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Abstract. The object of the present paper is to study generalized quasi-
conformally recurrent manifolds. Some geometric properties of generalized
quasi-conformally recurrent manifolds have been studied under certain curva-
ture conditions. Some applications of such a manifold in theory of relativity
have also been shown. Finally we give an example of a generalized quasi-
conformally recurrent manifold.

1. Introduction

As is well known, symmetric spaces play an important role in differential geom-
etry. The study of Riemannian symmetric spaces was initiated in the late twenties
by Cartan[4], who, in particular, obtained a classification of those spaces.
Let (Mn, g), (n = dimM) be a Riemannian manifold, i.e., a manifold M with
the Riemannian metric g and let ∇ be the Levi-Civita connection of (Mn, g).
A Riemannian manifold is called locally symmetric [4] if ∇R = 0, where R is
the Riemannian curvature tensor of (Mn, g). This condition of local symmetry is
equivalent to the fact that at every point P ∈ M , the local geodesic symmetry
F (P ) is an isometry [22]. The class of Riemannian symmetric manifolds is very
natural generalization of the class of manifolds of constant curvature. During the
last five decades the notion of locally symmetric manifolds have been weakened by
many authors in several ways to a different extent such as conformally symmetric
manifolds by Chaki and Gupta[6], recurrent manifolds introduced by Walker [32],
conformally recurrent manifolds by Adati and Miyazawa[1], conformally symmet-
ric Ricci-recurrent spaces by Ro ter[27], pseudo symmetric manifolds introduced
by Chaki[7] etc. The notion of recurrent manifolds have been generalized by
various authors such as Ricci-recurrent manifolds by Patterson [23], 2-recurrent
manifolds by Lichnerowicz [19], projective 2-recurrent manifolds by D. Ghosh
[18] and others.

The notion of weakly symmetric and weakly projective symmetric manifolds
were introduced by Tamassy and Binh[31] and later Binh[3] studied decompos-
able weakly symmetric manifolds. Weakly symmetric manifolds have been stud-
ied by several authors ([8], [9], [25], [26]) and many others. In a recent paper,
De and Gazi [10] introduced the notion of almost pseudo symmetric manifolds.
In subsequent papers ([11], [12]) De and Gazi studied almost pseudo conformally
symmetric manifolds and conformally flat almost pseudo Ricci symmetric mani-
folds. Let (Mn, g) be an n-dimensional Riemannian manifold with the metric g.
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A tensor field T of type (0,q) is said to be recurrent [27] if the relation

(∇XT )(Y1, Y2, ..., Yq)T (Z1, Z2, ..., Zq)

−T (Y1, Y2, ..., Yq)(∇XT )(Z1, Z2, ..., Zq) = 0,

holds on (Mn, g). From the definition it follows that if at a point x ∈M, T (x) 6= 0,
then on some neighbourhood of x, there exists a unique 1-form A satisfying

(∇XT )(Y1, Y2, ..., Yq) = A(X)T (Y1, Y2, ..., Yq).

In 1952, Patterson [23] introduced Ricci-recurrent manifolds. According to Pat-
terson, a manifold (Mn, g) of dimension n, is called Ricci-recurrent if

(∇XS)(Y, Z) = A(X)S(Y, Z),

for some 1-form A. He denoted such a manifold by Rn. Ricci-recurrent manifolds
have been studied by several authors ([5], [24], [27], [33]) and many others. In
a recent paper De, Guha and Kamilya [15] introduced the notion of generalized
Ricci recurrent manifold which is defined as follows:

A non-flat Riemannian manifold (Mn, g)(n > 2) is called generalized Ricci
recurrent if the Ricci tensor S is non-zero and satisfies the condition

(∇XS)(Y, Z) = A(X)S(Y, Z) +B(X)g(Y, Z),

where A and B are two non-zero 1-forms. Such a manifold shall be denoted by
GRn. If the associated 1-form B becomes zero, then the manifold GRn reduces to
a Ricci-recurrent manifold Rn. This justifies the name generalized Ricci-recurrent
manifold and the symbol GRn for it. Also in a paper De and Guha [14] introduced
a non-flat Riemannian manifold (Mn, g)(n > 2) called a generalized recurrent
manifold if its curvature tensor of type (1,3) satisfies the condition

(∇XR)(Y, Z)U = A(X)R(Y, Z)U +B(X)[g(Z,U)Y − g(Y, U)Z], (1.1)

where A and B are two non-zero 1-forms, and ∇ has the meaning already men-
tioned. Such a manifold has been denoted by GKn. If the associated 1-form B
becomes zero, then the manifold GKn reduces to a recurrent manifold introduced
by Ruse [28] and Walker [32] which is denoted by Kn.

On the otherhand, quasi Einstein manifolds arose during the study of ex-
act solutions of the Einstein field equations as well as during considerations of
quasi-umbilical hypersurfaces of semi-Euclidean spaces. A non-flat Riemannian
manifold (Mn, g)(n > 2) is defined to be a quasi Einstein manifold if its Ricci
tensor S of type (0,2) is not identically zero and satisfies the following condition:

S(X, Y ) = ag(X, Y ) + bη(X)η(Y ),

where a, b ∈ R and η is a non-zero 1-form such that

g(X, ξ) = η(X),

for all vector fields X.
The notion of quasi-conformal curvature tensor was given by Yano and Sawaki

[34]. According to them quasi-conformal curvature tensor C∗ is defined by

C∗(X, Y )Z = aR(X, Y )Z + b[S(Y, Z)X

−S(X,Z)Y + g(Y, Z)LX − g(X,Z)LY ]

− r
n

[
a

n− 1
+ 2b][g(Y, Z)X − g(X,Z)Y ], (1.2)
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where a and b are constants and R, L and r are the Riemannian curvature tensor
of type (1,3), the Ricci operator defined by g(LX, Y ) = S(X, Y ) and the scalar
curvature, respectively. It is known [2] that a quasi-conformally flat manifold is
either conformally flat if a 6= 0 or Einstein if a = 0 and b 6= 0. Since they give no
restrictions for manifolds if a = 0 and b = 0, it is essential for us to consider the
case of a 6= 0 or b 6= 0. ¿From (1.2) we can define a (0,4) type quasi-conformal
curvature tensor C∗ as follows:

C∗(Y, Z, U, V ) = aR̃(Y, Z, U, V ) + b[S(Z,U)g(Y, V )

−S(Y, U)g(Z, V ) + S(Y, V )g(Z,U)− S(Z, V )g(Y, U)]

− r
n

[
a

n− 1
+ 2b][g(Z,U)g(Y, V )− g(Y, U)g(Z, V )], (1.3)

where R̃ denotes the Riemannian curvature tensor of type (0,4) defined by

R̃(Y, Z, U, V ) = g(R(Y, Z)U, V ).

If a+(n−2)b = 0 then from (1.3) it follows that C∗(Y, Z, U, V ) = aC(Y, Z, U, V ),
where C∗ and C are the quasi-conformal curvature tensor and conformal curva-
ture tensor of type (0,4) respectively. In a recent paper De and Matsuyama [16]
studied quasi-conformally flat manifold satisfying certain condition on the Ricci
tensor. In this paper we consider a non-flat n-dimensional Riemannian manifold
(Mn, g)(n ≥ 3) in which the quasi-conformal curvature C∗ of type (0,4) satisfies
the condition

(∇XC
∗)(Y, Z, U, V ) = A(X)C∗(Y, Z, U, V )

+B(X)[g(Z,U)g(Y, V )− g(Y, U)g(Z, V )], (1.4)

where A and B are two 1-forms defined by g(X,P ) = A(X) and g(X,Q) =
B(X) respectively, B is non-zero. Such an n-dimensional Riemannian mani-
fold will be called a generalized quasi-conformally recurrent manifold and is de-
noted by G{C∗(Kn)}. If the 1-form B is zero, then the manifold reduces to a
quasi-conformally recurrent manifold. Also Mantica and Suh [21] studied quasi-
conformally recurrent Riemannian manifolds. In [13] De and Gazi prove that a
generalized concircularly recurrent manifold with constant scalar curvature is a
GRn. In a recent paper [20] S. Mallick, Avik De and U. C. De studied a class of
generalized Ricci-recurrent manifold.
Motivated by the above studies in the present paper we have studied a type of
non-flat Riemannian manifold which is called generalized quasi-conformally re-
current manifolds. The paper is organized as follows:
After preliminaries in Section 2, we obtain a necessary and sufficient condition for
constant scalar curvature of a G{C∗(Kn)}(n > 2). In Section 4, we study Ricci-
symmetric G{C∗(Kn)}. Next we obtain a sufficient condition for a G{C∗(Kn)}
to be a quasi Einstein manifold. Also some relativistic applications have been
shown. Finally we give an example of G{C∗(Kn)}.

2. Preliminaries

In this section, some formulas are derived, which will be useful to the study
of G{C∗(Kn)}(n > 2). Let {ei} be an orthonormal basis of the tangent space at
each point of the manifold where 1 ≤ i ≤ n.

Now from (1.3) we have

Σn
i=1C

∗(Y, Z, ei, ei) = 0 = Σn
i=1C

∗(ei, ei, U, V ) (2.1)
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and

Σn
i=1C

∗(ei, Z, U, ei) = Σn
i=1C

∗(Z, ei, ei, U)

= a1S(Z,U) + b1rg(Z,U), (2.2)

where a1 = a + (n− 2)b and b1 = −a+(n−2)b
n

= −a1
n
, and r = Σn

i=1S(ei, ei) is the
scalar curvature. Also from (1.3) it follows that
i)

C∗(X, Y, Z, U) = −C∗(Y,X,Z, U),

ii)

C∗(X, Y, Z, U) = −C∗(X, Y, U, Z),

iii)

C∗(X, Y, Z, U) = C∗(Z,U,X, Y ),

iv)

C∗(X, Y, Z, U) + C∗(Y, Z,X, U) + C∗(Z,X, Y, U) = 0. (2.3)

3. Necessary and sufficient condition for constant scalar curvature of
a generalized quasi-conformally recurrent manifold

This section deals with a necessary and sufficient condition for constant scalar
curvature of a generalized quasi-conformally recurrent manifold. Since a 6= 0
from (1.3) and (1.4) we obtain

(∇XR̃)(Y, Z, U, V ) =
1

a
[A(X)C∗(Y, Z, U, V )

+B(X){g(Z,U)g(Y, V )− g(Y, U)g(Z, V )}]− b{(∇XS)(Z,U)g(Y, V )

−(∇XS)(Y, U)g(Z, V ) + (∇XS)(Y, V )g(Z,U)− (∇XS)(Z, V )g(Y, U)}

+
dr(X)

n
(

a

n− 1
+ 2b){g(Z,U)g(Y, V )− g(Y, U)g(Z, V )}]. (3.1)
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Using (3.1) and Bianchi’s 2nd identity we get

− b
a

[{(∇XS)(Z,U)g(Y, V )− (∇XS)(Y, U)g(Z, V )

+(∇XS)(Y, V )g(Z,U)− (∇XS)(Z, V )g(Y, U)}+ {(∇Y S)(X,U)g(Z, V )

−(∇Y S)(Z,U)g(X, V ) + (∇Y S)(Z, V )g(X,U)− (∇Y S)(X, V )g(Z,U)}
+{(∇ZS)(Y, U)g(X, V )− (∇ZS)(X,U)g(Y, V )

+(∇ZS)(X, V )g(Y, U)− (∇ZS)(Y, V )g(X,U)}]

+
1

a
[A(X)C∗(Y, Z, U, V ) + A(Y )C∗(Z,X,U, V ) + A(Z)C∗(X, Y, U, V )

+B(X){g(Z,U)g(Y, V )− g(Y, U)g(Z, V )}
+B(Y ){g(X,U)g(Z, V )− g(Z,U)g(X, V )}
+B(Z){g(Y, U)g(X, V )− g(X,U)g(Y, V )}]

+
1

a
(

a

n− 1
+ 2b)[

dr(X)

n
{g(Z,U)g(Y, V )− g(Y, U)g(Z, V )}

+
dr(Y )

n
{g(X,U)g(Z, V )− g(Z,U)g(X, V )}

+
dr(Z)

n
{g(Y, U)g(X, V )− g(X,U)g(Y, V )}] = 0.

Putting Y = V = ei in (3.2), where {ei} is an orthonormal basis of the tangent
space at each point of the manifold and taking summation over i, 1 ≤ i ≤ n and
using (2.2) we get

− b
a

[{n(∇XS)(Z,U)− (∇X(Z,U)

+dr(X)g(Z,U)− (∇XS)(Z,U)}
+{(∇ZS)(X,U)− (∇XS)(Z,U)

+
1

2
dr(Z)g(X,U)− 1

2
dr(X)g(Z,U)}

+{(∇ZS)(X,U)− n(∇ZS)(X,U)

+(∇ZS)(X,U)− dr(Z)g(X,U)}]

+
1

a
[A(X){a1S(Z,U) + b1rg(Z,U)}

+A(C∗(Z,X)U)− A(Z){a1S(X,U)

+b1rg(X,U)}+B(X){ng(Z,U)− g(Z,U)}
+B(Z)g(X,U)−B(X)g(Z,U)

+B(Z){g(X,U)− ng(X,U)}]

+
1

a
(

a

n− 1
+ 2b)[

dr(X)

n
{g(Z,U)n− g(Z,U)}

+
dr(Z)

n
g(X,U)− dr(X)

n
g(Z,U)

+
dr(Z)

n
g(X,U)− dr(Z)g(X,U)] = 0. (3.2)
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Again putting Z = U = ei in (3.2), where {ei} is an orthonormal basis of
the tangent space at each point of the manifold and taking summation over
i, 1 ≤ i ≤ n and using (2.2) we get

− b
a

[{2(n− 1)− n

2
− n

2
}dr(X)]

+
1

a
[(n− 2)rb1A(X)− 2a1A(LX) + {n2 − 3n+ 2}B(X)]

+
1

a
(

a

n− 1
+ 2b)[(n− 1− 2 +

2

n
)dr(X)] = 0.

or,

rA(X) = − 2n

n− 2
A(LX) +

n(n− 1)

a+ (n− 2)b
B(X) + dr(X). (3.3)

Thus we can state the following theorem:

Theorem 3.1. The scalar curvature r of a generalized quasi-conformally recur-

rent manifold is constant if and only if rA(X) = − 2n
n−2A(LX) + n(n−1)

a+(n−2)bB(X)

for all vector fields X.

Now we suppose that the scalar curvature r is constant in a G{C∗(Kn)}, that
is, dr = 0. Then from (3.3) we have

rA(X) = − 2n

(n− 2)
A(LX) +

n(n− 1)

a+ (n− 2)b
B(X). (3.4)

Now, putting Y = V = ei in (3.1), where {ei} is an orthonormal basis of the
tangent space at each point of the manifold and taking summation over i, 1 ≤
i ≤ n we get

(∇XS)(Z,U) =
1

a
[A(X){a1S(Z,U) + b1rg(Z,U)}

+B(X){ng(Z,U)− g(Z,U)}
−b{n(∇XS)(Z,U)− (∇XS)(Z,U)

+dr(X)g(Z,U)− (∇XS)(Z,U)}

+
dr(X)

n
(

a

n− 1
+ 2b){ng(Z,U)− g(Z,U)}]. (3.5)

Using (3.4) and dr = 0 in (3.5) we get

(∇XS)(Z,U) =
1

a
[a1A(X)S(Z,U) + b1{−

2n

(n− 2)
A(LX)

+
n(n− 1)

a+ (n− 2)b
B(X)}g(Z,U) + (n− 1)B(X)g(Z,U)− b(n− 2)(∇XS)(Z,U)].



ON GENERALIZED QUASI-CONFORMALLY RECURRENT MANIFOLDS 243

or,

{a+ b(n− 2)

a
}(∇XS)(Z,U) =

a1
a
A(X)S(Z,U)

+[−
2n(−a1

n
)

(n− 2)a
A(LX)

+
1

a
[n(n− 1) + (n− 1){a+ (n− 2)b}]B(X)]g(Z,U).

or,

(∇XS)(Z,U) = A(X)S(Z,U) + [
2

(n− 2)
A(LX)

+(n− 1)
{n+ a+ (n− 2)b}

a+ (n− 2)b
B(X)]g(Z,U). (3.6)

This can be written as

(∇XS)(Z,U) = A(X)S(Z,U) +D(X)g(Z,U),

where D(X) = [ 2
(n−2)A(LX) + (n− 1){n+a+(n−2)b}

a+(n−2)b B(X)] is non-zero as B is non-

zero. Hence the manifold is a generalized Ricci-recurrent manifold. Hence we
have the following theorem:

Theorem 3.2. If the scalar curvature of a generalized quasi-conformally recur-
rent manifold is constant, then such a manifold is a generalized Ricci-recurrent
manifold.

4. Ricci-symmetric generalized quasi-conformally recurrent manifold

In this section we assume that G{C∗(Kn)} is Ricci-symmetric, that is, ∇S = 0,
that is, ∇L = 0. Then the scalar curvature r is constant and dr = 0. So we have
from (3.5)

0 = a1A(X)S(Z,U) + [(n− 1)B(X) + b1rA(X)]g(Z,U). (4.1)

Again since r is constant we can use (3.4). Putting the value of B(X) from (3.4)
in (4.1) we get

A(X)S(Z,U) = − 1

a1
[(n− 1){a+ (n− 2)b

n(n− 1)
}{rA(X)

+
2n

(n− 2)
A(LX)}+ b1rA(X)]g(Z,U).

or,

S(Z,U) = − 2

(n− 2)

A(LX)

A(X)
g(Z,U). (4.2)

This can be written as
S(Z,U) = λg(Z,U),

where λ = − 2
(n−2)

A(LX)
A(X)

g(Z,U) is a scalar. Hence the manifold is an Einstein

manifold. This leads to the following theorem:

Theorem 4.1. A Ricci-symmetric generalized quasi-conformally recurrent man-
ifold is an Einstein manifold.
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5. Sufficient condition for a generalized quasi-conformally recurrent
manifold to be a quasi Einstein manifold

From (3.5) we have

(∇XS)(Z,U) =
1

a
[a1A(X)S(Z,U) + {(n− 1)B(X)

+b1rA(X)}g(Z,U)− b{(n− 2)(∇XS)(Z,U)}

+{n− 1

n
(

a

n− 1
+ 2b)− b}g(Z,U)dr(X)]. (5.1)

In a G{C∗(Kn)} the vector field P defined by g(X,P ) = A(X) for any vector
field X is said to be a concircular vector field [30] if the following equation is
satisfied

(∇XA)(Y ) = αg(X, Y ) + ω(X)A(Y ), (5.2)

where α is a non-zero scalar and ω is a closed 1-form. If P is a unit one, then
the equation (5.2) can be written as

(∇XA)(Y ) = α[g(X, Y )− A(X)A(Y )]. (5.3)

We suppose that G{C∗(Kn)} admits a unit concircular vector field defined by
(5.3), where α is a non-zero constant. Applying Ricci identity to (5.3) we obtain

A(R(X, Y )Z) = −α2[g(X,Z)A(Y )− g(Y, Z)A(X)] (5.4)

Putting Y = Z = ei, in (5.4) and taking summation over i, 1 ≤ i ≤ n, where
{ei} is an orthonormal basis of the tangent space at each point of the manifold,
we get

A(LX) = (n− 1)α2A(X), (5.5)

where L is the Ricci operator defined by

g(LX, Y ) = S(X, Y )

which implies
S(X,P ) = (n− 1)α2A(X). (5.6)

Now,
(∇XS)(Y, P ) = ∇XS(Y, P )− S(∇XY, P )− S(Y,∇XP ). (5.7)

Applying (5.6) in (5.7) we get

(∇XS)(Y, P ) = (n− 1)α2∇XA(Y )− (n− 1)α2A(∇XY )− S(Y,∇XP ). (5.8)

or,
(∇XS)(Y, P ) = (n− 1)α2(∇XA)(Y )− S(Y,∇XP ). (5.9)

Applying (5.3) in (5.9) we get

(∇XS)(Y, P ) = (n− 1)α3[g(X, Y )− A(X)A(Y )]− S(Y,∇XP ). (5.10)

Now, we have
(∇XA)(Y ) = ∇XA(Y )− A(∇XY ).

or,
(∇XA)(Y ) = ∇Xg(Y, P )− g(∇XY, P )

Since (∇Xg)(Y, P ) = 0, so, we have

(∇XA)(Y ) = g(Y,∇XP ). (5.11)
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By (5.3) this implies

α[g(X, Y )− A(X)A(Y )] = g(Y,∇XP ),

that is,
g(αX, Y )− g(αA(X)P, Y ) = g(∇XP, Y ), (5.12)

which implies
∇XP = αX − αA(X)P.

or,
∇XP = α(X − A(X)P ).

Therefore,
S(Y,∇XP ) = S(Y, αX)− S(Y, αA(X)P ).

Hence
S(Y,∇XP ) = α[S(X, Y )− A(X)S(Y, P )]. (5.13)

Applying (5.13) in (5.10) we get

(∇XS)(Y, P ) = (n− 1)α3[g(X, Y )− A(X)A(Y )]

−α[S(X, Y )− A(X)S(Y, P )] (5.14)

Applying (5.6) in (5.14) we get

(∇XS)(Y, P ) = (n− 1)α3g(X, Y )− αS(X, Y ). (5.15)

¿From (5.1) we have

(∇XS)(Y, P ) =
a1
a
A(X)S(Y, P ) +

1

a
[{(n− 1)B(X)

+b1rA(X)}g(Y, P )− b{(n− 2)(∇XS)(Y, P )}

+{n− 1

n
(

a

n− 1
+ 2b)− b}g(Y, P )dr(X)]. (5.16)

Now using (5.15) and (5.6) in (5.16) we get

(1 +
(n− 2)b

a
){(n− 1)α3g(X, Y )− αS(X, Y )} =

a1
a

(n− 1)α2A(X)A(Y )

+
1

a
[(n− 1)B(X) + b1rA(X) + {(n− 1

n
)(

a

n− 1
+ 2b)− b}dr(X)]A(Y )

or,

{a+ (n− 2)b}
a

{(n− 1)α3g(X, Y )− αS(X, Y )}

=
a1
a

(n− 1)α2A(X)A(Y ) +
1

a
[(n− 1)B(X) + b1rA(X)

+{(n− 1

n
)(

a

n− 1
+ 2b)− b}dr(X)]A(Y ). (5.17)

Now if the scalar curvature is constant, then dr = 0 and using (3.4) from (5.5)
we get

B(X) = [r +
2n(n− 1)

(n− 2)
α2][

a+ (n− 2)b

n(n− 1)
]A(X). (5.18)
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Using (5.18) and dr = 0 in (5.17) we get

{a+ (n− 2)b}
a

{(n− 1)α3g(X, Y )− αS(X, Y )}

=
a1
a

(n− 1)α2A(X)A(Y ) +
1

a
[(n− 1){r

+
2n(n− 1)

n− 2
α2}{a+ (n− 2)b

n(n− 1)
}A(X) + b1rA(X)]A(Y ).

or,

(n− 1)α3g(X, Y )− αS(X, Y )

= {(n− 1)α2 +
2(n− 1)α2

(n− 2)
}A(X)A(Y ).

or,

S(X, Y ) = (n− 1)α2g(X, Y )− n(n− 1)

(n− 2)
αA(X)A(Y ), (5.19)

Since α is a non-zero constant, (5.19) can be written as

S(X, Y ) = ag(X, Y ) + bA(X)A(Y ),

where a = (n − 1)α2 and b = −n(n−1)
(n−2) α are two non-zero constants as α is a

non-zero constant. Hence the manifold is a quasi Einstein manifold. Thus we
hvae the following theorem:

Theorem 5.1. If in a G{C∗(Kn)} with constant scalar curvature the associated
unit vector field P is a unit concircular vector field whose associated scalar is a
non-zero constant, then the manifold reduces to a quasi Einstein manifold.

6. Applications of perfect fluid Ricci symmetric G{C∗(Kn)} spacetime

This section is concerned with certain investigations in general relativity by
the coordinate free method of differential geometry. In this method of study the
spacetime of general relativity is regarded as a connected four-dimensional semi-
Riemannian manifold (R4, g) with Lorentz metric g with signature (+,+,+,-).
The geometry of the Lorentz manifold begins with the study of the casual charac-
ter of vectors of the manifold. It is due to this casuality that the Lorentz manifold
becomes a convenient choice for the study of general relativity. Here we consider
a special type of spacetime which is called Ricci symmetric generalized quasi-
conformally recurrent spacetime. A semi-Riemannian four-dimensional Ricci
symmetric generalized quasi-conformally recurrent manifold may similarly be
defined by taking a Lorentz metric g with signature (+,+,+,-). In this case
we consider a Ricci symmetric generalized quasi conformally recurrent spacetime
with the timelike velocity vector field g(P, P ) = −1. So, Theorem 4.1 will also
hold in such a spacetime. For a perfect fluid spacetime, we have the Einstein’s
equation without cosmological constant as

S(X, Y )− r

2
g(X, Y ) = kT (X, Y ), (6.1)

where k is the gravitational constant, T is the energy momentum tensor of type
(0,2) given by

T (X, Y ) = (σ + p)A(X)A(Y ) + pg(X, Y ), (6.2)
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with σ and p as the energy density and isotropic pressure of the fluid respec-
tively. Using (6.2) we can express (6.1) as

S(X, Y )− r

2
g(X, Y ) = k[(σ + p)A(X)A(Y ) + pg(X, Y )]. (6.3)

. Taking a frame field and contracting (6.3) over X and Y we get

r = k(σ − 3p). (6.4)

Now putting X = U = P and using (3.4) in (4.2) for n = 4 we get

S(Z, P ) =
3B(P )A(Z)

a+ 2b
+
r

4
A(Z). (6.5)

Again putting U = P in (6.3), we obtain

S(Z, P ) =
r

2
A(Z)− kσA(Z). (6.6)

Using (6.5) in (6.6) yields

B(P ) = −k(p+ σ)(a+ 2b)

4
. (6.7)

Again using (6.7) in (6.5) and putting Z = P we get

S(P, P ) =
3k(p+ σ)

4
− r

4
. (6.8)

Using (6.4) in (6.8) we obtain

S(P, P ) =
k(σ + 3p)

2
. (6.9)

¿From (6.3) and (6.4) we get

S(X, Y ) = k[(σ + p)A(X)A(Y ) +
1

2
(σ − p)S(X, Y )], (6.10)

and hence

S(LX, Y ) = k[(σ + p)A(LX)A(Y ) +
1

2
(σ − p)S(X, Y ). (6.11)

Taking a frame field and contracting (6.11) over X and Y we get

‖ L ‖2= k[(σ + p)S(P, P ) +
1

2
(σ − p)r]. (6.12)

Using (6.4) and (6.9) we obtain

‖ L ‖2= k2(σ2 + 3p2). (6.13)

Let us suppose that the square of the length of the Ricci operator of the per-
fect fluid G{C∗(Kn)} spacetime be 1

3
r2, where r is the scalar curvature of the

spacetime. Then from (6.13), we have

1

3
r2 = k2(σ2 + 3p2), (6.14)

which yields by virtue of (6.4) that

k2(σ + 3p)σ = 0. (6.15)
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Since σ + 3p 6= 0 and k 6= 0, it follows from (6.15) that σ = 0, which is not
possible as when the pure matter exists, σ is always greater than zero. Hence the
spacetime under consideration can not contain pure matter. Thus we can state
the following:

Theorem 6.1. If a perfect fluid Ricci symmetric G{C∗(Kn)} spacetime obeys
Einstein’s field equation without cosmological constant and the square of the length
of the Ricci operator is 1

3
r2, then the spacetime can not contain pure matter.

We know that if the Ricci tensor S of type (0,2) of the spacetime satisfies the
condition [29]

S(X,X) > 0, (6.16)

for every timelike vector field X, then (6.16) is called the timelike convergence
condition. Now we determine the sign of the pressure in such a spacetime without
pure matter. Hence for σ = 0, (6.4) yields

r = −3pk. (6.17)

Hence from (6.2) we get
T (P, P ) = σ = 0. (6.18)

Thus from (6.1) and (6.17) it follows that

p =
2

3k
S(P, P ). (6.19)

Since S(P, P ) > 0, it follows from (6.19) that p > 0. Thus we can state the
following:

Theorem 6.2. If a perfect fluid Ricci symmetric G{C∗(Kn)} spacetime obeys
Einstein’s field equations without cosmological constant and the Ricci tensor obeys
the timelike convergence condition, then in such a spacetime without pure matter
the pressure of the fluid is positive.

7. An example of a G{C∗(Kn)}
This section deals with an example of G{C∗(Kn)}. On the real number space

Rn (with coordinates x1, x2, ... , xn) we define suitable Riemannian metric g such
that Rn becomes a Riemannian manifold (Mn, g). We calculate the components
of the curvature tensor, the Ricci tensor, the quasi-conformal curvature tensor
and its covariant derivative and then we verify the defining relation (1.4).

Example 7.1. We define a Riemannian metric on the 4-dimensional real number
space R4 by the formula

ds2 = gijdx
idxj = f(dx1)2 + 2dx1dx2 + (dx3)2 + (kx1)2v(x4)(dx4)2, (7.1)

where i, j = 1, 2, ..., 4). Here f = p0 + p1x
3 + p2(x

3)2, p0, p1, p2 are non-constant
functions of x1 only, v is a function of x4 and k is a non-zero arbitrary constant.

Then the only non-vanishing components of the Christoffel symbols, the cur-
vature tensor and the Ricci tensor are respectively:

Γ2
11 =

1

2
f.1, Γ2

13 = −Γ3
11 =

1

2
f.3, Γ4

14 =
1

x1
,

Γ2
44 = −kx1v, Γ4

44 =
v.4
2v
,
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R1331 =
1

2
f.33, R11 =

1

2
f.33,

and the components which can be obtained from these by the symmetric proper-
ties. Here ‘.’ denotes the partial differentiation with respect to the coordinates.
Using the above relations, it can be easily shown that the scalar curvature of
the manifold is zero. Therefore R4 with the considered metric is a Riemannian
manifold M4 whose scalar curvature is zero. In view of the above relations, (1.3)
yields that the only non-zero components of the quasi-conformal curvature tensor
are

C∗1331 =
1

2
(a+ b)f.33 = (a+ b)p2 6= 0, (7.2)

and the components which can be obtained from (7.2) by the symmetric proper-
ties. The only non-zero covariant derivative of C∗ are

C∗1331,1 =
1

2
(a+ b)f.331 = (a+ b)(p2).1 6= 0, (7.3)

and the components which can be obtained from (7.3) by the symmetric proper-
ties, where ‘,’ denotes the covariant derivative with respect to the metric tensor.
Hence the Riemannian manifold (M4, g) is neither quasi-conformally flat nor
quasi conformally symmetric.

We shall now show that this M4 is a G{C∗(K4)}, that is, it satisfies (1.4). Let
us now consider the 1-forms Ai and Bi respectively as follows:

Ai(x) =

{
(p2).1
2p2

for i=1

0 otherwise,
(7.4)

Bi(x) =

{
(a+b)(p2).1

2f
for i=1

0 otherwise,
(7.5)

at any point x ∈ R4. Now the equation (1.4) reduces to the equation

C∗1331,1 = A1C
∗
1331 +B1[g33g11 − g13g31], (7.6)

since, for the other cases the (1.4) holds trivially. Using (7.4) and (7.5) we get
from (7.6)

R.H.S. of (7.6) = A1C
∗
1331 +B1[g33g11 − g13g31]

=
(p2).1
2p2

(a+ b)p2 +
(a+ b)(p2).1

2f
f

=
(a+ b)(p2).1

2
+

(a+ b)(p2).1
2

= (a+ b)(p2).1
= L.H.S. of (7.6).

In all other cases the proof is trivial. Therefore, (R4, g) is a G{C∗(K4)}. Hence
we can state the following:

Theorem 7.1. Let (M4, g) be a Riemannian manifold endowed with the metric
ds2 = gijdx

idxj = f(dx1)2+2dx1dx2+(dx3)2+(kx1)2v(x4)(dx4)2, (i, j = 1, 2, 3, 4)
where f = p0 + p1x

3 + p2(x
3)2, p0, p1, p2 are non-constant functions of x1 only,

v is a function of x4 and k is a non-zero arbitrary constant. Then (M4, g) is a
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generalized quasi-conformally recurrent manifold with vanishing scalar curvature
which is neither quasi-conformally flat nor quasi-conformally symmetric.

In particular , if we take p2 = ex
1
, then (7.2) and (7.3) are respectively reduces

to the following
C∗1331 = (a+ b)ex

1 6= 0, (7.7)

C∗1331,1 = (a+ b)ex
1

= C∗1331 6= 0, (7.8)

and hence the manifold under consideration is neither quasi-conformally flat nor
quasi-conformally symmetric. If we consider the 1-forms as follows:

Ai(x) =

{
1
4

for i=1
0 otherwise,

(7.9)

Bi(x) =

{
3(a+b)ex

1

4f
for i=1

0 otherwise,
(7.10)

then proceeding similarly as the previous case it can be easily shown that the
manifold under consideration satisfies (7.6) and hence is a G{C∗(K4)}. Thus we
have the following:

Theorem 7.2. Let (M4, g) be a Riemannian manifold endowed with the metric
ds2 = gijdx

idxj = f(dx1)2+2dx1dx2+(dx3)2+(kx1)2v(x4)(dx4)2, (i, j = 1, 2, 3, 4)

where f = p0 + p1x
3 + ex

1
(x3)2, p0, p1 are non-constant functions of x1 only, v

is a function of x4 and k is a non-zero arbitrary constant. Then (M4, g) is a
generalized quasi-conformally recurrent manifold with vanishing scalar curvature
which is neither quasi-conformally flat nor quasi-conformally symmetric.
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