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Adjacency and Signless Laplacian Matrix

Conjecture 1 [1,2]:

Let G be a connected graph of order n > 3. Then

q1 − 2λ1 ≤ n− 2
√
n− 1

with equality holding if and only if G ∼= K1, n−1.
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Let G be a connected graph of order n > 3. Then

q1 − 2λ1 ≤ n− 2
√
n− 1

with equality holding if and only if G ∼= K1, n−1.

Conjecture 2 [1,2]:

Let G be a connected graph n > 3,

1−√
n − 1 ≤ q2 − λ1 ≤ n − 2−

√
2 (n − 2)

with equality holding iff G ∼= K1, n−1 (lower) and G ∼= K2, n−2 (upper).

[1] M. Aouchiche, P. Hansen, A survey of automated conjectures...., Linear Algebra Appl. 432 (2010) 2293-2322.

[2] D.Cvetković, P. Rowlinson, S. K. Simić, Eigenvalue bounds for the signless Laplacian, Publ. Inst. Math.

(Beogr ) (N S ) 81 (95) (2007) 11–27



Relation between q1 and λ1

Theorem [3]:

Let G be a connected graph of order n > 4. Then

q2 − λ1 ≥ 1−√
n − 1

with equality holding if and only if G ∼= K1, n−1 or G ∼= K5.

[3] K. C. Das, Proof of conjecture involving the second largest signless Laplacian eigenvalue and the index of

graphs, Linear Algebra Appl. 435 (2011) 2420–2424.
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T be an unit eigenvector corresponding eigenvalue

q1 of Q(G ). Then

q1 =
∑

vi vj∈E(G)

(xi + xj)
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Adjacency and Signless Laplacian Matrix

Partial Proof of Conjecture 1:

If Δ ≤ n − 2
√
n − 1, then the Conjecture 1 holds.Otherwise,

Δ > n − 2
√
n − 1.

If m ≥ n
2

[
Δ− n + 2

√
n − 1

]
, then also Conjecture 1 holds.

Still we have to prove our Conjecture 1 for Δ > n − 2
√
n − 1 and

m < n
2

[
Δ− n+ 2

√
n− 1

]
.

q1 − 2λ1 ≤
∑

vi vj∈E(G)

(xi − xj)
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2

[
Δ− n + 2

√
n − 1

]
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2 .
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Conjecture 1 for tree

Proof of Conjecture 1 for tree:

Let mi be the average degree of the adjacent vertices of vertex vi .We have

q1 ≤ max
1≤i≤n

(di +mi ) = dk +mk , (say).

Moreover, for Tree

λ1 ≥ max
1≤i≤n

√
di +mi − 1 ≥

√
dk +mk − 1.

Then

q1 − 2λ1 ≤ (
√

dk +mk − 1− 1)2 ≤ (
√
n− 1− 1)2 = n − 2

√
n − 1.



Algebraic Connectivity

Conjecture 3 [4,5,6]:

a(G )/δ(G ) is minimum for graph composed of 2 triangles linked with a
path.

[4] M. Aouchiche, Comparaison Automatisée d’Invariants en Théorie des Graphes, Ph.D. Thesis, École

Polytechnique de Montréal, February 2006.

[5] M. Aouchiche, G. Caporossi, P. Hansen, Variable neighborhood search for extremal graphs. 20. Automated

comparison of graph invariants, MATCH Commun. Math. Comput. Chem. 58 (2007) 365–384.

[6] M. Aouchiche, P. Hansen, A survey of automated conjectures in spectral graph theory, Linear Algebra Appl. 432

(2010) 2293–2322.
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Notation:

A path with n vertices is denoted by Pn.

The near path Qn is the tree on n vertices obtained from a path Pn−1 :
v1v2 · · · vn−2vn−1 by attaching a new pendant edge vn−2vn at vn−2.

Let Wn be the tree on n vertices obtained from a path Pn−2 :
v2v3 · · · vn−2vn−1 by attaching a new pendant edge vn−2vn at vn−2 and
another new pendant edge v1v3 at v3, respectively.

Let Q ′
n = Qn + vn−1vn, W

′
n = Wn + v1v2 and W ′′

n = Wn + v1v2 + vn−1vn.

Let Zn be the tree on n vertices obtained from a path Pn−1 :
v1v2 · · · vn−2vn−1 by attaching a new pendant edge vn−3vn at vn−3.
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Lemma 1:

For x > 0,

x > sin x > x − x3
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Lemma 1:

For x > 0,

x > sin x > x − x3

6
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Lemma 2:

For any positive integer n > 3,

sin
( π

2 n

)
>

1√
2
sin

(
π

2 (n − 1)

)
.



Inequality

Proof:

For x > 0,

sin
( π

2n

)
>

π

2n
− π3

48 n3
>

π

2
√
2 (n − 1)

>
1√
2
sin

(
π

2 (n − 1)

)
.



Laplacian Eigenvalues

Lemma 3:

The Laplacian eigenvalues of path Pn are

2 + 2 cos
(π i

n

)
, i = 1, 2, . . . , n − 1 and 0.
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Algebraic Connectivity

Theorem 1:

Let G be a connected graph of order n > 3 and minimum degree δ. If δ ≤ 2
or δ ≥ n/2, then

Ad(G ) ≥ Ad(W ′′
n ) (2)

with equality holding if and only if G ∼= W ′′
n .

Proof:

For 4 ≤ n ≤ 8, one can easily check the result by Sage. Otherwise, n ≥ 9.



Lemma 4 [7]:

Let G be a connected graph of order n ≥ 9 and
G /∈ {Pn, Qn, Q

′
n, Wn, W

′
n, W

′′
n }. Then we have

a(Pn) < a(Qn) = a(Q ′
n) < a(Wn) = a(W ′

n) = a(W ′′
n ) < a(G ), a(Wn) < a(Zn
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Let G be a connected graph of order n ≥ 9 and
G /∈ {Pn, Qn, Q

′
n, Wn, W

′
n, W

′′
n }. Then we have

a(Pn) < a(Qn) = a(Q ′
n) < a(Wn) = a(W ′

n) = a(W ′′
n ) < a(G ), a(Wn) < a(Zn

Lemma 5 [8]:

If v is a pendent vertex, then a(G ) ≤ a(G − v).

[7] J.-Y. Shao, J.-M. Guo, H.-Y. Shan, The ordering of trees and connected graphs by algebraic connectivity, Linear

Algebra Appl. 428 (2008) 1421–1438.

[8] J. X. Li, J.-M. Guo, W. C. Shiu, The Smallest Values of Algebraic Connectivity for Trees, Acta Mathematica

Sinica, English Series 28 (10) (2012) 2021–2032.
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(
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(π
n
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Case (ii): δ = 2.

Then by Lemma 1.4,

Ad(G ) =
a(G )

2
≥ a(W ′′

n )

2
= Ad(W ′′

n )

with equality holding if and only if G ∼= W ′′
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By Case (i) and Lemma 1.1, we have

Ad(W ′′
n ) =

a(W ′′
n )

2
< 2− 2 cos

(π
n

)
= 4 sin2

( π

2n

)
<

π2

n2
.

Since n ≥ 5, one can easily see that

n

(
1− π2

n2

)
> n − 2 .

Thus we have

δ

(
1− π2

n2

)
≥ n

2

(
1− π2

n2

)
>

n − 2

2



Proof:

Case (iii): δ ≥ n/2.

By Case (i) and Lemma 1.1, we have

Ad(W ′′
n ) =

a(W ′′
n )

2
< 2− 2 cos

(π
n

)
= 4 sin2

( π

2n

)
<

π2

n2
.

Since n ≥ 5, one can easily see that

n

(
1− π2

n2

)
> n − 2 .

Thus we have

δ

(
1− π2

n2

)
≥ n

2

(
1− π2

n2

)
>

n − 2

2
, i.e.,

π2

n2
< 1− n − 2

2 δ
.



Case (iii): δ ≥ n/2

Lemma 1.6 [9]:

Let G be a connected graph of order n, minimum degree δ(G )
and algebraic connectivity a(G ). Then

a(G )− δ(G ) ≥

⎧⎪⎨
⎪⎩

−n − 8 +
√
n2 + 8n − 16

4
if n is even

−n − 3

2
if n is odd

Moreover, the equality holds if and only if G ∼= Kn/2, n/2\{e}
when n is even (e is any edge), and G ∼= K(n−1)/2, (n−1)/2 ∨ K1

when n is odd.

[9] K. C. Das, Proof of conjectures involving algebraic connectivity of graphs, Linear Algebra Appl. 438 (2013)

3291–3302.



Proof:

Case (iii): δ ≥ n/2.

From Lemma 1.6, we have

−n− 2

2
≤ −n− 8 +

√
n2 + 8n − 16

4
≤ −n− 3

2
≤ a(G )− δ.



Proof:

Case (iii): δ ≥ n/2.

From Lemma 1.6, we have

−n− 2

2
≤ −n− 8 +

√
n2 + 8n − 16

4
≤ −n− 3

2
≤ a(G )− δ.

Therefore

Ad(G ) =
a(G )

δ



Proof:

Case (iii): δ ≥ n/2.

From Lemma 1.6, we have

−n− 2

2
≤ −n− 8 +

√
n2 + 8n − 16

4
≤ −n− 3

2
≤ a(G )− δ.

Therefore

Ad(G ) =
a(G )

δ
≥ 1− n − 2

2 δ



Proof:

Case (iii): δ ≥ n/2.

From Lemma 1.6, we have

−n− 2

2
≤ −n− 8 +

√
n2 + 8n − 16

4
≤ −n− 3

2
≤ a(G )− δ.

Therefore

Ad(G ) =
a(G )

δ
≥ 1− n − 2

2 δ
>

π2

n2



Proof:

Case (iii): δ ≥ n/2.

From Lemma 1.6, we have

−n− 2

2
≤ −n− 8 +

√
n2 + 8n − 16

4
≤ −n− 3

2
≤ a(G )− δ.

Therefore

Ad(G ) =
a(G )

δ
≥ 1− n − 2

2 δ
>

π2

n2
> Ad(W ′′

n ).



Proof:

Remark:

For 3 ≤ δ < n/2, Conjecture 3 is still open.



THANK YOU for attention.


