Some notes on maximal number of cycles in reflexive cacti

Marija Rašajski

Bojana Mihailović

School of Electrical Engineering

University of Belgrade

Introduction

- *G* is a connected simple graph
- Characteristic polynomial $P_G(\lambda) = \det(\lambda I A)$, A is the adjacency matrix
- Its roots are all real numbers and we assume their nonincreasing order

$$\lambda_1 \geq \lambda_2 \geq \lambda_3 \geq \ldots \geq \lambda_n$$

• For connected graphs $\lambda_1 > \lambda_2$ holds

- A graph is treelike, or a cactus, if its cycles have no common edges
- Cycles of multicyclic cactus form a bundle if all of them contain the same vertex
- A cycle of a multicyclic cactus is free if only one of its vertices has the degree greater than 2

In this work we analyze a class of multicyclic cacti whose second largest eigenvalue λ_2 does not exceed 2.

Graphs whose second largest eigenvalue is bounded by 2 appear in the theory of reflection groups, and, therefore, they are called **reflexive.**

Some classes of multicyclic reflexive cacti have been described in previous work. They have been considered under some conditions, among which was the condition that their cycles do not form a bundle, and it has been shown that such graphs have at most 5 cycles. Though one special class of cacti with the bundle has been described previously, for the first time multicyclic reflexive cacti whose cycles do form a bundle are considered here in general.

We will find the maximum number of cycles in these cacti whenever that number is finite.

Some auxiliary and former results

Lemma. (Schwenk) Given a graph G, let C(v) (C(uv)) denote the set of all its cycles containing a vertex v (resp. an edge uv). Then

1.
$$P_G(\lambda) = \lambda P_{G-\nu}(\lambda) - \sum_{u \in Adj(\nu)} P_{G-\nu-u}(\lambda) - 2\sum_{C \in C(\nu)} P_{G-V(C)}(\lambda),$$

2.
$$P_G(\lambda) = P_{G-uv}(\lambda) - P_{G-v-u}(\lambda) - 2\sum_{C \in C(uv)} P_{G-V(C)}(\lambda),$$

where Adj(v) denotes the set of neighbours of v, while G - V(C) is the graph obtained from G by removing the vertices belonging to the cycle C. By the Interlacing theorem, the property $\lambda_2(G) \le 2$ is a hereditary one (if *G* has this property, then every subgraph *H* has it, too). Smith graphs are maximal connected graphs for the property $\lambda_1(G) \le 2$. (For all of them $\lambda_1 = 2$ holds)

RS-Theorem. Let G be a graph with a cut-vertex v.

1) If at least two components of G - v are supergraphs of Smith graphs, and if at least one of them is a proper supergraph, then $\lambda_2(G) > 2$ holds.

2) If at least two components of G-v are Smith graphs, and the rest are subgraphs of Smith graphs, then $\lambda_2(G) = 2$ holds.

3) If at most one component of G-v is Smith graph, and the rest are proper subgraphs of Smith graphs, then $\lambda_2(G) < 2$ holds.

This theorem cannot tell whether G is reflexive or not if, after removing the cut-vertex, one of the components is a supergraph of some Smith graph and all others are subgraphs of some Smith graphs. Graphs like these we call RS-undecidable; otherwise, they are RS-decidable.

Theorem. A treelike reflexive graph to which RS-theorem cannot be applied and whose cycles do not form a bundle has at most five cycles. The only such graphs with five cycles, which are all maximal, i.e. cannot be extended at any vertex, are the four families of graphs Q_1 , Q_2 , T_1 and T_2 .

A bundle of cycles – minimal components

In this work we determine the maximum number of cycles for maximal reflexive RS-undecidable cacti whose cycles form a bundle, and therefore we find the maximum number of cycles for all maximal reflexive RS-undecidable cacti.

Figure 1.

Let *B* be a cactus (Figure 1) with k cycles that make a bundle and let the vertex v be the cut-vertex that belongs to all cycles.

The vertices of cycles that are adjacent to the vertex v we call black vertices and all vertices of cycles different from black vertices and the vertex v we call white vertices.

Every vertex of *B* may be additionally loaded by some tree.

If there are trees which are leaned to the vertex v, we denote them by $T_1, ..., T_m$. Let $C_1, ..., C_k$ be unicyclic subgraphs of B that contain cycles of length $n_1, ..., n_k$, respectively, and in every such subgraph the degree of v is 2.

Therefore, the graph B - v contains the components $K_i = C_i - v$ (i = 1,...,k) and the components $L_j = T_j - v$ (j = 1,...,m).

If all of the components $K_1, ..., K_k, L_1, ..., L_m$ are Smith graphs, or subgraphs of some Smith graphs, then the graph *B* is RS-decidable and reflexive. In such a graph, maximum number of cycles does not exist. The number of cycles can always be increased, because by adding a new cycle leaned on a vertex v, the fact that B is RS-decidable and reflexive does not change.

By G_{∞} we denote the family of all such cacti. From now on we consider graphs that do not belong to the family G_{∞} .

If the graph *B* does not belong to the family G_{∞} , it can be reflexive only if it is RS-undecidable.

Then, one of the components of the graph B - v must be a proper supergraph of a Smith tree, while all others are proper subgraphs of some Smith trees.

In order to find maximum number of cycles it is sufficient to consider, in a way, minimal cases of graphs. i.e. some characteristic graphs that are subgraphs of all graphs of type *B*.

G_1 -type

We say that graph G, which has the cyclic structure like graph B (Figure 1) is G_1 -type graph if the following conditions are satisfied:

1.1. All cycles of the graph G are free.

1.2. There is only one *L*-component, for example L_1 ($L_1 = T_1 - v$), and it is a supergraph of some Smith tree.

1.3. For every vertex *u* of the component L_1 , which has the degree 1 in the graph *G*, the condition $\lambda_1(L_1 - u) \le 2$ holds.

*G*₂ -**type**

We say that graph G which has the cyclic structure like graph B (Figure 1) is G_2 -type graph if the following conditions are satisfied:

2.1. There is no tree leaned on the vertex v.

2.2. One of the K-components, for example K_1 ($K_1 = C_1 - v$) is a supergraph of some Smith tree, while all other *K*- components are paths.

2.3. For every vertex *u* of the component K_1 , which has the degree 1 in the graph *G*, the condition $\lambda_1(K_1 - u) \le 2$ holds.

Theorem 1. Let G be a reflexive graph with the cyclic structure as of graph B (Figure 1), that does not belong to the family G_{∞} . Then, G contains as a subgraph either a G_1 -type graph or a G_2 -type graph.

Theorem 2. 1) Let the graph *G* be the G_1 -type graph. Then, it is reflexive if and only if the following condition holds $P_{T_1}(2) - 2kP_{L_1}(2) \le 0$.

2) Let the graph *G* be the G_2 -type graph. Then, it is reflexive if and only if the following condition holds: $P_{C_1}(2) - 2(k-1)P_{K_1}(2) \le 0$.

Proof. In these two cases, the assessment of the maximum number of cycles in graph $G(G_1$ -type or G_2 -type) is based on the examination of the sign of $P_G(2)$. Let H = G - u, where u is the vertex of the component L_1 (K_1) of the graph G - v, whose degree is 1 in the graph G. By RS-theorem

 $\lambda_2(H) < 2$ and $P_H(2) < 0$ hold, because $\lambda_1(L_1 - u) \le 2$ ($\lambda_1(K_1 - u) \le 2$) holds. Therefore, using the Interlacing theorem, we get $P_G(2) \le 0 \Leftrightarrow \lambda_2(G) \le 2$, so now we shall calculate $P_G(2)$ for both our cases.

Let *G* be G_1 -type graph. Applying Scwenk's lemma to the vertex *v* we get $P_G(2) = 2n_1...n_k P_{L_1}(2) - 2P_{L_1}(2)((n_1-1)n_2...n_k + n_1(n_2-1)...n_k + ... + n_1...n_{k-1}(n_k-1)) - P_{L_1-b}(2)n_1...n_k - 2P_{L_1}(2)(n_2...n_k + n_1n_3...n_k + ... + n_1...n_{k-1}) = n_1...n_k(2(1-k)P_{L_1}(2) - P_{L_1-b}(2)),$ (*b* is the black vertex of the tree T_1) and by applying it to the vertex *v* and the graph T_1 we get $P_{T_1}(2) = 2P_{L_1}(2) - P_{L_1-b}(2)$.

Therefore, the condition $P_G(2) \le 0$ becomes equivalent to the condition $P_{T_1}(2) - 2kP_{L_1}(2) \le 0$.

Let G be G_2 -type graph. Applying Scwenk's lemma to the vertex v we get

$$\begin{split} P_{G}(2) &= 2P_{K_{1}}(2)n_{2}...n_{k} - (P_{K_{1}-b_{1}}(2) + P_{K_{1}-b_{2}}(2))n_{2}...n_{k} - \\ &2P_{K_{1}}(2)((n_{2}-1)n_{3}...n_{k} + n_{2}(n_{3}-1)...n_{k} + ... + n_{2}...n_{k-1}(n_{k}-1)) - \\ &2P_{C_{1}-C}(2)n_{2}...n_{k} - 2P_{K_{1}}(2)(n_{2}...n_{k} + n_{1}n_{3}...n_{k} + ... + n_{1}...n_{k-1}) = \\ &n_{2}...n_{k}(2P_{K_{1}}(2) - P_{K_{1}-b_{1}}(2) - P_{K_{1}-b_{2}}(2) - 2(k-1)P_{K_{1}}(2) - 2P_{C_{1}-C}(2)) \end{split}$$

where b_1 and b_2 are black vertices of the unicyclic subgraph C_1 and C denotes the cycle of the length n_1 that belongs to the subgraph C_1 ; and applying Schwenk's lemma to the vertex v and the graph C_1 , we get

$$P_{C_1}(2) = 2P_{K_1}(2) - P_{K_1 - b_1}(2) - P_{K_1 - b_2}(2) - 2P_{C_1 - C}(2)$$

and, therefore, the condition $P_G(2) \le 0$ becomes equivalent to the condition $P_{C_1}(2) - 2(k-1)P_{K_1}(2) \le 0$.

Now we shall discuss the structure of the component K_1 (L_1). The component which is a supergraph of some Smith tree must contain at least one of the trees $F_1,...,F_9$ (Figure 2), because they are minimal forbidden trees for the property $\lambda_1 \leq 2$.

Figure 2: Minimal forbidden trees for the property $\lambda_1 \leq 2$

Vertices of the component K_1 (i.e. L_1) adjacent to the vertex v in graph G, which is G_1 -type (G_2 -type), are denoted by b_1 and b_2 (i.e. b) and they are called the black vertices. Let the component K_1 (i.e. L_1) contain a tree $F(F \in \{F_1, ..., F_9\})$. Then at least one of the vertices that belong to F must be the black vertex of the corresponding component, otherwise removing the black vertices from the graph G produces RS-decidable graph for which $\lambda_2(G-b_1-b_2) > 2$ (i.e. $\lambda_2(G-b) > 2$) holds and therefore $\lambda_2(G) > 2$ holds.

A. G is G_1 - type

In this case, the black vertex *b* of the component L_1 must belong to the tree F_i (i = 1,...,9) contained in the component, so it is sufficient to analyze the cases when $L_1 = F_i$. Further, the vertex *x* cannot be the black vertex, because otherwise graph G-b becomes RSdecidable and nonreflexive. However, any other vertex of the tree F_i different from *x* may be the black vertex.

B. *G* is G_2 -type graph

If graph F ($F \in \{F_1, ..., F_9\}$), subgraph of the component K_1 , contains both black vertices of the component K_1 , then $K_1 = F$.

If graph $F(F \in \{F_1, ..., F_9\})$, subgraph of the component K_1 , contains only one black vertex (for example b_1) of this component, then K_1 can be presented as F, extended in such way that in K_1 exists the pendant edge, not belonging to F, whose end is the other black vertex b_2 . Now we discuss the place of the vertex x in K_1 and we see 4 possibilities:

A) x is not one of the vertices of cycle and the degree of x is greater than 1.

The component K_1 can be minimized by deleting the tree, disjoint from F, which is leaned on the vertex x, so in order to find maximal number of cycles in G we can ignore this case.

B) x is not one of the vertices of cycle and the degree of x is 1.

 $K_1 - x$ is still the supergraph of some Smith tree and the condition $\lambda_1(K_1 - x) \le 2$ does not hold, so we reject this case , too.

C) x is b_{1} .

 $K_1 - b_1 - b_2$ is a supergraph of some Smith tree and then, by applying RStheorem, $\lambda_2(G - b_1 - b_2) > 2$ holds, i.e. *G* is not reflexive; or $K_1 - b_1 - b_2$ is one of the Smith trees and then, by applying RS-theorem, we get $\lambda_2(G - b_1 - b_2) \ge 2$ wherein the equality holds (and *G* is reflexive) only in case that G contains only two cycles, and that is the minimal number of cycles in G, so this case is not of interest, too.

D) *x* is one of the vertices of cycle different from black vertices (and, of course, different from *v*).

The degree of x in K_1 is at least 2 and in this case we can say that $K_1 = F \cdot P_{i+1}$ (coalescence is at vertex x), where P_{i+1} is the path of the length i which belongs to the cycle and connects x with b_2 and its vertices are $x, x_1, ..., x_{i-1}, x_i = b_2$. Now, if we remove the vertex b_2 from the graph G, we get the graph $G-b_2$ which is a supergraph (proper or not) of some G_1 -type graph. However, the number of cycles in the graph G cannot exceed the number of cycles in the corresponding G_1 -type graph, so this case is not of interest for us.

Results

Based on Theorem 2 we can determine the maximum number k of cycles in a bundle by discussing possible cases.

First we show Table 1, for the cases $L_1 = F$ ($F \in \{F_1, ..., F_9\}$).

F	F_1	F_2	F_3	F_4	F_5	F_6	F_7	F_8	F_9
k _{max}	2	4	7	11	22	4	4	4	4
Table 1									

The detailed description is given only for the graph F_4 in Table 2, as an example. The black vertex *b* is one of the vertices of the graph *F* different from the vertex *x* and the values $P_{T_1}(2)$, $P_{T_1-\nu}(2)$ and $P_{T_1}(2)-2(k-1)P_{T_1-\nu}(2)$ are also listed.

k _{max}	$P_{T_1}(2) - 2kP_{T_1-\nu}(2)$	$P_{T_1-v}(2)$	$P_{T_1}(2)$	b	F_4
2	4(k-2)	-2	-8	S_1	
4	4(k-4)	-2	-16	<i>s</i> ₂	
7	4(k-7)	-2	-28	<i>S</i> ₃	
11	4(k-11)	-2	-44	S_4	
6*	4k - 25	-2	-25	S_5	
3	4(k-3)	-2	-12	<i>s</i> ₆	
1*	4k - 5	-2	-5	<i>S</i> ₇	
3*	4k - 13	-2	-13	<i>S</i> ₈	
					I

Table 2

The numbers with the asterisk stand for the cases where the strict inequality $P_{T_1}(2) - 2kP_{L_1}(2) < 0$ holds and in the unmarked cases the equality is reached.

In the next table we show the results for the cases when $K_1 = F$ $(F \in \{F_1, ..., F_9\})$. The details of computations we show only for the case $K_1 = F_2$ in Table 4, as an example.

F	F_1	F_2	F_3	F_4	F_5	F_6	F_7	F_8	F_9
k_{\max}	4	10	20	32	74	13	13	13	13
Table 3									

In Table 4 vertices that are identified with black vertices are listed in column (b_1, b_2) , and in other columns we show the values $P_{C_1}(2)$, $P_{C_1-\nu}(2)$ and $P_{C_1}(2) - 2(k-1)P_{C_1-\nu}(2)$, as well as maximal value of *k*, based on the condition (1).

F_2	(b_1, b_2)	$P_{C_1}(2)$	$P_{C_1-\nu}(2)$	$P_{C_1}(2) - 2(k-1)P_{C_1-\nu}(2)$	k _{max}				
	(x,s_1)	-24	-4	8(k-4)	4				
	(x, s_2)	-48	-4	8(k-7)	7				
	(x, s_3)	-20	-4	4(2k-7)	3*				
	(s_1, s_2)	-72	-4	8(<i>k</i> -10)	10				
	(s_1, s_3)	-36	-4	4(2 <i>k</i> -11)	5*				
	(s_2, s_3)	-60	-4	4(2 <i>k</i> -17)	8*				
	(s_3, s_4)	-28	-4	4(2k-9)	4*				
Table 4									

Theorem 4. The maximum number of cycles in a G_1 -type graph is 22.

Theorem 5. The maximum number of cycles in a G_2 -type graph is 74.

From the two previous theorems follows the next one.

Theorem 6. The maximum number of cycles in RS-undecidable reflexive graph with a bundle is 74.

Now we can state the main result.

Theorem 7. The maximum number of cycles in RS-undecidable reflexive graph is 74.

(As mentioned before, the number of cycles in RS-decidable cacti is not limited.)

THANK YOU!