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Motivation

This talk is based on the Co-PI spectral radius and the Co-PI
energy of graphs. The Co-PI eigenvalues of a connected
graph G are the eigenvalues of its Co-PI matrix. In this
study, Co-PI energy of a graph is defined as the sum of the
absolute values of Co-PI eigenvalues of G. We also give
some bounds for the Co-PI spectral radius and the Co-PI
energy of graphs.
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Motivation

A topological index is a number related to graph which is invariant
under graph isomorphism. In theoretical chemistry, topological
indices (also called molecular structure descriptors ) are used for
modeling physico-chemical, pharmacologic, toxicologic, biological
and other properties of chemical compounds. By now there do
exist a lot of different types of such indices which capture different
aspects of the molecular graphs associated to the molecules
considered.
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Motivation

The Szeged index is closely related to the Wiener index and is a
vertex-multiplicative type index that takes into account how the
vertices of a given molecular graph are distributed. The
Padmakar-Ivan index (the PI index) is an additive index that takes
into account the distribution of edges.

Here are the formulas of these topological indices:

PIv (G ) =
∑

uv∈E (G )
nu(e) + nv (e) vertex PI index

Sz(G ) =
∑

uv∈E (G )
nu(e)nv (e) Szeged index
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Some Fundamental Definitions

Now, we give some fundamental definitions which are used in our
theorems. In this talk, G will denote a simple connected graph
with n vertices and m edges without otherwise.

Definition (2.1)

For vertices u, v ∈ V , the distance d(u, v) is defined as the length
of the shortest path between u and v in G .
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Some Fundamental Definitions

Let e = uv be an edge connecting vertices u and v in G .

Define the sets:

Nu (e) = {z ∈ V |dG (z , u) < dG (z , v)}
Nv (e) = {z ∈ V |dG (z , v) < dG (z , u)}

which are sets consisting of vertices lying closer to u than to v and
those lying closer to v than to u, respectively. The number of such
vertices are denoted by

nu (e) = |Nu (e)| and nv (e) = |Nv (e)| .
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Some Fundamental Definitions

Hassani et al.-2010 introduced the following vertex Co-PI index
and computed this index for TUC4C8(R) nanotubes.

Co − PIv (G ) =
∑

e∈E (G )
|nu(e)− nv (e)|

Hassani et al.-2010 , Computation of the first vertex of Co-PI
index of TUC4CS(S) nanotubes, Iranian Journal of . Math. Chem.
1 (1), (2010)119-123.
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Some Fundamental Definitions

The adjacent matrix A(G ) = [aij ]n×n of G is the integer matrix
with rows and columns indexed by its vertices, such that the
ij−th-entry is equal to the number of edges connecting i and j .

Let
the weight of the edge e = uv be a non-negative integer
|nu(e)− nv (e)| , we can define a weight function:
w : E → R+ ∪ {0} on E , which is said to be the Co-PI weighting
of G .The adjacency matrix of G weighted by the Co-PI weighting
is said to be its Co-PI matrix and denoted by
MCPI (G ) = [cij ]n×n .That is,

cij =

{ ∣∣nvi (e)− nvj (e)
∣∣ , e = vivj

0 , otherwise
.
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Some Fundamental Definitions

Since Co-PI matrix is symmetric, all its eigenvalues λ∗i (G ),
i = 1, 2, · · · , n , are real and can be labeled so that
λ∗1(G ) ≥ λ∗2(G ) ≥ ... ≥ λ∗n(G ).

The eigenvalues of MCPI are said
to be the Co-PI eigenvalues of G and the MCPI−spectrum of G is
denoted by Co-PI-Spec(G).Easy verification shows that the Co-PI
index of G can be expressed as one half of the sum of all entries of
MCPI (G ), i.e.,

Co − PIv (G ) =
1
2

n∑
i=1

MCPIi (G )

where MCPI i is the sum of i-th row of the matrix MCPI .
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Some Fundamental Definitions

The notation of the energy of a graph was introduced by
Gutman-1978 . It is defined as

E (G ) =
n∑
i=1

|λi |

λi , i = 1, ..., n are the eigenvalues of adjacency matrix of G .

Gutman , The energy of a graph, Ber. Math. Stat. Sekt.
Forschungsz. Graz 103, 1978, 1—22.
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Some Fundamental Definitions

In a similar way, the Co-PI energy of a graph G ,

Co − PIE (G ) =
n∑
i=1

|λ∗i |

is defined here.
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Preliminary Results

Fath-Tabar et al.-2010 proposed the Szeged matrix and Laplacian
Szeged matrix. Then Su et al..-2013 introduced the Co-PI matrix
of a graph.

Fath-Tabar et al.-2010 , On the Szeged and the Laplacian Szeged
spectrum of a graph, Linear Algebra Appl., 433, (2010), 662-671.
Su et al.-2013 , On the Co-PI and Laplacian Co-PI eigenvalues of
a graph, Discrete Applied Mathematics,161 (2013) 277-283.
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Preliminary Results

In the following, Su et al..-2013 characterised the Co-PI spectra
of Cartesian product graphs.
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Preliminary Results

Theorem ( Su et al.-2013 )

Let G = G1�G2 be the Cartesian product of two graphs G1 and
G2. Then

σ′kl (G1�G2) = |V1|σ′l (G2) + |V2|σ′k (G1)

for k = 1, 2, ..., |V1| and l = 1, 2, ..., |V2| .

µ′kl (G1�G2) = |V1|µ′l (G2) + |V2|µ′k (G1)

for k = 1, 2, ..., |V1| and l = 1, 2, ..., |V2| .

In here, σ′ is the Co-PI eigenvalue and µ′ is the Laplacian Co-PI
eigenvalue of the graph.
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Preliminary Results

Maden et al.-2011 found some bounds for the distance spectral
radius and they characterized graphs for these bounds are attained.
In another study, Maden et al.-2013 also presented some bounds
for the resistance-distance spectral radius of a graph and one of
these bounds depends on the Kirchhoff index.
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Preliminary Results

Similarly, Kaya et al..-2015 found a lower bound for λ∗1 relating
Co − PIv (G ).

Ezgi KAYA, Ayşe Dilek MADEN On the Co-PI spectral radius and the Co-PI energy of graphs



Motivation
Some Fundamental Definitions

Preliminary Results
Main Results
References

Preliminary Results

Corollary

Let G be a connected graph with n ≥ 2. Then,

λ∗1 ≥
2 (Co − PIv (G ))

n

with equality holding if and only if MCPI1 = MCPI2 = ... = MCPIn .

Kaya et al.-2015 , Bounds for the Co-PI Index of a Graph, Iranian
Journal of Mathematical Chemistry, Vol. 6, No.1, 2015, 1-13.
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Main Results

In this section, we give our results without proofs.

Let P(G ; x) = xn + c1xn−1 + ...+ cn−1x + cn be the characteristic
polynomial of G . N. Biggs proved that all coeffi cents of P(G ; x)
can be expressed in terms of the principle minors of A(G ), where a
principle minor is the determinant of a submatrix obtained by
taking a subset of the rows and that of columns. This leads to the
following result.

Ezgi KAYA, Ayşe Dilek MADEN On the Co-PI spectral radius and the Co-PI energy of graphs



Motivation
Some Fundamental Definitions

Preliminary Results
Main Results
References

Main Results

In this section, we give our results without proofs.
Let P(G ; x) = xn + c1xn−1 + ...+ cn−1x + cn be the characteristic
polynomial of G . N. Biggs proved that all coeffi cents of P(G ; x)
can be expressed in terms of the principle minors of A(G ), where a
principle minor is the determinant of a submatrix obtained by
taking a subset of the rows and that of columns. This leads to the
following result.
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Main Results

Theorem ( Biggs )

The coeffi cents of the characteristic polynomial P(G ; x) of a
connected graph G satisfy: c1 = 0, −c2 is the number of edges
and −c3 is twice the number of triangles of G .
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Main Results

Theorem ( Su et al..-2013 )

Let G be a connected graph with order n ≥ 3, size m and t
triangles. Then

2m ≤ σ′21 + σ′22 + ...+ σ′2n ≤ 2m(n − 2)2.

6t ≤ σ′31 + σ′32 + ...+ σ′3n ≤ 6t(n − 2)3.

The first result of this paper is the following.
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Main Results

Theorem
Let G be a graph with n vertices and m edges. Then,

2
m
Co − PI 2v (G ) ≤ λ∗

2

i ≤ min{2(n − 2)Co − PIv (G ),

2m(n2 − 2n + 2)− 4Sz(G ),

2Co − PI 2v (G )− 2m(m − 1)}.

The left equaliy holds if and only if G is complete bipartite graph
and the right one if and only if G is star graph.
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Main Results

The next is another result.

Lemma

Let G be a graph on n vertices and λ∗ any of its Co-PI
eigenvalues. Then

|λ∗| ≤ (n − 2)∆(G ),

where ∆(G ) denotes the largest degree of a vertex in G.
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Main Results

Theorem
Let G be a graph with n vertices and m edges. Then,

λ∗1 ≤ min


√

2(n−1)(n−2)Co−PIv (G )
n ,

√
2m(n2−2n+2)−4Sz(G )(n−1)

n ,√
n−1
n

√
2Co − PIv (G )2 − 2m(m − 1)
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Main Results

Theorem
Let G be a connected graph. Then,

Co − PIE (G ) ≤
√
2n
∑
e=vi vj

∣∣nvi − nvj ∣∣2
Equality holds if and only if G is empty.
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Main Results

Theorem
Moreover,

Co − PIE (G ) ≤
√
nα

in which

α = min{
√
n
√
2(n − 2)Co − PIv (G ),

√
n
√
2m(n2 − 2n + 2)− 4Sz(G )

,
√
n
√
2Co − PIv (G )2 − 2m(m − 1)}
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Main Results

In order to obtain a different lower bound for the Co-PI energy of
graphs, for each i = 1, 2, ..., n, we define the sequence
C (1)i ,C (2)i , ...,C (t)i , ... as follows: For a fixed α ∈ R, let

C (1)i = Mα
CPIi

and, for each t ≥ 2, let C (t)i =
n∑
i=1
cijC (t−1)j . We then

have the following result.
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Theorem
Let G be a connected graph, α ∈ R and t ∈ Z. Thus,

λ∗1(G ) ≥

√√√√√√√
n∑
i=1

(
C (t+1)i

)2
n∑
i=1

(
C (t)i

)2 .

For particular values of α and t, the above equality holds if and
only if

C (t+1)1

C (t)1
=
C (t+1)2

C (t)2
= ... =

C (t+1)n

C (t)n
.
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Main Results

Theorem
Let G be a connected graph, α ∈ R and t ∈ Z. Thus,

Co−PIE (G ) ≤

√√√√√√√
n∑
i=1

(
C (t+1)i

)2
n∑
i=1

(
C (t)i

)2 +

√√√√√√√(n − 1)

S −
n∑
i=1

(
C (t+1)i

)2
n∑
i=1

(
C (t)i

)2


where S is the sum of the squares of entries in the Co-PI matrix.
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Main Results

Theorem
Equality holds if and only if G is a connected graph satisfying

C (t+1)1

C (t)1
=
C (t+1)2

C (t)2
= ... =

C (t+1)n

C (t)n
= k ≥

√
S
n

with three distinct eigenvalues
(
k,
√

S−k 2
n−1 ,−

√
S−k 2
n−1

)
.
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Main Results

For a special case, if we take α = 1 and t = 1, we get the
following result.
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Theorem
Let G be a graph with first and second Co-PI degree sequences

{MCPI1 ,MCPI2 , ..,MCPIn} and {MTCPI1 ,MTCPI2 , ...,MTCPIn} ,

respectively. Then,

Co − PIE (G ) ≤

√√√√√√√
n∑
i=1

(MTCPIi )
2

n∑
i=1

(MCPIi )
2

+ (n − 1)

√√√√√√√S −
n∑
i=1

(MTCPIi )
2

n∑
i=1

(MCPIi )
2
.
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Main Results

Theorem
where S is the sum of the squares of entries in the Co-PI matrix.
Equality holds if and only if for a constant k, G is a pseudo k-
Co-PI regular with three distinct eigenvalues(
k,
√

S−k 2
n−1 ,−

√
S−k 2
n−1

)
.
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ATTENTION...
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