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Adjacency and Signless Laplacian Matrix

Conjecture 1 [1,2]:

Let G be a connected graph of order n > 3. Then
gr—2M <n—-2vn-1

with equality holding if and only if G = K 1.
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Conjecture 2 [1,2]:
Let G be a connected graph n > 3,

1—-vVn—-1<g—-M<n—-2-—+/2(n-2)

with equality holding iff G = Ki ,_1 (lower) and G = K5 ,_> (upper).

[1] M. Aouchiche, P. Hansen, A survey of automated conjectures...., Linear Algebra Appl. 432 (2010) 2293-2322.
[2] D.Cvetkovi¢, P. Rowlinson, S. K. Simi¢, Eigenvalue bounds for the signless Laplacian, Publ. Inst. Math.

(Remnor Y (NS )Y Q1 (OE) (2007 1107



Relation between g; and )\,

Let G be a connected graph of order n > 4. Then

@—M=>1-vn-1

with equality holding if and only if G = K ,—1 or G = Ks.

[3] K. C. Das, Proof of conjecture involving the second largest signless Laplacian eigenvalue and the index of

graphs, Linear Algebra Appl. 435 (2011) 2420-2424.



Adjacency and Signless Laplacian Matrix

Partial Proof of Conjecture 1:

Let x = (x1, X2, ..., X,) " be an unit eigenvector corresponding eigenvalue
g1 of Q(G). Then

q1 = Z (i +x)?

V,'V_,'EE(G)
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Adjacency and Signless Laplacian Matrix

Partial Proof of Conjecture 1:

If A<n—2+vn—1, then the Conjecture 1 holds.Otherwise,
A>n—2+vn—1.
If m>2 [A—n+2y/n—1], then also Conjecture 1 holds.

Still we have to prove our Conjecture 1 for A >n—2+n—1 and

m< 3 [A-n+2vn—1].

g1 —2X < z (Xi - XJ)2 < m(Xmax - Xmin)2 <
v,-vJ-EE(G)

X (Xmax — Xmin)2 .




Conjecture 1 for tree

Proof of Conjecture 1 for tree:

Let m; be the average degree of the adjacent vertices of vertex v;.
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Conjecture 1 for tree

Proof of Conjecture 1 for tree:

Let m; be the average degree of the adjacent vertices of vertex v;.We have

< d; ) =d .
g < 1rgiagxn( i+ m;i) = di + mg, (say)

Moreover, for Tree

A1 > max \/d,'—i-m,'—lZ\/dk—ka—l.
1<i<n

Then

g -2M<(Vde+me—1-12<(Vn-1-12=n-2vn—-1.




Algebraic Connectivity

Conjecture 3 [4,5,6]:

a(G)/6(G) is minimum for graph composed of 2 triangles linked with a
path.

[4] M. Aouchiche, Comparaison Automatisée d’Invariants en Théorie des Graphes, Ph.D. Thesis, Ecole
Polytechnique de Montréal, February 2006.

[5] M. Aouchiche, G. Caporossi, P. Hansen, Variable neighborhood search for extremal graphs. 20. Automated
comparison of graph invariants, MATCH Commun. Math. Comput. Chem. 58 (2007) 365-384.

[6] M. Aouchiche, P. Hansen, A survey of automated conjectures in spectral graph theory, Linear Algebra Appl. 432

(2010) 2293-2322.
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Notation:
A path with n vertices is denoted by P,.

The near path @, is the tree on n vertices obtained from a path P,_; :
ViVp -+ - Vp_oVp_1 by attaching a new pendant edge v,_,v, at v,_o.

Let W, be the tree on n vertices obtained from a path P, >
VoVv3 .-+ Vp_oVp_1 by attaching a new pendant edge v, »v, at v, > and
another new pendant edge vjvs at vs, respectively.

Let Q, = Qn+ Va1V, W) = W, + vivo and W) = W, + vava + vp_1vp.

Let Z, be the tree on n vertices obtained from a path P,
ViVa -+ - Vp_oVp_1 by attaching a new pendant edge v,_3v, at v,_s.




Inequality

. o
X >SN x> X — —

6




Inequality

. x3
X>SInX>X—€.

For any positive integer n > 3,

sin (2—:) > % sin (ﬁ) .




FOrX> 0,

! <7r)>7r 3
n D [
sin (5

™

™

1
— N i
2n 48 n3 2\/§(n_1) \/E




Laplacian Eigenvalues

The Laplacian eigenvalues of path P, are

2+ 2cos (ﬂ), i

n

1,2,...,n—1 and 0.
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Algebraic Connectivity

Definition:

We define
_a(6)

Ad(6) = Srgy-

Conjecture 3:

Let G be a connected graph of order n > 3 and minimum degree 6. Then
Ad(G) = Ad(W) (1)

with equality holding if and only if G = W/,
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Algebraic Connectivity

Let G be a connected graph of order n > 3 and minimum degree §. If § < 2
or § > n/2, then

Ad(G) = Ad(W;,) (2)
with equality holding if and only if G = W/,

For 4 < n < 8, one can easily check the result by Sage. Otherwise, n > 9. I




Let G be a connected graph of order n > 9 and
G ¢ {P,, Qn Q, W, W/, W/}. Then we have
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Let G be a connected graph of order n > 9 and
G ¢ {Pn, Qn, Q, Wyo, W), W/}. Then we have

a(Pn) < a(Qn) = a(Qp) < a(W,) = a(W;) = a(W) < a(G), a(Wp) < a(

Lemma 5 [8]:

If v is a pendent vertex, then a(G) < a(G — v).

[7] J.-Y. Shao, J.-M. Guo, H.-Y. Shan, The ordering of trees and connected graphs by algebraic connectivity, Linear

Algebra Appl. 428 (2008) 1421-1438.

[8] J. X. Li, J.-M. Guo, W. C. Shiu, The Smallest Values of Algebraic Connectivity for Trees, Acta Mathematica

Sinica, English Series 28 (10) (2012) 2021-2032.
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Proof:

By Lemma 1.2, we have

. 2 l) . 2 ™ . _ (E) ™
2 sin <2n > sin (2(n—1))’ i.e., 1—2cos - + cos p— >

Using the above result with some Lemmas 1.3, 1.4 and 1.5, we have

a(Wy) < a(Zn) < a(Pn-1) =2 — 2 cos (Ll) = (2 2 cos (%))

= 2a(Py).




Proof:

Then by Lemma 1.4,

(6) W) _ pam

Ad(G) = 25 .

with equality holding if and only if G = W/ .




Proof:
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Case (iii): 6 > n/2

Lemma 1.6 [9]:

Let G be a connected graph of order n, minimum degree 6(G)
and algebraic connectivity a(G). Then

_n—8+\/n2+8n—16

a(G) — 6(G) > a3 4

2

if nis even

if nis odd

Moreover, the equality holds if and only if G = K|, /5 ,/»\{e}

when n is even (e is any edge), and G = K(,_1)/2, (n—1)2 V K1
when n is odd.

v

[9] K. C. Das, Proof of conjectures involving algebraic connectivity of graphs, Linear Algebra Appl. 438 (2013)

3291-3302.



Proof:

From Lemma 1.6, we have

n—2 n—8—|—\/n2—1—8n—16< n—3
- 2
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a(G)
)

Ad(G) =




Proof:

From Lemma 1.6, we have

n—2 n—8++vn?>+8n—16 n—3
— £ — £ = < — 0.
7 = 4 s-—=a6)-9¢
Therefore
ad(G)=2C) 5 _n=2
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From Lemma 1.6, we have

n—2 n—8—|—\/n2—1—8n—16< n—3
- 2

< — 0.
5 = 7 <a(G)—¢




Proof:

From Lemma 1.6, we have

n—2 n—8++vn?>+8n—16 n—3
— < — £ = < — 0.
5 = 7 < 5 = a(G) -9
Therefore
a(G) n—2 x° "
= >1-— . )
Ad(G) =22 21— == > 5 > Ad(Wy)




Proof:

For 3 <4 < n/2, Conjecture 3 is still open. I




THANK YQOU for attention.



