Stahl, 1975]

$$\upsilon(H[G]) = m \,\upsilon(H),$$

where v(H) denotes the vertex connectivity of H. So,

$$v(H^k) = n^{k-1}v(H).$$

Furthermore, we may conclude that when H is connected not complete (and then H^k is also connected not complete),

$$n^{k-1}\mu_{n-1}(H) \leq \upsilon(H^k) \leq \delta(H) \frac{n^k-1}{n-1}.$$

• Chromatic number

It is well known the following lower bound due to Hoffman

$$\chi(G) \geq 1-\frac{\lambda_1(G)}{\lambda_n(G)}$$

As direct consequence, if a graph H is q-regular of order n,

$$\chi(H^k) \geq 1 - \frac{r_k}{\lambda_{n^k}(H^k)}$$

= $1 - \frac{n^k - 1}{n^{k-1}\left((n-1)\frac{\lambda_n(H)}{q} + 1\right) - 1}$

Proposition

Let H be a connected not complete graph and let G be an arbitrary graph of order m. For every $k \in \mathbb{N}$

$$diam(H^{k+1}) = diam(H^k[G]) = diam(H).$$

References

- D. M. Cardoso, M.A.A. Freitas, E. A. Martins, M. Robbiano, Spectra of graphs obtained by a generalization of the join graph operation, Discrete Mathematics 313 (2013): 733-741.
- N. Abreu, D.M. Cardoso, P. Carvalho, C. T. M. Vinagre, Spectra and Laplacian Spectra of arbitrary powers of lexicographic products of graphs, arXiv: 1511.02391v1 (2015).
- D. Geller, S. Stahl, The chromatic number and other functions of the lexicographic product, J. Comb. Theory (B) 19 (1975): 87–95.
- C. D. Godsil, M. W. Newman, *Eigenvalue bounds for independent sets*, J. Comb. Theory, Ser. B, 98(4) (2008), 721-734.

F. Harary, G. W. Wilcox, Boolean Operations on Graphs, Math. Scand. 20 (1967): 41-51.

Hoffman, A.J. *On eigenvalues and colorings of graphs*, in: Graph Theory and its Applications, ed. B. Harris, Academic Press, New York (1979): 79-91.

M. Lu, H. Liu, F. Tian, *New Laplacian spectral bounds for clique and independence numbers of graphs*, J. Combin. Theory Ser. B 97 (2007), 726-732.

THANK YOU!

Ten years after, congratulations again Professor Dragos Cvetković

Domingos M. Cardoso (Univ. of Aveiro)

This work was supported in part by the Portuguese Foundation for Science and Techonology (FCT - Fundação para a Ciência e a Tecnologia), through CIDMA - Center for Research and Development in Mathematics and Applications, within project UID/MAT/04106/2013.