On graphs with smallest eigenvalue at least -3

J. Koolen*

*School of Mathematical Sciences
University of Science and Technology of China
(Based on joint work with Hyun Kwang Kim (POSTECH), Jaeyoung Yang (POSTECH), Aida Abiad (Maastricht University), Yan Ran Li (USTC) and QianQian Yang (USTC))

SGA 2016
May 19, 2016
Outline

1. Introduction
 - Definitions
 - Smallest eigenvalue -2

2. Results of Hoffman
 - Bounded smallest eigenvalue

3. Hoffman graphs
 - Hoffman graphs

4. Our main result(s)
 - Smallest eigenvalue -3

5. Applications
 - Applications

6. Grassmann graphs
 - Grassmann graphs
Outline

1. Introduction
 - Definitions
 - Smallest eigenvalue -2

2. Results of Hoffman
 - Bounded smallest eigenvalue

3. Hoffman graphs
 - Hoffman graphs

4. Our main result(s)
 - Smallest eigenvalue -3

5. Applications
 - Applications

6. Grassmann graphs
 - Grassmann graphs
Definition

Graph: $\Gamma = (V, E)$ where V vertex set, $E \subseteq \binom{V}{2}$ edge set.

- All graphs in this talk are simple.
- $x \sim y$ if $xy \in E$.
- $x \not\sim y$ if $xy \not\in E$.
- $d(x, y)$: length of a shortest path connecting x and y.

Definition

Graph: $\Gamma = (V, E)$ where V vertex set, $E \subseteq \binom{V}{2}$ edge set.

- All graphs in this talk are simple.
- $x \sim y$ if $xy \in E$.
- $x \not\sim y$ if $xy \not\in E$.
- $d(x, y)$: length of a shortest path connecting x and y.
- $D(\Gamma)$: diameter (maximal distance in Γ), if the graph Γ is connected.

The adjacency matrix A of a graph Γ is the matrix whose rows and columns are indexed by its vertices such that $A_{xy} = 1$ if xy is an edge and 0 otherwise.
Definition

Graph: $\Gamma = (V, E)$ where V vertex set, $E \subseteq \binom{V}{2}$ edge set.

- All graphs in this talk are simple.
- $x \sim y$ if $xy \in E$.
- $x \not\sim y$ if $xy \not\in E$.
- $d(x, y)$: length of a shortest path connecting x and y.
- $D(\Gamma)$: diameter (maximal distance in Γ), if the graph Γ is connected.
- The adjacency matrix A of a graph Γ is the matrix whose rows and columns are indexed by its vertices such that $A_{xy} = 1$ if xy is an edge and 0 otherwise.
- The eigenvalues of Γ are the eigenvalues of its adjacency matrix.
- In this talk I will be mainly interested in the smallest eigenvalue of Γ, denoted by λ_{\min}.
A structure theory for graphs with fixed smallest eigenvalue?

In this talk I will try to convince you that there should be a rich structure theory for graphs with fixed smallest eigenvalue.
In this talk I will try to convince you that there should be a rich structure theory for graphs with fixed smallest eigenvalue.

I will give some ideas for this theory in this talk.
Outline

1. **Introduction**
 - Definitions
 - **Smallest eigenvalue** -2

2. **Results of Hoffman**
 - Bounded smallest eigenvalue

3. **Hoffman graphs**
 - Hoffman graphs

4. **Our main result(s)**
 - Smallest eigenvalue -3

5. **Applications**
 - Applications

6. **Grassmann graphs**
 - Grassmann graphs
Definition

We say a connected graph with smallest eigenvalue at least -2 and adjacency matrix A is a **generalised line graph** if there exists an integral matrix N such that $A + 2I = NN^T$.
Smallest eigenvalue -2

Definition

We say a connected graph with smallest eigenvalue at least -2 and adjacency matrix A is a generalised line graph if there exists an integral matrix N such that $A + 2I = NN^T$.

Note that if I can take N a matrix with only 0’s and 1’s then the graph is a line graph. So a generalized line graph is a generalization of a line graph.
The following beautiful result was shown by Cameron, Goethals, Seidel, Shult (1976):

Theorem

Let Γ be a connected graph with smallest eigenvalue at least -2. Then either Γ has at most 36 vertices or Γ is a generalised line graph.
The following beautiful result was shown by Cameron, Goethals, Seidel, Shult (1976):

Theorem

Let Γ be a connected graph with smallest eigenvalue at least -2. Then either Γ has at most 36 vertices or Γ is a generalised line graph.

We give now a sketch of proof for this result.
Let Γ be a connected graph with smallest eigenvalue at least -2.
Let Γ be a connected graph with smallest eigenvalue at least -2.

Then $A + 2I$ is positive semidefinite, so it is a Gram matrix $A + 2I = NN^T$.
Sketch of proof

- Let Γ be a connected graph with smallest eigenvalue at least -2.
- Then $A + 2I$ is positive semidefinite, so it is a Gram matrix $A + 2I = NN^T$.
- Let Λ be the integral lattice generated by the rows of N.
Sketch of proof

- Let Γ be a connected graph with smallest eigenvalue at least -2.
- Then $A + 2I$ is positive semidefinite, so it is a Gram matrix $A + 2I = NN^T$.
- Let Λ be the integral lattice generated by the rows of N.
- Then Λ is an even lattice, generated by norm square root of two vectors, so it is a root lattice and it is irreducible as Γ is connected.
Sketch of proof

- Let Γ be a connected graph with smallest eigenvalue at least -2.
- Then $A + 2I$ is positive semidefinite, so it is a Gram matrix $A + 2I = NN^T$.
- Let Λ be the integral lattice generated by the rows of N.
- Then Λ is an even lattice, generated by norm square root of two vectors, so it is a root lattice and it is irreducible as Γ is connected.
- The irreducible root lattices were classified by Witt, and are of type A_n, D_n or E_6, E_7, E_8.
Sketch of proof

- Let Γ be a connected graph with smallest eigenvalue at least -2.
- Then $A + 2I$ is positive semidefinite, so it is a Gram matrix $A + 2I = NN^T$.
- Let Λ be the integral lattice generated by the rows of N.
- Then Λ is an even lattice, generated by norm square root of two vectors, so it is a root lattice and it is irreducible as Γ is connected.
- The irreducible root lattices were classified by Witt, and are of type A_n, D_n or E_6, E_7, E_8.
- The first two cases give us generalised line graphs, and for the last three lattices one can show that the number of vertices is at most 36.
Outline

1. Introduction
 - Definitions
 - Smallest eigenvalue -2

2. Results of Hoffman
 - Bounded smallest eigenvalue

3. Hoffman graphs
 - Hoffman graphs

4. Our main result(s)
 - Smallest eigenvalue -3

5. Applications
 - Applications

6. Grassmann graphs
 - Grassmann graphs
For the result of Cameron et al., the classification of the irreducible root lattices is essential.
For the result of Cameron et al., the classification of the irreducible root lattices is essential.

We do not have a similar classification for lattices generated by square root 3 vectors.
For the result of Cameron et al., the classification of the irreducible root lattices is essential.

We do not have a similar classification for lattices generated by square root 3 vectors.

Note that if Γ has $\lambda_{\text{min}} \geq -\lambda$ for λ a positive integer, then Γ can not contain an induced $(\lambda^2 + 1)$-claw.
For the result of Cameron et al., the classification of the irreducible root lattices is essential.

We do not have a similar classification for lattices generated by square root 3 vectors.

Note that if Γ has $\lambda_{\text{min}} \geq -\lambda$ for λ a positive integer, then Γ cannot contain an induced $(\lambda^2 + 1)$-claw.

Let \tilde{K}_{2t} be a K_{2t} with one extra vertex adjacent to half of the vertices of the K_{2t}.

Below -2
For the result of Cameron et al., the classification of the irreducible root lattices is essential.

We do not have a similar classification for lattices generated by square root 3 vectors.

Note that if Γ has $\lambda_{\text{min}} \geq -\lambda$ for λ a positive integer, then Γ can not contain an induced $(\lambda^2 + 1)$-claw.

Let \tilde{K}_{2t} be a K_{2t} with one extra vertex adjacent to half of the vertices of the K_{2t}.

Then it is easy to see that $\lim_{t \to \infty} \lambda_{\text{min}}(\tilde{K}_{2t}) = -\infty$. (Use the equitable partition with quotient matrix

$$Q = \begin{bmatrix} t - 1 & t & 0 \\ t & t - 1 & 1 \\ 0 & t & 0 \end{bmatrix}$$)
Bounded smallest eigenvalue

- This means that there exists a $t = t(\lambda)$ such that Γ can not contain an induced \tilde{K}_{2t}.
Bounded smallest eigenvalue

- This means that there exists a \(t = t(\lambda) \) such that \(\Gamma \) can not contain an induced \(\tilde{K}_{2t} \).
- Hoffman (1973) showed that also the converse of the above is true.
Bounded smallest eigenvalue

- This means that there exists a $t = t(\lambda)$ such that Γ can not contain an induced \tilde{K}_{2t}.
- Hoffman (1973) showed that also the converse of the above is true.

Theorem

Let Γ be a graph with smallest eigenvalue λ_{min}. Then the following hold.

1. For a real number $\lambda \geq 1$ there exists a positive integer $t = t(\lambda)$ such that Γ contains neither a \tilde{K}_{2t} nor a t-claw $K_{1,t}$ as an induced subgraph if the minimal eigenvalue of Γ satisfies $\lambda_{\text{min}}(\Gamma) \geq -\lambda$.

2. For a positive integer t there exists a positive real number $\lambda = \lambda(t)$ such that if Γ contains neither a \tilde{K}_{2t} nor a t-claw $K_{1,t}$ as an induced subgraph, then $\lambda_{\text{min}}(\Gamma) \geq -\lambda$.
The main idea is that in order to bound the smallest eigenvalue, you need to obtain some structure in the graph. This structure is of independent interest. But first I will discuss another result of Hoffman which proof used the structure as described above.
Smallest eigenvalue $-1 - \sqrt{2}$

Hoffman (1977) also showed the following result:

Theorem

Let $2 < \lambda < 1 + \sqrt{2}$. Then there is constant $K = K(\lambda)$ such that if Γ is a connected graph with minimal valency at least K and smallest eigenvalue $\lambda_{\text{min}} \geq -\lambda$, then Γ is a generalised line graph. In particular $\lambda_{\text{min}} \geq -2$.
Hoffman (1977) also showed the following result:

Theorem

Let $2 < \lambda < 1 + \sqrt{2}$. Then there is constant $K = K(\lambda)$ such that if Γ is a connected graph with minimal valency at least K and smallest eigenvalue $\lambda_{\text{min}} \geq -\lambda$, then Γ is a generalised line graph. In particular $\lambda_{\text{min}} \geq -2$.

Hoffman did not use the classification of irreducible root lattices, but he needed to pay the price by assuming large minimal valency.
Hoffman (1977) also showed the following result:

Theorem

Let $2 < \lambda < 1 + \sqrt{2}$. Then there is constant $K = K(\lambda)$ such that if Γ is a connected graph with minimal valency at least K and smallest eigenvalue $\lambda_{\min} \geq -\lambda$, then Γ is a generalised line graph. In particular $\lambda_{\min} \geq -2$.

- Hoffman did not use the classification of irreducible root lattices, but he needed to pay the price by assuming large minimal valency.
- Woo and Neumaier (1995) generalised this result by Hoffman by going slightly below $-1 - \sqrt{2}$.
Hoffman (1977) also showed the following result:

Theorem

Let $2 < \lambda < 1 + \sqrt{2}$. Then there is constant $K = K(\lambda)$ such that if Γ is a connected graph with minimal valency at least K and smallest eigenvalue $\lambda_{\text{min}} \geq -\lambda$, then Γ is a generalised line graph. In particular $\lambda_{\text{min}} \geq -2$.

- Hoffman did not use the classification of irreducible root lattices, but he needed to pay the price by assuming large minimal valency.
- Woo and Neumaier (1995) generalised this result by Hoffman by going slightly below $-1 - \sqrt{2}$.
- K., Yang and Yang obtained a result for graphs with smallest eigenvalue at least -3. We will see this below.
Outline

1. Introduction
 - Definitions
 - Smallest eigenvalue $\lambda < 2$

2. Results of Hoffman
 - Bounded smallest eigenvalue λ

3. Hoffman graphs
 - Hoffman graphs

4. Our main result(s)
 - Smallest eigenvalue $\lambda < 3$

5. Applications
 - Applications

6. Grassmann graphs
 - Grassmann graphs
Hoffman graphs were introduced by Woo and Neumaier (1995) formalising the concepts Hoffman used for his 1977-result.

Hoffman Graph

A **Hoffman Graph** $\mathcal{G} = (G = (V, E), \ell : V \to \{f, s\})$, such that any two vertices with label f are non-adjacent. In other words, it is a graph with a distinguished independent set $F = \{v \in V \mid \ell(v) = f\}$ of vertices.
Hoffman Graphs 1

Hoffman graphs were introduced by Woo and Neumaier (1995) formalising the concepts Hoffman used for his 1977-result.

Hoffman Graph

- A **Hoffman Graph** $\mathcal{G} = (G = (V, E), \ell : V \to \{f, s\})$, such that any two vertices with label f are non-adjacent. In other words, it is a graph with a distinguished independent set $F = \{v \in V \mid \ell(v) = f\}$ of vertices.

- The vertices in the independent set F, we will call **fat** and the rest of the vertices we will call **slim**.
Hoffman graphs were introduced by Woo and Neumaier (1995) formalising the concepts Hoffman used for his 1977-result.

Hoffman Graph

- A **Hoffman Graph** \(\mathcal{G} = (G = (V, E), \ell : V \to \{f, s\}) \), such that any two vertices with label \(f \) are non-adjacent. In other words, it is a graph with a distinguished independent set \(F = \{v \in V \mid \ell(v) = f\} \) of vertices.

- The vertices in the independent set \(F \), we will call **fat** and the rest of the vertices we will call **slim**.

- A Hoffman graph \(\mathcal{H} \) is called **fat** if every slim vertex has at least one fat neighbour.
Hoffman graphs were introduced by Woo and Neumaier (1995) formalising the concepts Hoffman used for his 1977-result.

Hoffman Graph

- A **Hoffman Graph** $\mathcal{G} = (G = (V, E), \ell : V \rightarrow \{f, s\})$, such that any two vertices with label f are non-adjacent. In other words, it is a graph with a distinguished independent set $F = \{v \in V \mid \ell(v) = f\}$ of vertices.

- The vertices in the independent set F, we will call **fat** and the rest of the vertices we will call **slim**.

- A Hoffman graph \mathcal{G} is called **fat** if every slim vertex has at least one fat neighbour.

- The subgraph induced on $S := \{v \in V \mid \ell(v) = s\}$ is called the slim subgraph of \mathcal{G}.
The way to think about Hoffman graphs is that they are just (slim) graphs with some fat vertices attached.
The way to think about Hoffman graphs is that they are just (slim) graphs with some fat vertices attached.

Hoffman graphs and especially fat Hoffman graphs give a good way to construct graphs with unbounded number of vertices such that the smallest eigenvalue is at least a fixed number.
Hoffman Graphs 2

- The way to think about Hoffman graphs is that they are just (slim) graphs with some fat vertices attached.

- Hoffman graphs and especially fat Hoffman graphs give a good way to construct graphs with unbounded number of vertices such that the smallest eigenvalue is at least a fixed number.

- We will later construct fat Hoffman graphs from graphs by representing some dense subgraphs by fat vertices.
Examples

$\mathcal{H}_3, \lambda_{\min} = -3$

$\mathcal{H}_6, \lambda_{\min} = -4$

$\mathcal{H}_4, \lambda_{\min} = -3$
Eigenvalues

Eigenvalues of Hoffman graphs

- Let \mathcal{H} be a Hoffman graph with fat vertex set F and slim vertex set S.
- The adjacency matrix A of \mathcal{H} can be written in the following form:

\[
A := \begin{pmatrix}
B & C \\
C^T & 0
\end{pmatrix},
\]

where the block B corresponds to the adjacency matrix on the set S, and so on.
Eigenvalues of Hoffman graphs

- Let \mathcal{G} be a Hoffman graph with fat vertex set F and slim vertex set S.
- The adjacency matrix A of \mathcal{G} can be written in the following form:
 \[
 A := \begin{pmatrix}
 B & C \\
 C^T & 0
 \end{pmatrix},
 \]
 where the block B corresponds to the adjacency matrix on the set S, and so on.
- The eigenvalues of \mathcal{G} are the eigenvalues of the special matrix $Sp := B - CC^T$.
Eigenvalues

Eigenvalues of Hoffman graphs

- Let \mathcal{G} be a Hoffman graph with fat vertex set F and slim vertex set S.
- The adjacency matrix A of \mathcal{G} can be written in the following form:

$$A := \left(\begin{array}{c|c} B & C \\ \hline C^T & 0 \end{array} \right),$$

where the block B corresponds to the adjacency matrix on the set S, and so on.
- The eigenvalues of \mathcal{G} are the eigenvalues of the special matrix $S\rho := B - CC^T$.
- As CC^T is a positive semidefinite matrix, $\lambda_{\text{min}}(B) \geq \lambda_{\text{min}}(\mathcal{G})$.

As CC^T is a positive semidefinite matrix, $\lambda_{\text{min}}(B) \geq \lambda_{\text{min}}(\mathcal{G})$.
Replacing fat vertices by cliques

One reason for the definition of the smallest eigenvalue of a Hoffman graph is the following theorem of Hoffman and Ostrowski (1960’s):

Theorem

Let \mathcal{H} be a Hoffman graph with at least one fat vertex. Define the graph G_n as follows: Replace the fat vertices with complete graphs $C_f (f \in F)$ with n vertices and each vertex of C_f has the same neighbours in S as f. Then $\lim_{n \to \infty} \lambda_{\text{min}}(G_n) = \lambda_{\text{min}}(\mathcal{H})$.
Outline

1. Introduction
 - Definitions
 - Smallest eigenvalue -2

2. Results of Hoffman
 - Bounded smallest eigenvalue

3. Hoffman graphs
 - Hoffman graphs

4. Our main result(s)
 - Smallest eigenvalue -3

5. Applications
 - Applications

6. Grassmann graphs
 - Grassmann graphs
In order to state our second result we need to introduce direct sums.

Direct sum

Let \mathcal{H} have special matrix

$$Sp = \begin{pmatrix} Sp_1 & 0 \\ 0 & Sp_2 \end{pmatrix}.$$

Let \mathcal{H}_i be the induced Hoffman subgraph of \mathcal{H} with special matrix Sp_i for $i = 1, 2$. We say that \mathcal{H} is the direct sum of \mathcal{H}_1 and \mathcal{H}_2 and write $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$.
A more combinatorial (but equivalent) definition is as follows:

Direct sums

Let $\mathcal{H}' = (F' \cup S', E')$ and $\mathcal{H}'' = (F'' \cup S'', E'')$ be two Hoffman graphs, such that

- $S' \cap S'' = \emptyset$;
- $s' \in S'$ and $s'' \in S''$ have at most one common fat neighbour in $F' \cap F''$.
A more combinatorial (but equivalent) definition is as follows:

Direct sums

Let $\mathcal{H}' = (F' \cup S', E')$ and $\mathcal{H}'' = (F'' \cup S'', E'')$ be two Hoffman graphs, such that

- $S' \cap S'' = \emptyset$;
- $s' \in S'$ and $s'' \in S''$ have at most one common fat neighbour in $F' \cap F''$.
- The Hoffman graph $\mathcal{H}' \oplus \mathcal{H}''$ has as vertex set $S \cup F$ where $S = S' \cup S''$ and $F = F' \cup F''$.
- The induced subgraphs on $S' \cup F'$ resp. $S'' \cup F''$ are \mathcal{H}' resp. \mathcal{H}''.
- $s' \in S'$ and $s'' \in S''$ are adjacent if and only if they have exactly one common fat neighbour.
Example

Decomposing a line graph.
Theorem (Woo & Neumaier)

- Let $\mathcal{H} = \mathcal{H}' \oplus \mathcal{H}''$ where \mathcal{H}' and \mathcal{H}'' are Hoffman graphs.
- Then $\lambda_{\min}(\mathcal{H}) = \min(\lambda_{\min}(\mathcal{H}'), \lambda_{\min}(\mathcal{H}''))$.

This means that I can construct large graphs with smallest eigenvalue at least a fixed number using the direct sum construction.
Theorem (Woo & Neumaier)

- Let $\mathcal{H} = \mathcal{H}' \oplus \mathcal{H}''$ where \mathcal{H}' and \mathcal{H}'' are Hoffman graphs.
- Then $\lambda_{\min}(\mathcal{H}) = \min(\lambda_{\min}(\mathcal{H}'), \lambda_{\min}(\mathcal{H}''))$.

This means that I can construct large graphs with smallest eigenvalue at least a fixed number using the direct sum construction.
Let \mathcal{F} be a family of Hoffman graphs. A graph is called \mathcal{F}-line graph if it is an induced subgraph of the slim subgraph of $\bigoplus_{i=1}^{t} \mathcal{G}_i$ where $\mathcal{G}_i \in \mathcal{F}$.
Line and generalised line graphs

- A $\{H_1\}$-line graph is exactly the same as a line graph.
- A $\{H_1, H_2\}$-line graph is exactly the same as a generalised line graph. (You can also take this as the definition of a generalised line graph)

$\lambda_{\min} = -2$
We need the following fat Hoffman graphs for the next result:
\textbf{\(\ell\)-plex}

A \(\ell\)-plex is a graph whose complement has maximal valency at most \(\ell\). They are studied in network theory to understand these networks better.

\textbf{Theorem}

- Let \(G\) be a connected graph with smallest eigenvalue at least \(-3\).
- There exist positive integers \(\ell\) and \(C\) such that if
 - the valency \(k_x\) of any vertex \(x\) is at least \(\ell\);
 - and the order of any 10-plex containing a vertex \(x\) is at most \(k_x - C\),
then \(G\) is a \(\{H_3, H_4, H_5\}\)-line graph.
\(\ell\)-plex

A \(\ell\)-plex is a graph whose complement has maximal valency at most \(\ell\). They are studied in network theory to understand these networks better.

Theorem

- Let \(G\) be a connected graph with smallest eigenvalue at least \(-3\).
- There exist positive integers \(\ell\) and \(C\) such that if
 - the valency \(k_x\) of any vertex \(x\) is at least \(\ell\);
 - and the order of any 10-plex containing a vertex \(x\) is at most \(k_x - C\),
then \(G\) is a \(\{H_3, H_4, H_5\}\)-line graph.

We can generalise this result to \(-4, -5, \ldots\)
A similar result as above.

Theorem

Let G be a connected graph with smallest eigenvalue at least -3.

There exist positive integers ℓ and C such that if

- the valency k_x of any vertex x is at least ℓ;
- and the average valency of the local graph in vertex x is at most $k_x - C$,

then G is a $\{H_3, H_4, H_5\}$-line graph.
You will need a local condition to obtain results as above.
You will need a local condition to obtain results as above.

One reason is that there are infinitely many -3-irreducible fat Hoffman graphs with smallest eigenvalue -3.
You will need a local condition to obtain results as above.

One reason is that there are infinitely many -3-irreducible fat Hoffman graphs with smallest eigenvalue -3.

In Jang, K., Munemasa and Taniguchi (2014) we did some work towards the classification of these fat Hoffman graphs.
You will need a local condition to obtain results as above.
One reason is that there are infinitely many -3-irreducible fat Hoffman graphs with smallest eigenvalue -3.
In Jang, K., Munemasa and Taniguchi (2014) we did some work towards the classification of these fat Hoffman graphs.
I am working with Yan Ran Li to complete the work of Jang et al.
Outline

1. Introduction
 - Definitions
 - Smallest eigenvalue -2

2. Results of Hoffman
 - Bounded smallest eigenvalue

3. Hoffman graphs
 - Hoffman graphs

4. Our main result(s)
 - Smallest eigenvalue -3

5. Applications
 - Applications

6. Grassmann graphs
 - Grassmann graphs
How can you check whether a graph satisfies the local condition in one of the two above results?
How can you check whether a graph satisfies the local condition in one of the two above results?

If you know your graph is regular (you can see this from the spectrum) and the second largest eigenvalue is not too large then by a similar argument as for the Hoffman coclique bound, it is sometimes possible to obtain a good upper bound for the number of vertices of a t-plex. I will give an example below.
How can you check whether a graph satisfies the local condition in one of the two above results?

If you know your graph is regular (you can see this from the spectrum) and the second largest eigenvalue is not too large then by a similar argument as for the Hoffman coclique bound, it is sometimes possible to obtain a good upper bound for the number of vertices of a \(t \)-plex. I will give an example below.

If you graph is regular and has at most 4 distinct eigenvalues, then it is walk-regular. This means that the number of triangles through a vertex \(x \) does not depend on the vertex \(x \). We will see examples below.
The Hamming graph $H(3, q)$

- The Hamming graph $H(D, q)$ has as vertex set Q^D where Q is a set with cardinality q.
- Two vertices are adjacent if they differ in exactly one position.
The Hamming graph $H(3, q)$

- The Hamming graph $H(D, q)$ has as vertex set Q^D where Q is a set with cardinality q.
- Two vertices are adjacent if they differ in exactly one position.
- $H(3, q)$ has spectrum $[3q - 3]^1, [2q - 3]^{3q-3}, [q - 3]^{3(q-1)^2}, [-3]^{(q-1)^3}$.
The Hamming graph $H(3, q)$

- The Hamming graph $H(D, q)$ has as vertex set Q^D where Q is a set with cardinality q.
- Two vertices are adjacent if they differ in exactly one position.
- $H(3, q)$ has spectrum $[3q - 3]^1, [2q - 3]^{3q-3}, [q - 3]^{3(q-1)^2}, [-3]^{(q-1)^3}$.
- Hence any graph G cospectral with $H(3, q)$ is walk-regular and the local graph has average valency $q - 2$.
The Hamming graph $H(3, q)$

- The Hamming graph $H(D, q)$ has as vertex set Q^D where Q is a set with cardinality q.
- Two vertices are adjacent if they differ in exactly one position.
- $H(3, q)$ has spectrum $[3q - 3]^1, [2q - 3]^{3q-3}, [q - 3]^{3(q-1)^2}, [-3]^{(q-1)^3}$.
- Hence any graph G cospectral with $H(3, q)$ is walk-regular and the local graph has average valency $q - 2$.
- Applying our theorem gives that G is locally $3 \times K_{q-1}$ if q is very large.
The Hamming graph $H(3, q)$

- The Hamming graph $H(D, q)$ has as vertex set Q^D where Q is a set with cardinality q.
- Two vertices are adjacent if they differ in exactly one position.
- $H(3, q)$ has spectrum $[3q - 3]^1, [2q - 3]^{3q-3}, [q - 3]^{3(q-1)^2}, [-3]^{(q-1)^3}$.
- Hence any graph G cospectral with $H(3, q)$ is walk-regular and the local graph has average valency $q - 2$.
- Applying our theorem gives that G is locally $3 \times K_{q-1}$ if q is very large.
- Bang et al. (2008) showed earlier that this is the case for $q \geq 36$, and that they are determined by their spectrum if $q \geq 36$.
The Johnson graph $J(n, 3)$

- The Johnson graph $J(n, t)$ has as vertex set $\binom{N}{t}$ where N is a set with cardinality n.
- Two t-sets A and B are adjacent if $\#A \cap B = t - 1$.
The Johnson graph $J(n, 3)$

- The Johnson graph $J(n, t)$ has as vertex set $\binom{N}{t}$ where N is a set with cardinality n.
- Two t-sets A and B are adjacent if $|A \cap B| = t - 1$.
- $J(n, 3)$ has spectrum $[3(n-3)]^1, [2(n-4)-1]^{n-1}, [n-7]^{n(n-1)/2}, [-3]^{n(n-1)(n-5)/6}$.
The Johnson graph $J(n, 3)$

- The Johnson graph $J(n, t)$ has as vertex set $\binom{N}{t}$ where N is a set with cardinality n.
- Two t-sets A and B are adjacent if $\#A \cap B = t - 1$.
- $J(n, 3)$ has spectrum $[3(n-3)]^1, [2(n-4)-1]^{n-1}, [n-7]^{n(n-1)/2}, [-3]^{n(n-1)(n-5)/6}$.
- Hence any graph G cospectral with $J(n, 3)$ is walk-regular and the local graph has average valency $n - 2$.
The Johnson graph $J(n, 3)$

- The Johnson graph $J(n, t)$ has as vertex set $\binom{N}{t}$ where N is a set with cardinality n.
- Two t-sets A and B are adjacent if $\#A \cap B = t - 1$.
- $J(n, 3)$ has spectrum $[3(n-3)]^1, [2(n-4)-1]^{n-1}, [n-7]^{n(n-1)/2}, [-3]^{n(n-1)(n-5)/6}$.
- Hence any graph G cospectral with $J(n, 3)$ is walk-regular and the local graph has average valency $n - 2$.
- Using our result shows that $J(n, 3)$ is the point graph of a partial linear space with three lines through any point, if n is very large.
The Johnson graph $J(n, 3)$

- The Johnson graph $J(n, t)$ has as vertex set $\binom{N}{t}$ where N is a set with cardinality n.
- Two t-sets A and B are adjacent if $\#A \cap B = t - 1$.
- $J(n, 3)$ has spectrum $[3(n-3)]^1, [2(n-4)-1]^{n-1}, [n-7]^{n(n-1)/2}, [-3]^{n(n-1)(n-5)/6}$.
- Hence any graph G cospectral with $J(n, 3)$ is walk-regular and the local graph has average valency $n - 2$.
- Using our result shows that $J(n, 3)$ is the point graph of a partial linear space with three lines through any point, if n is very large.
- Van Dam et al. (2006) gave two constructions to obtain graphs cospectral with $J(n, 3)$, one used Godsil-McKay switching, the other construction used partial linear spaces.
The 2-clique extension of the \(t_1 \times t_2 \)-grid (with \(t_1 \geq t_2 \)) \(G \) has five distinct eigenvalues unless \(t_1 = t_2 \).
2-clique extension of a grid graph

- The 2-clique extension of the $t_1 \times t_2$-grid (with $t_1 \geq t_2$) G has five distinct eigenvalues unless $t_1 = t_2$.
- So we do not have walk-regularity.
The 2-clique extension of the $t_1 \times t_2$-grid (with $t_1 \geq t_2$) G has five distinct eigenvalues unless $t_1 = t_2$.

So we do not have walk-regularity.

The largest eigenvalue of G is equal to $2(t_1 + t_2) - 3$ and second largest eigenvalue is equal to $2t_1 - 3$.
2-clique extension of a grid graph

- The 2-clique extension of the $t_1 \times t_2$-grid (with $t_1 \geq t_2$) G has five distinct eigenvalues unless $t_1 = t_2$.
- So we do not have walk-regularity.
- The largest eigenvalue of G is equal to $2(t_1 + t_2) - 3$ and second largest eigenvalue is equal to $2t_1 - 3$.
- Let H be a graph cospectral to G.

The 2-clique extension of the $t_1 \times t_2$-grid (with $t_1 \geq t_2$) G has five distinct eigenvalues unless $t_1 = t_2$.

So we do not have walk-regularity.

The largest eigenvalue of G is equal to $2(t_1 + t_2) - 3$ and second largest eigenvalue is equal to $2t_1 - 3$.

Let H be a graph cospectral to G.

Using the Hoffman bound, we see that we can apply the first result in this case as long as t_2 is large enough.
The 2-clique extension of the $t_1 \times t_2$-grid (with $t_1 \geq t_2$) G has five distinct eigenvalues unless $t_1 = t_2$.

So we do not have walk-regularity.

The largest eigenvalue of G is equal to $2(t_1 + t_2) - 3$ and second largest eigenvalue is equal to $2t_1 - 3$.

Let H be a graph cospectral to G.

Using the Hoffman bound, we see that we can apply the first result in this case as long as t_2 is large enough.

Then we obtain that H is a $\{\mathcal{H}_3, \mathcal{H}_4, \mathcal{H}_5\}$-line graph.
2-clique extension of a grid graph

- The 2-clique extension of the $t_1 \times t_2$-grid (with $t_1 \geq t_2$) G has five distinct eigenvalues unless $t_1 = t_2$.

- So we do not have walk-regularity.

- The largest eigenvalue of G is equal to $2(t_1 + t_2) - 3$ and second largest eigenvalue is equal to $2t_1 - 3$.

- Let H be a graph cospectral to G.

- Using the Hoffman bound, we see that we can apply the first result in this case as long as t_2 is large enough.

- Then we obtain that H is a $\{H_3, H_4, H_5\}$-line graph.

- Using this fact, Aida Abiad, QianQian Yang and myself showed that the 2-clique extension of the $t \times t$-grid is determined by its spectrum if t large enough.
Outline

1. Introduction
 - Definitions
 - Smallest eigenvalue -2

2. Results of Hoffman
 - Bounded smallest eigenvalue

3. Hoffman graphs
 - Hoffman graphs

4. Our main result(s)
 - Smallest eigenvalue -3

5. Applications
 - Applications

6. Grassmann graphs
 - Grassmann graphs
The Grassmann graph $J_q(n, D)$ is the graph with vertex set the set of the D-dimensional subspaces of an n-dimensional vector space over the finite field with q elements, where q is a prime power and $n \geq 2D$ are positive integers.
Grassmann graphs

- The Grassmann graph $J_q(n, D)$ is the graph with vertex set the set of the D-dimensional subspaces of an n-dimensional vector space over the finite field with q elements, where q is a prime power and $n \geq 2D$ are positive integers.

- Metsch showed that the Grassmann graph $J_q(n, D)$ is characterised as a distance-regular graph if $n \geq 2D + 2$, unless $q \leq 3$.
The Grassmann graph $J_q(n, D)$ is the graph with vertex set the set of the D-dimensional subspaces of an n-dimensional vector space over the finite field with q elements, where q is a prime power and $n \geq 2D$ are positive integers.

Metsch showed that the Grassmann graph $J_q(n, D)$ is characterised as a distance-regular graph if $n \geq 2D + 2$, unless $q \leq 3$.

Van Dam and K. constructed the twisted Grassmann graphs in 2005, which have the same intersection numbers as $J_q(2D + 1, D)$. So the Grassmann graph $J_q(2D + 1, D)$ is not characterised by its intersection numbers.
Grassmann graphs, 2

- What do we know for $J_q(2D, D)$?
- With Gavrilyuk (201?) we showed that the local subgraph (that is, the graph induced on the neighbours of a fixed vertex) of a distance-regular graph with the same intersection numbers as $J_q(2D, D)$, has the same spectrum as the q-clique extension of a certain square grid.
What do we know for $J_q(2D, D)$?

With Gavrilyuk (201?) we showed that the local subgraph (that is, the graph induced on the neighbours of a fixed vertex) of a distance-regular graph with the same intersection numbers as $J_q(2D, D)$, has the same spectrum as the q-clique extension of a certain square grid.

If we know that q-clique extension of a square $(t \times t)$-grid is characterised by its spectrum we can show that the corresponding Grassman graph is determined by its intersection numbers.
<table>
<thead>
<tr>
<th>Grassmann graphs, 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>What do we know for $J_q(2D, D)$?</td>
</tr>
<tr>
<td>With Gavrilyuk (201?) we showed that the local subgraph (that is, the graph induced on the neighbours of a fixed vertex) of a distance-regular graph with the same intersection numbers as $J_q(2D, D)$, has the same spectrum as the q-clique extension of a certain square grid.</td>
</tr>
<tr>
<td>If we know that q-clique extension of a square $(t \times t)$-grid is characterised by its spectrum we can show that the corresponding Grassman graph is determined by its intersection numbers.</td>
</tr>
<tr>
<td>For t small compared to q, these q-clique extensions are NOT characterised by their spectrum, but I suspect they are if t is large compared to q.</td>
</tr>
</tbody>
</table>
We have seen: The 2-clique extension of the \((t \times t)\)-grid is characterized by its spectrum if \(t >> 0\).
We have seen: The 2-clique extension of the \((t \times t)\)-grid is characterized by its spectrum if \(t >> 0\).

This implies that \(J_2(2D, D)\) is determined by its intersection numbers if \(D\) is large enough.
Thank you for your attention.