

2 Some Fundamental Definitions

Ezgi KAYA, Ayşe Dilek MADEN On the Co-PI spectral radius and the Co-PI energy of graphs

イロト イヨト イヨト イヨト

On the Co-PI spectral radius and the Co-PI energy of graphs

Ezgi KAYA Ayşe Dilek MADEN

lgdir University, lgdir/Turkey ezgi.kaya@igdir.edu.tr Selcuk University, Konya/Turkey aysedilekmaden@selcuk.edu.tr

Spectra of graphs and applications 2016 May 18-20, 2016

Serbian Academy of Sciences and Arts, Belgrade, Serbia

Ezgi KAYA, Ayşe Dilek MADEN On the Co-PI spectral radius and the Co-PI energy of graphs

・ロン ・回 と ・ ヨ と ・ ヨ と

Motivation

This talk is based on the Co-PI spectral radius and the Co-PI energy of graphs. The Co-PI eigenvalues of a connected graph G are the eigenvalues of its Co-PI matrix. In this study, Co-PI energy of a graph is defined as the sum of the absolute values of Co-PI eigenvalues of G. We also give some bounds for the Co-PI spectral radius and the Co-PI energy of graphs.

(ロ) (同) (E) (E) (E)

Motivation

A topological index is a number related to graph which is invariant under graph isomorphism. In theoretical chemistry, topological indices (also called molecular structure descriptors) are used for modeling physico-chemical, pharmacologic, toxicologic, biological and other properties of chemical compounds. By now there do exist a lot of different types of such indices which capture different aspects of the molecular graphs associated to the molecules considered.

Motivation

The Szeged index is closely related to the Wiener index and is a vertex-multiplicative type index that takes into account how the vertices of a given molecular graph are distributed. The Padmakar-Ivan index (the PI index) is an additive index that takes into account the distribution of edges.

イロト イヨト イヨト イヨト

Motivation

The Szeged index is closely related to the Wiener index and is a vertex-multiplicative type index that takes into account how the vertices of a given molecular graph are distributed. The Padmakar-Ivan index (the PI index) is an additive index that takes into account the distribution of edges.

Here are the formulas of these topological indices:

イロン イヨン イヨン イヨン

Motivation

The Szeged index is closely related to the Wiener index and is a vertex-multiplicative type index that takes into account how the vertices of a given molecular graph are distributed. The Padmakar-Ivan index (the PI index) is an additive index that takes into account the distribution of edges.

Here are the formulas of these topological indices:

$$PI_{v}(G) = \sum_{uv \in E(G)} n_{u}(e) + n_{v}(e) \quad \text{vertex PI index}$$

$$Sz(G) = \sum_{uv \in E(G)} n_{u}(e)n_{v}(e) \quad Szeged index$$

イロト イポト イヨト イヨト

Some Fundamental Definitions

Now, we give some fundamental definitions which are used in our theorems. In this talk, G will denote a simple connected graph with n vertices and m edges without otherwise.

イロン イヨン イヨン イヨン

Some Fundamental Definitions

Now, we give some fundamental definitions which are used in our theorems. In this talk, G will denote a simple connected graph with n vertices and m edges without otherwise.

Definition (2.1)

For vertices $u, v \in V$, the distance d(u, v) is defined as the length of the shortest path between u and v in G.

ヘロン 人間 とくほど くほとう

Some Fundamental Definitions

Let e = uv be an edge connecting vertices u and v in G.

イロト イヨト イヨト イヨト

Some Fundamental Definitions

Let e = uv be an edge connecting vertices u and v in G. Define the sets:

$$\begin{array}{lcl} N_{u}\left(e \right) & = & \{ z \in V \, | \, d_{G}\left(z, u \right) < d_{G}\left(z, v \right) \} \\ N_{v}\left(e \right) & = & \{ z \in V \, | \, d_{G}\left(z, v \right) < d_{G}\left(z, u \right) \} \end{array}$$

which are sets consisting of vertices lying closer to u than to v and those lying closer to v than to u, respectively.

Some Fundamental Definitions

Let e = uv be an edge connecting vertices u and v in G. Define the sets:

$$\begin{array}{lcl} N_{u}\left(e\right) & = & \{z \in V \, | \, d_{G}\left(z,u\right) < d_{G}\left(z,v\right) \} \\ N_{v}\left(e\right) & = & \{z \in V \, | \, d_{G}\left(z,v\right) < d_{G}\left(z,u\right) \} \end{array}$$

which are sets consisting of vertices lying closer to u than to v and those lying closer to v than to u, respectively. The number of such vertices are denoted by

$$n_{u}\left(e
ight)=\left|N_{u}\left(e
ight)
ight|$$
 and $n_{v}\left(e
ight)=\left|N_{v}\left(e
ight)
ight|.$

Some Fundamental Definitions

Hassani et al.-2010 introduced the following vertex Co-PI index and computed this index for $TUC_4C_8(R)$ nanotubes.

Some Fundamental Definitions

Hassani et al.-2010 introduced the following vertex Co-PI index and computed this index for $TUC_4C_8(R)$ nanotubes.

$$Co - Pl_{v}(G) = \sum_{e \in E(G)} |n_{u}(e) - n_{v}(e)|$$

Hassani et al.-2010, Computation of the first vertex of Co-PI index of TUC4CS(S) nanotubes, *Iranian Journal of . Math. Chem.* 1 (1), (2010)119-123.

イロト イヨト イヨト イヨト

Some Fundamental Definitions

The adjacent matrix $A(G) = [a_{ij}]_{n \times n}$ of G is the integer matrix with rows and columns indexed by its vertices, such that the ij-th-entry is equal to the number of edges connecting i and j.

イロト イポト イヨト イヨト

Some Fundamental Definitions

The adjacent matrix $A(G) = [a_{ij}]_{n \times n}$ of G is the integer matrix with rows and columns indexed by its vertices, such that the ij-th-entry is equal to the number of edges connecting i and j.Let the weight of the edge e = uv be a non-negative integer $|n_u(e) - n_v(e)|$, we can define a weight function: $w : E \to R^+ \cup \{0\}$ on E, which is said to be the *Co-PI weighting* of G.

Some Fundamental Definitions

The adjacent matrix $A(G) = [a_{ij}]_{n \times n}$ of G is the integer matrix with rows and columns indexed by its vertices, such that the ij-th-entry is equal to the number of edges connecting i and j.Let the weight of the edge e = uv be a non-negative integer $|n_u(e) - n_v(e)|$, we can define a weight function: $w : E \to R^+ \cup \{0\}$ on E, which is said to be the *Co-PI weighting* of G.The adjacency matrix of G weighted by the Co-PI weighting is said to be its *Co-PI matrix* and denoted by $M_{CPI}(G) = [c_{ij}]_{n \times n}$.That is,

$$c_{ij} = \begin{cases} \left| n_{v_i}(e) - n_{v_j}(e) \right|, \ e = v_i v_j \\ 0, \ otherwise \end{cases}$$

(ロ) (同) (E) (E) (E)

Some Fundamental Definitions

Since Co-PI matrix is symmetric, all its eigenvalues $\lambda_i^*(G)$, $i = 1, 2, \dots, n$, are real and can be labeled so that $\lambda_1^*(G) \ge \lambda_2^*(G) \ge \dots \ge \lambda_n^*(G)$.

イロン イヨン イヨン イヨン

Some Fundamental Definitions

Since Co-PI matrix is symmetric, all its eigenvalues $\lambda_i^*(G)$, $i = 1, 2, \dots, n$, are real and can be labeled so that $\lambda_1^*(G) \ge \lambda_2^*(G) \ge \dots \ge \lambda_n^*(G)$. The eigenvalues of M_{CPI} are said to be the Co-PI eigenvalues of G and the M_{CPI} -spectrum of G is denoted by Co-PI-Spec(G).

イロト イポト イヨト イヨト

Some Fundamental Definitions

Since Co-PI matrix is symmetric, all its eigenvalues $\lambda_i^*(G)$, $i = 1, 2, \dots, n$, are real and can be labeled so that $\lambda_1^*(G) \ge \lambda_2^*(G) \ge \dots \ge \lambda_n^*(G)$. The eigenvalues of M_{CPI} are said to be the Co-PI eigenvalues of G and the M_{CPI} -spectrum of G is denoted by Co-PI-Spec(G). Easy verification shows that the Co-PI index of G can be expressed as one half of the sum of all entries of $M_{CPI}(G)$, i.e.,

$$Co - PI_{v}(G) = \frac{1}{2}\sum_{i=1}^{n} M_{CPI_{i}}(G)$$

where M_{CPIi} is the sum of *i*-th row of the matrix M_{CPI} .

소리가 소문가 소문가 소문가

Some Fundamental Definitions

The notation of the energy of a graph was introduced by Gutman-1978. It is defined as

$$E(G) = \sum_{i=1}^{n} |\lambda_i|$$

 $\lambda_i, i = 1, ..., n$ are the eigenvalues of adjacency matrix of G.

Gutman, The energy of a graph, Ber. Math. Stat. Sekt. Forschungsz. Graz 103, 1978, 1–22.

ヘロン 人間 とくほど くほとう

Some Fundamental Definitions

In a similar way, the Co-PI energy of a graph G,

$$Co - PIE(G) = \sum_{i=1}^{n} |\lambda_i^*|$$

is defined here.

イロト イヨト イヨト イヨト

Preliminary Results

Fath-Tabar et al.-2010 proposed the Szeged matrix and Laplacian Szeged matrix. Then Su et al.-2013 introduced the Co-PI matrix of a graph.

Fath-Tabar et al.-2010, On the Szeged and the Laplacian Szeged spectrum of a graph, *Linear Algebra Appl.*, 433, (2010), 662-671. **Su et al.-2013**, On the Co-PI and Laplacian Co-PI eigenvalues of a graph, *Discrete Applied Mathematics*,161 (2013) 277-283.

イロト イポト イヨト イヨト

Preliminary Results

In the following, Su et al..-2013 characterised *the Co-PI spectra* of *Cartesian product graphs.*

イロト イヨト イヨト イヨト

Preliminary Results

Theorem (Su et al.-2013

Let $G = G_1 \square G_2$ be the Cartesian product of two graphs G_1 and G_2 . Then

$$\begin{aligned} \sigma'_{kl} \left(G_1 \Box G_2 \right) &= |V_1| \, \sigma'_l(G_2) + |V_2| \, \sigma'_k(G_1) \\ \text{for } k &= 1, 2, ..., |V_1| \text{ and } l = 1, 2, ..., |V_2|. \end{aligned}$$

$$\mu'_{kl} (G_1 \Box G_2) = |V_1| \, \mu'_l(G_2) + |V_2| \, \mu'_k(G_1)$$

for $k = 1, 2, ..., |V_1|$ and $l = 1, 2, ..., |V_2|$.

In here, σ' is the Co-PI eigenvalue and μ' is the Laplacian Co-PI eigenvalue of the graph.

Preliminary Results

Maden et al.-2011 found some bounds for the distance spectral radius and they characterized graphs for these bounds are attained. In another study, Maden et al.-2013 also presented some bounds for the resistance-distance spectral radius of a graph and one of these bounds depends on *the Kirchhoff index*.

・ 同 ト ・ ヨ ト ・ ヨ ト

Preliminary Results

Similarly, Kaya et al..-2015 found a lower bound for λ_1^* relating $Co - PI_v(G)$.

・ロット (四) (日) (日)

Preliminary Results

Corollary

Let G be a connected graph with $n \ge 2$. Then,

$$\lambda_1^* \geq \frac{2\left(\textit{Co} - \textit{Pl}_v(G)\right)}{n}$$

with equality holding if and only if $M_{CPI_1} = M_{CPI_2} = ... = M_{CPI_n}$.

Kaya et al.-2015, Bounds for the Co-PI Index of a Graph, *Iranian Journal of Mathematical Chemistry*, Vol. 6, No.1, 2015, 1-13.

In this section, we give our results without proofs.

イロン 不同と 不同と 不同と

Main Results

In this section, we give our results without proofs. Let $P(G; x) = x^n + c_1 x^{n-1} + ... + c_{n-1}x + c_n$ be the characteristic polynomial of G. N. Biggs proved that all coefficients of P(G; x) can be expressed in terms of the principle minors of A(G), where a principle minor is the determinant of a submatrix obtained by taking a subset of the rows and that of columns. This leads to the following result.

Theorem (Biggs)

The coefficients of the characteristic polynomial P(G; x) of a connected graph G satisfy: $c_1 = 0, -c_2$ is the number of edges and $-c_3$ is twice the number of triangles of G.

(ロ) (同) (E) (E) (E)

Main Results

Theorem (Su et al..-2013)

Let G be a connected graph with order $n \ge 3$, size m and t triangles. Then

$$2m \le \sigma_1'^2 + \sigma_2'^2 + \ldots + \sigma_n'^2 \le 2m(n-2)^2.$$

$$6t \le \sigma_1'^3 + \sigma_2'^3 + \ldots + \sigma_n'^3 \le 6t(n-2)^3.$$

The first result of this paper is the following.

・ロン ・回 と ・ ヨ と ・ ヨ と

Main Results

Theorem

Let G be a graph with n vertices and m edges. Then,

$$\frac{2}{m}Co - Pl_{\nu}^{2}(G) \leq \lambda_{i}^{*^{2}} \leq \min\{2(n-2)Co - Pl_{\nu}(G), \\ 2m(n^{2} - 2n + 2) - 4Sz(G), \\ 2Co - Pl_{\nu}^{2}(G) - 2m(m-1)\}.$$

The left equaliy holds if and only if G is complete bipartite graph and the right one if and only if G is star graph.

◆□ > ◆□ > ◆臣 > ◆臣 > ○

The next is another result.

Lemma

Let G be a graph on n vertices and λ^* any of its Co-PI eigenvalues. Then

 $|\lambda^*| \leq (n-2)\Delta(G),$

where $\Delta(G)$ denotes the largest degree of a vertex in G.

Theorem

Let G be a graph with n vertices and m edges. Then,

$$\lambda_{1}^{*} \leq \min \left\{ \begin{array}{c} \sqrt{\frac{2(n-1)(n-2)Co - PI_{v}(G)}{n}}, \sqrt{\frac{2m(n^{2}-2n+2)-4Sz(G)(n-1)}{n}}, \\ \sqrt{\frac{n-1}{n}}\sqrt{2Co - PI_{v}(G)^{2} - 2m(m-1)} \end{array} \right\}$$

Ezgi KAYA, Ayşe Dilek MADEN On the Co-PI spectral radius and the Co-PI energy of graphs

・ロン ・回 と ・ ヨン ・ ヨン

Theorem

Let G be a connected graph. Then,

$$Co - PIE(G) \leq \sqrt{2n \sum_{e=v_i v_j} |n_{v_i} - n_{v_j}|^2}$$

Equality holds if and only if G is empty.

・ロン ・回 と ・ ヨン ・ ヨン

Main Results

Theorem

Moreover,

 $Co - PIE(G) \leq \sqrt{n\alpha}$

in which

$$\alpha = \min\{\sqrt{n}\sqrt{2(n-2)Co - PI_{v}(G)}, \\ \sqrt{n}\sqrt{2m(n^{2} - 2n + 2) - 4Sz(G)} \\ ,\sqrt{n}\sqrt{2Co - PI_{v}(G)^{2} - 2m(m-1)}\}$$

・ロン ・回 と ・ ヨン ・ ヨン

Main Results

In order to obtain a different lower bound for the Co-PI energy of graphs, for each i = 1, 2, ..., n, we define the sequence $C_i^{(1)}, C_i^{(2)}, ..., C_i^{(t)}, ...$ as follows: For a fixed $\alpha \in \mathbb{R}$, let $C_i^{(1)} = M_{CPI_i}^{\alpha}$ and, for each $t \ge 2$, let $C_i^{(t)} = \sum_{i=1}^n cijC_j^{(t-1)}$. We then have the following result.

(ロ) (同) (E) (E) (E)

Theorem

Let G be a connected graph, $\alpha \in \mathbb{R}$ and $t \in \mathbb{Z}$. Thus,

$$\lambda_1^*(\mathcal{G}) \geq \sqrt{\frac{\sum\limits_{i=1}^n \left(\mathcal{C}_i^{(t+1)}\right)^2}{\sum\limits_{i=1}^n \left(\mathcal{C}_i^{(t)}\right)^2}}.$$

For particular values of α and t, the above equality holds if and only if

$$\frac{C_1^{(t+1)}}{C_1^{(t)}} = \frac{C_2^{(t+1)}}{C_2^{(t)}} = \dots = \frac{C_n^{(t+1)}}{C_n^{(t)}}$$

イロト イヨト イヨト イヨト

Main Results

Theorem

Let G be a connected graph, $\alpha \in \mathbb{R}$ and $t \in \mathbb{Z}$. Thus,

$$Co-PIE(G) \leq \sqrt{\frac{\sum_{i=1}^{n} (C_{i}^{(t+1)})^{2}}{\sum_{i=1}^{n} (C_{i}^{(t)})^{2}}} + \sqrt{(n-1) \left[S - \frac{\sum_{i=1}^{n} (C_{i}^{(t+1)})^{2}}{\sum_{i=1}^{n} (C_{i}^{(t)})^{2}}\right]}$$

where S is the sum of the squares of entries in the Co-PI matrix.

ヘロン 人間 とくほど くほとう

Main Results

Theorem

Equality holds if and only if G is a connected graph satisfying

$$\frac{C_1^{(t+1)}}{C_1^{(t)}} = \frac{C_2^{(t+1)}}{C_2^{(t)}} = \dots = \frac{C_n^{(t+1)}}{C_n^{(t)}} = k \ge \sqrt{\frac{S}{n}}$$

with three distinct eigenvalues
$$\left(k, \sqrt{\frac{S-k^2}{n-1}}, -\sqrt{\frac{S-k^2}{n-1}}\right)$$
.

For a special case, if we take $\alpha = 1$ and t = 1, we get the following result.

・ロン ・回 と ・ ヨ と ・ ヨ と

Theorem

Let G be a graph with first and second Co-PI degree sequences

 $\{M_{CPI_1}, M_{CPI_2}, ..., M_{CPI_n}\} \text{ and } \{MT_{CPI_1}, MT_{CPI_2}, ..., MT_{CPI_n}\},\$

respectively. Then,

$$Co - PIE(G) \leq \sqrt{\frac{\sum_{i=1}^{n} (MT_{CPI_i})^2}{\sum_{i=1}^{n} (M_{CPI_i})^2}} + (n-1)\sqrt{S - \frac{\sum_{i=1}^{n} (MT_{CPI_i})^2}{\sum_{i=1}^{n} (M_{CPI_i})^2}}.$$

(日) (四) (王) (王) (王)

Theorem

where S is the sum of the squares of entries in the Co-PI matrix. Equality holds if and only if for a constant k, G is a pseudo k-Co-PI regular with three distinct eigenvalues $\binom{k}{k} \sqrt{5-k^2} = \sqrt{5-k^2}$

$$\left(k,\sqrt{\frac{3-\kappa^2}{n-1}},-\sqrt{\frac{3-\kappa^2}{n-1}}\right)$$

ヘロン 人間 とくほど くほとう

THANK YOU FOR YOUR ATTENTION...

イロト イヨト イヨト イヨト

- D.M. Cvetković, M. Doob, H. Sachs, Spectra of Graphs: Theory and Applications, Academic Press, New York, 1980.
- G. Su, L. Xiong, L. Xu, On the Co-PI and Laplacian Co-PI eigenvalues of a graph, Discrete Applied Mathematics , 161 ,2013, 277-283.
- I. Gutman, O. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer-Verlag, Berlin, 1986.
- I. Gutman, The energy of a graph, Ber. Math. Stat. Sekt. Forschungsz. Graz 103, 1978, 1−22.
- G. H. Fath-Tabar, T. Došlić, A. R. Ashrafi, On the Szeged and the Laplacian Szeged spectrum of a graph, Linear Algebra Appl., 433, 2010, 662-671.

(ロ) (同) (E) (E) (E)

- F. Hasani, O. Khormali, A. Iranmanesh, Computation of the first vertex of Co-PI index of TUC4CS(S) nanotubes, Optoelectron, Adv. Mater.- Rapid Commun.,4 (4), 2010, 544-547.
- A. D. Maden (Güngör), I. Gutman, A. S. Çevik, Bounds for Resistance-Distance Spectral Radius, Hacettepe Journal of Mathematics and Statistics, 42 (1), 2013, 43-50.
- I. Gutman, The energy of a graph, Ber. Math. Stat. Sekt. Forschungsz. Graz 103, 1978, 1−22.
- A. D. Maden (Güngör), Ş. B. Bozkurt, On the Distance Spectral Radius and the Distance Energy of Graphs, Linear and Multilinear Algebra, 29 (4), 2011, 365-370.

ヘロン 人間 とくほど くほとう

- K. C. Das, R. B. Bapat, A sharp upper bound on the spectral radius of weighted graphs, Discrete Mathematics, 308, 2008. 3180-3186
- R. A. Horn, C. R. Johnson, Matrix Analysis, Cambridge University Press. New York. 1985.
- G. Indulal, Sharp Bounds on the distance spectral radius and the distance energy of graphs, Linear Algebra Appl., 430, 2009, 106-113.
- M. J. Nadjafi-Arani, G. H. Fath-Tabar, M. Mırzargar, Sharp Bounds on the PI Spectral Radius, Iranian Journal of Mathematical Chemistry, Vol. 1, No.1, 2010, 111-117
- E. Kaya, A. D. Maden, Bounds for the Co-PI Index of a Graph, Iranian Journal of Mathematical Chemistry, Vol. 6, No.1, 2015, 1-13. イロト イヨト イヨト イヨト

- X. Li, Y. Shi, I. Gutman, Graph Energy, Springer, New York, 2012.
- B. Zhou, Energy of a graph, MATCH Commun. Math. Comput. Chem. 51, 2004,111–118.
- S. Bozkurt, A. D. Gungor (Maden), I.Gutman, A. S. Cevik. Randic Matrix and Randic Energy, MATCH Commun. Math. Comput. Chem. 64, 2010, 239–250.
- Y. Chen, L. Wang, Sharp upper bounds for the largest eigenvalue of the signless Laplacian of a graph, Linear Algebra and its Applications,433, 2010, 908–913.
- N. Biggs, Algebraic Graph Theory, second ed., Cambridge University Press, Cambridge, 1994.

ヘロン 人間 とくほど くほとう

- J. A. Bondy, U. S. R. Murty, Graph Theory with Applications, American Elsevier, New York, 1976.
- I. Gutman, The energy of a graph: old and new results, In: A. Betten, A. Kohnert, R. Laue, A. Wassermann (eds.) Algebraic Combinatorics and Applications, Springer, Berlin, 2001, 196-211.

イロン イヨン イヨン イヨン