Some notes on maximal number of cycles in reflexive cacti

Marija Rašajski

Bojana Mihailović
School of Electrical Engineering
University of Belgrade

Introduction

- G is a connected simple graph
- Characteristic polynomial $P_{G}(\lambda)=\operatorname{det}(\lambda I-A), A$ is the adjacency matrix
- Its roots are all real numbers and we assume their nonincreasing order

$$
\lambda_{1} \geq \lambda_{2} \geq \lambda_{3} \geq \ldots \geq \lambda_{n}
$$

- For connected graphs $\lambda_{1}>\lambda_{2}$ holds
- A graph is treelike, or a cactus, if its cycles have no common edges
- Cycles of multicyclic cactus form a bundle if all of them contain the same vertex
- A cycle of a multicyclic cactus is free if only one of its vertices has the degree greater than 2

In this work we analyze a class of multicyclic cacti whose second largest eigenvalue λ_{2} does not exceed 2 .

Graphs whose second largest eigenvalue is bounded by 2 appear in the theory of reflection groups, and, therefore, they are called reflexive.

Some classes of multicyclic reflexive cacti have been described in previous work. They have been considered under some conditions, among which was the condition that their cycles do not form a bundle, and it has been shown that such graphs have at most 5 cycles.

Though one special class of cacti with the bundle has been described previously, for the first time multicyclic reflexive cacti whose cycles do form a bundle are considered here in general.

We will find the maximum number of cycles in these cacti whenever that number is finite.

Some auxiliary and former results

Lemma. (Schwenk) Given a graph G, let $C(v)(C(u v))$ denote the set of all its cycles containing a vertex v (resp. an edge $u v$). Then

$$
\begin{aligned}
& \text { 1. } P_{G}(\lambda)=\lambda P_{G-v}(\lambda)-\sum_{u \in A d j(v)} P_{G-v-u}(\lambda)-2 \sum_{C \in C(v)} P_{G-V(C)}(\lambda), \\
& \text { 2. } P_{G}(\lambda)=P_{G-u v}(\lambda)-P_{G-v-u}(\lambda)-2 \sum_{C \in C(u v)} P_{G-V(C)}(\lambda),
\end{aligned}
$$

where $\operatorname{Adj}(v)$ denotes the set of neighbours of v, while $G-V(C)$ is the graph obtained from G by removing the vertices belonging to the cycle C.

By the Interlacing theorem, the property $\lambda_{2}(G) \leq 2$ is a hereditary one (if G has this property, then every subgraph H has it, too). Smith graphs are maximal connected graphs for the property $\lambda_{1}(G) \leq 2$. (For all of them $\lambda_{1}=2$ holds)

Wn

Smith graphs

RS-Theorem. Let G be a graph with a cut-vertex v.

1) If at least two components of $G-v$ are supergraphs of Smith graphs, and if at least one of them is a proper supergraph, then $\lambda_{2}(G)>2$ holds.
2) If at least two components of $G-v$ are Smith graphs, and the rest are subgraphs of Smith graphs, then $\lambda_{2}(G)=2$ holds.
3) If at most one component of $G-v$ is Smith graph, and the rest are proper subgraphs of Smith graphs, then $\lambda_{2}(G)<2$ holds.

This theorem cannot tell whether G is reflexive or not if, after removing the cut-vertex, one of the components is a supergraph of some Smith graph and all others are subgraphs of some Smith graphs. Graphs like these we call RS-undecidable; otherwise, they are RS-decidable.

Theorem. A treelike reflexive graph to which RS-theorem cannot be applied and whose cycles do not form a bundle has at most five cycles. The only such graphs with five cycles, which are all maximal, i.e. cannot be extended at any vertex, are the four families of graphs Q_{1}, Q_{2}, T_{1} and T_{2}.

(a)

(b)

(c)

(d)

A bundle of cycles - minimal components

In this work we determine the maximum number of cycles for maximal reflexive RS-undecidable cacti whose cycles form a bundle, and therefore we find the maximum number of cycles for all maximal reflexive RS-undecidable cacti.

B

Figure 1.
Let B be a cactus (Figure 1) with k cycles that make a bundle and let the vertex v be the cut-vertex that belongs to all cycles.

The vertices of cycles that are adjacent to the vertex v we call black vertices and all vertices of cycles different from black vertices and the vertex v we call white vertices.

Every vertex of B may be additionally loaded by some tree.
If there are trees which are leaned to the vertex v, we denote them by T_{1}, \ldots, T_{m}. Let C_{1}, \ldots, C_{k} be unicyclic subgraphs of B that contain cycles of length n_{1}, \ldots, n_{k}, respectively, and in every such subgraph the degree of v is 2 .

Therefore, the graph $B-v$ contains the components $K_{i}=C_{i}-v$ $(i=1, \ldots, k)$ and the components $L_{j}=T_{j}-v(j=1, \ldots, m)$.

If all of the components $K_{1}, \ldots K_{k}, L_{1}, \ldots, L_{m}$ are Smith graphs, or subgraphs of some Smith graphs, then the graph B is RS-decidable and reflexive.

In such a graph, maximum number of cycles does not exist. The number of cycles can always be increased, because by adding a new cycle leaned on a vertex v, the fact that B is RS-decidable and reflexive does not change.

By G_{∞} we denote the family of all such cacti. From now on we consider graphs that do not belong to the family G_{∞}.

If the graph B does not belong to the family G_{∞}, it can be reflexive only if it is RS-undecidable.

Then, one of the components of the graph $B-v$ must be a proper supergraph of a Smith tree, while all others are proper subgraphs of some Smith trees.

In order to find maximum number of cycles it is sufficient to consider, in a way, minimal cases of graphs. i.e. some characteristic graphs that are subgraphs of all graphs of type B.

G_{1}-type

We say that graph G, which has the cyclic structure like graph B (Figure 1) is G_{1}-type graph if the following conditions are satisfied:
1.1. All cycles of the graph G are free.
1.2. There is only one L-component, for example $L_{1}\left(L_{1}=T_{1}-v\right)$, and it is a supergraph of some Smith tree.
1.3. For every vertex u of the component L_{1}, which has the degree 1 in the graph G, the condition $\lambda_{1}\left(L_{1}-u\right) \leq 2$ holds.

G_{2}-type

We say that graph G which has the cyclic structure like graph B (Figure 1) is G_{2}-type graph if the following conditions are satisfied:
2.1. There is no tree leaned on the vertex v.
2.2. One of the K-components, for example $K_{1}\left(K_{1}=C_{1}-v\right)$ is a supergraph of some Smith tree, while all other K - components are paths.
2.3. For every vertex u of the component K_{1}, which has the degree 1 in the graph G, the condition $\lambda_{1}\left(K_{1}-u\right) \leq 2$ holds.

Theorem 1. Let G be a reflexive graph with the cyclic structure as of graph B (Figure 1), that does not belong to the family G_{∞}. Then, G contains as a subgraph either a G_{1}-type graph or a G_{2}-type graph.

Theorem 2. 1) Let the graph G be the G_{1}-type graph. Then, it is reflexive if and only if the following condition holds $P_{T_{1}}(2)-2 k P_{L_{1}}(2) \leq 0$.
2) Let the graph G be the G_{2}-type graph. Then, it is reflexive if and only if the following condition holds: $P_{C_{1}}(2)-2(k-1) P_{K_{1}}(2) \leq 0$.

Proof. In these two cases, the assessment of the maximum number of cycles in graph G (G_{1}-type or G_{2}-type) is based on the examination of the sign of $P_{G}(2)$. Let $H=G-u$, where u is the vertex of the component L_{1} (K_{1}) of the graph $G-v$, whose degree is 1 in the graph G. By RS-theorem
$\lambda_{2}(H)<2$ and $P_{H}(2)<0$ hold, because $\lambda_{1}\left(L_{1}-u\right) \leq 2\left(\lambda_{1}\left(K_{1}-u\right) \leq 2\right)$ holds. Therefore, using the Interlacing theorem, we get $P_{G}(2) \leq 0 \Leftrightarrow \lambda_{2}(G) \leq 2$, so now we shall calculate $P_{G}(2)$ for both our cases.

Let G be G_{1}-type graph. Applying Scwenk's lemma to the vertex v we get $P_{G}(2)=2 n_{1} \ldots n_{k} P_{L_{1}}(2)-2 P_{L_{1}}(2)\left(\left(n_{1}-1\right) n_{2} \ldots n_{k}+n_{1}\left(n_{2}-1\right) \ldots n_{k}+\ldots+n_{1} \ldots n_{k-1}\left(n_{k}-1\right)\right)-$ $P_{L_{1}-b}(2) n_{1} \ldots n_{k}-2 P_{L_{1}}(2)\left(n_{2} \ldots n_{k}+n_{1} n_{3} \ldots n_{k}+\ldots+n_{1} \ldots n_{k-1}\right)=n_{1} \ldots n_{k}\left(2(1-k) P_{L_{1}}(2)-P_{L_{1}-b}(2)\right)$,
(b is the black vertex of the tree T_{1}) and by applying it to the vertex v and the graph T_{1} we get $P_{T_{1}}(2)=2 P_{L_{1}}(2)-P_{L_{1}-b}(2)$.

Therefore, the condition $P_{G}(2) \leq 0$ becomes equivalent to the condition $P_{T_{1}}(2)-2 k P_{L_{1}}(2) \leq 0$.

Let G be G_{2}-type graph. Applying Scwenk's lemma to the vertex v we get

$$
\begin{align*}
& P_{G}(2)=2 P_{K_{1}}(2) n_{2} \ldots n_{k}-\left(P_{K_{1}-b_{1}}(2)+P_{K_{1}-b_{2}}(2)\right) n_{2} \ldots n_{k}- \\
& 2 P_{K_{1}}(2)\left(\left(n_{2}-1\right) n_{3} \ldots n_{k}+n_{2}\left(n_{3}-1\right) \ldots n_{k}+\ldots+n_{2} \ldots n_{k-1}\left(n_{k}-1\right)\right)- \\
& 2 P_{C_{1}-C}(2) n_{2} \ldots n_{k}-2 P_{K_{1}}(2)\left(n_{2} \ldots n_{k}+n_{1} n_{3} \ldots n_{k}+\ldots+n_{1} \ldots n_{k-1}\right)= \\
& n_{2} \ldots n_{k}\left(2 P_{K_{1}}(2)-P_{K_{1}-b_{1}}(2)-P_{K_{1}-b_{2}}(2)-2(k-1) P_{K_{1}}(2)-2 P_{C_{1}-C}(2\right. \tag{2}
\end{align*}
$$

where b_{1} and b_{2} are black vertices of the unicyclic subgraph C_{1} and C denotes the cycle of the length n_{1} that belongs to the subgraph C_{1}; and applying Schwenk's lemma to the vertex v and the graph C_{1}, we get

$$
P_{C_{1}}(2)=2 P_{K_{1}}(2)-P_{K_{1}-b_{1}}(2)-P_{K_{1}-b_{2}}(2)-2 P_{C_{1}-C}(2)
$$

and, therefore, the condition $P_{G}(2) \leq 0$ becomes equivalent to the condition $P_{C_{1}}(2)-2(k-1) P_{K_{1}}(2) \leq 0$.

Now we shall discuss the structure of the component $K_{1}\left(L_{1}\right)$. The component which is a supergraph of some Smith tree must contain at least one of the trees F_{1}, \ldots, F_{9} (Figure 2), because they are minimal forbidden trees for the property $\lambda_{1} \leq 2$.

\boldsymbol{F}_{1}

F_{6}

\boldsymbol{F}_{7}

\boldsymbol{F}_{8}

F9

Figure 2: Minimal forbidden trees for the property $\lambda_{1} \leq 2$

Vertices of the component K_{1} (i.e. L_{1}) adjacent to the vertex v in graph G, which is G_{1}-type (G_{2}-type), are denoted by b_{1} and b_{2} (i.e. b) and they are called the black vertices. Let the component K_{1} (i.e. L_{1}) contain a tree $F\left(F \in\left\{F_{1}, \ldots, F_{9}\right\}\right)$. Then at least one of the vertices that belong to F must be the black vertex of the corresponding component, otherwise removing the black vertices from the graph G produces $R S$-decidable graph for which $\lambda_{2}\left(G-b_{1}-b_{2}\right)>2$ (i.e. $\left.\lambda_{2}(G-b)>2\right)$ holds and therefore $\lambda_{2}(G)>2$ holds.

A. G is \boldsymbol{G}_{I} - type

In this case, the black vertex b of the component L_{1} must belong to the tree $F_{i}(i=1, \ldots, 9)$ contained in the component, so it is sufficient to analyze the cases when $L_{1}=F_{i}$. Further, the vertex x cannot be the black vertex, because otherwise graph $G-b$ becomes RSdecidable and nonreflexive. However, any other vertex of the tree F_{i} different from x may be the black vertex.

B. G is \boldsymbol{G}_{2}-type graph

If graph $F\left(F \in\left\{F_{1}, \ldots, F_{9}\right\}\right)$, subgraph of the component K_{1}, contains both black vertices of the component K_{1}, then $K_{1}=F$.

If graph $F\left(F \in\left\{F_{1}, \ldots, F_{9}\right\}\right)$, subgraph of the component K_{1}, contains only one black vertex (for example b_{1}) of this component, then K_{1} can be presented as F, extended in such way that in K_{1} exists the pendant edge, not belonging to F, whose end is the other black vertex b_{2}. Now we discuss the place of the vertex x in K_{1} and we see 4 possibilities:
A) x is not one of the vertices of cycle and the degree of x is greater than 1 .

The component K_{1} can be minimized by deleting the tree, disjoint from F, which is leaned on the vertex x, so in order to find maximal number of cycles in G we can ignore this case.
B) x is not one of the vertices of cycle and the degree of x is 1 .
$K_{1}-x$ is still the supergraph of some Smith tree and the condition $\lambda_{1}\left(K_{1}-x\right) \leq 2$ does not hold, so we reject this case , too.
C) x is b_{1}.
$K_{1}-b_{1}-b_{2}$ is a supergraph of some Smith tree and then, by applying RStheorem, $\lambda_{2}\left(G-b_{1}-b_{2}\right)>2$ holds, i.e. G is not reflexive; or $K_{1}-b_{1}-b_{2}$ is one of the Smith trees and then, by applying RS-theorem, we get $\lambda_{2}\left(G-b_{1}-b_{2}\right) \geq 2$ wherein the equality holds (and G is reflexive) only in
case that G contains only two cycles, and that is the minimal number of cycles in G, so this case is not of interest, too.
D) x is one of the vertices of cycle different from black vertices (and, of course, different from v).

The degree of x in K_{1} is at least 2 and in this case we can say that $K_{1}=F \cdot P_{i+1}$ (coalescence is at vertex x), where P_{i+1} is the path of the length i which belongs to the cycle and connects x with b_{2} and its vertices are $x, x_{1}, \ldots, x_{i-1}, x_{i}=b_{2}$. Now, if we remove the vertex b_{2} from the graph G, we get the graph $G-b_{2}$ which is a supergraph (proper or not) of some G_{1}-type graph. However, the number of cycles in the graph G cannot exceed the number of cycles in the corresponding G_{1}-type graph, so this case is not of interest for us.

Results

Based on Theorem 2 we can determine the maximum number k of cycles in a bundle by discussing possible cases.

First we show Table 1, for the cases $L_{1}=F\left(F \in\left\{F_{1}, \ldots, F_{9}\right\}\right)$.

F	F_{1}	F_{2}	F_{3}	F_{4}	F_{5}	F_{6}	F_{7}	F_{8}	F_{9}
$k_{\max }$	2	4	7	11	22	4	4	4	4
Table 1									

The detailed description is given only for the graph F_{4} in Table 2, as an example. The black vertex b is one of the vertices of the graph F different from the vertex x and the values $P_{T_{1}}(2), P_{T_{1}-v}(2)$ and $P_{T_{1}}(2)-2(k-1) P_{T_{1}-v}(2)$ are also listed.

F_{4}	b	$P_{T_{1}}(2)$	$P_{T_{1}-v}(2)$	$P_{T_{1}}(2)-2 k P_{T_{1}-v}(2)$	$k_{\max }$
	s_{1}	-8	-2	$4(k-2)$	$\mathbf{2}$
s_{2}	-16	-2	$4(k-4)$	$\mathbf{4}$	
s_{3}	-28	-2	$4(k-7)$	$\mathbf{7}$	
	s_{4}	-44	-2	$4(k-11)$	$\mathbf{1 1}$
s_{5}	-25	-2	$4 k-25$	$\mathbf{6}^{*}$	
s_{6}	-12	-2	$4(k-3)$	$\mathbf{3}$	
s_{7}	-5	-2	$4 k-5$	$\mathbf{1 *}$	
s_{8}	-13	-2	$4 k-13$	3*	

Table 2

The numbers with the asterisk stand for the cases where the strict inequality $P_{T_{1}}(2)-2 k P_{L_{1}}(2)<0$ holds and in the unmarked cases the equality is reached.

In the next table we show the results for the cases when $K_{1}=F$ $\left(F \in\left\{F_{1}, \ldots, F_{9}\right\}\right)$. The details of computations we show only for the case $K_{1}=F_{2}$ in Table 4, as an example.

F	F_{1}	F_{2}	F_{3}	F_{4}	F_{5}	F_{6}	F_{7}	F_{8}	F_{9}
$k_{\max }$	4	10	20	32	74	13	13	13	13

Table 3
In Table 4 vertices that are identified with black vertices are listed in column $\left(b_{1}, b_{2}\right)$, and in other columns we show the values $P_{C_{1}}(2), P_{C_{1}-v}(2)$ and $P_{C_{1}}(2)-2(k-1) P_{C_{1}-v}(2)$, as well as maximal value of k, based on the condition (1).

F_{2}	$\left(b_{1}, b_{2}\right)$	$P_{C_{1}}(2)$	$P_{C_{1}-v}(2)$	$P_{C_{1}}(2)-2(k-1) P_{C_{1}-v}(2)$	$k_{\max }$
	$\left(x, s_{1}\right)$	-24	-4	$8(k-4)$	$\mathbf{4}$
$\left(x, s_{2}\right)$	-48	-4	$8(k-7)$	$\mathbf{7}$	
$\left(x, s_{3}\right)$	-20	-4	$4(2 k-7)$	$\mathbf{3}^{*}$	
$\left(s_{1}, s_{2}\right)$	-72	-4	$8(k-10)$	$\mathbf{1 0}$	
$\left(s_{1}, s_{3}\right)$	-36	-4	$4(2 k-11)$	$\mathbf{5}^{*}$	
$\left(s_{2}, s_{3}\right)$	-60	-4	$4(2 k-17)$	$\mathbf{8}^{*}$	
$\left(s_{3}, s_{4}\right)$	-28	-4	$4(2 k-9)$	$\mathbf{4 *}^{*}$	

Table 4

Theorem 4. The maximum number of cycles in a G_{1}-type graph is 22 .
Theorem 5. The maximum number of cycles in a G_{2}-type graph is 74 .
From the two previous theorems follows the next one.
Theorem 6. The maximum number of cycles in RS-undecidable reflexive graph with a bundle is 74 .

Now we can state the main result.
Theorem 7. The maximum number of cycles in RS-undecidable reflexive graph is 74 .
(As mentioned before, the number of cycles in RS-decidable cacti is not limited.)

THANK YOU!

