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Introduction 
 

• G  is a connected simple graph  

• Characteristic polynomial ( ) det( )GP I Aλ λ= −  , A is the 

adjacency matrix 

• Its roots are all real numbers and we assume their non-

increasing order  

1 2 3 ... nλ λ λ λ≥ ≥ ≥ ≥
 

• For connected graphs 1 2λ λ>  holds 

 



• A graph is treelike, or a cactus, if its cycles have no common 

edges 

• Cycles of multicyclic cactus form a bundle if all of them 

contain the same vertex 

• A cycle of a multicyclic cactus is free if only one of its 

vertices has the degree greater than 2 

  



In this work we analyze a class of multicyclic cacti whose second 

largest eigenvalue 2λ  does not exceed 2. 

Graphs whose second largest eigenvalue is bounded by 2 appear in 

the theory of reflection groups, and, therefore, they are called 

reflexive. 

Some classes of multicyclic reflexive cacti have been described in 

previous work. They have been considered under some conditions, 

among which was the condition that their cycles do not form a 

bundle, and it has been shown that such graphs have at most  5 

cycles.  



Though one special class of cacti with the bundle has been 

described previously, for the first time multicyclic reflexive cacti 

whose cycles do form a bundle are considered here in general.  

We will find the maximum number of cycles in these cacti 

whenever that number is finite.  

  



Some auxiliary and former results 

Lemma. (Schwenk) Given a graph G, let ( )C v  ( ( )C uv ) denote the set 

of all its cycles containing a vertex v (resp. an edge uv). Then 

1. ( )

( ) ( )

( ) ( ) ( ) 2 ( ),G G v G v u G V C

u Adj v C C v

P P P Pλ λ λ λ λ− − − −

∈ ∈

= − −∑ ∑        

2. ( )

( )

( ) ( ) ( ) 2 ( ),G G uv G v u G V C

C C uv

P P P Pλ λ λ λ− − − −

∈

= − − ∑  

where Adj(v) denotes the set of neighbours of v, while G - V(C) is 

the graph obtained from G by removing the vertices belonging to 

the cycle C. 



By the Interlacing theorem, the property 2( ) 2Gλ ≤  is a hereditary 

one (if G has this property, then every subgraph  H  has it, too). 

Smith graphs are maximal connected graphs for the property 

1( ) 2Gλ ≤ . (For all of them 1 2λ =  holds) 
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RS-Theorem.  Let G be a graph with a cut-vertex v. 

1) If at least two components of  -G v  are supergraphs of Smith graphs, 

and if at least one of them is a proper supergraph, then ( )2 2Gλ >  holds. 

2) If at least two components of -G v are Smith graphs, and the rest are 

subgraphs of Smith graphs, then ( )2 2Gλ =  holds. 

3) If at most one component of -G v  is Smith graph, and the rest are 

proper subgraphs of Smith graphs, then ( )2 2Gλ <  holds. 

This theorem cannot tell whether G is reflexive or not if, after removing the 

cut-vertex, one of the components is a supergraph of some Smith graph and 

all others are subgraphs of some Smith graphs. Graphs like these we call 

RS-undecidable; otherwise, they are RS-decidable. 



Theorem. A treelike reflexive graph to which RS-theorem cannot 

be applied  and whose cycles do not form a bundle has at most five 

cycles. The only such graphs with five cycles, which are all 

maximal, i.e. cannot be extended at any vertex, are the four 

families of graphs 1Q , 2Q , 1T  and 2T . 
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A bundle of cycles – minimal components 
 

In this work we determine the maximum number of cycles for 

maximal reflexive RS-undecidable cacti whose cycles form a 

bundle, and therefore we find the maximum number of cycles for 

all maximal reflexive RS-undecidable cacti.  

  



 

Figure 1. 

Let B be a cactus (Figure 1) with k cycles that make a bundle and 

let the vertex v be the cut-vertex that belongs to all cycles.  

The vertices of cycles that are adjacent to the vertex v we call black 

vertices and all vertices of cycles different from black vertices  and 

the vertex v we call white vertices.  

B 



Every vertex of B may be additionally loaded  by some tree.  

If there are trees which are leaned to the vertex v, we denote them 

by 1,..., mT T . Let 1,..., kC C  be unicyclic subgraphs of  B  that 

contain cycles of length 1,..., kn n , respectively, and in every such 

subgraph  the degree of v is 2.  

Therefore, the graph B v−  contains the components i iK C v= −  

( 1,..., )i k=  and the components j jL T v= −  ( 1,..., )j m= .  

If all of the components 1 1,... , ,...,k mK K L L  are Smith graphs, or 

subgraphs of some Smith graphs, then the graph B is RS-decidable 

and reflexive.  



In such a graph, maximum number of cycles does not exist. The 

number of cycles can always be increased, because by adding a 

new cycle leaned on a vertex v, the fact that B is RS-decidable and 

reflexive does not change.  

By G∞  we denote the family of all such cacti. From now on we 

consider graphs that do not belong to the family G∞ . 

If the graph B does not belong to the family G∞ , it can be reflexive 

only if it is RS-undecidable.  

Then, one of the components of the graph B v−  must be a proper 

supergraph of a Smith tree, while all others are proper subgraphs of 

some Smith trees.  



In order to find maximum number of cycles it is sufficient to 

consider, in a way, minimal cases of graphs. i.e. some 

characteristic graphs that are subgraphs of all graphs of type B.  

  



1G -type 

We say that graph G, which has the cyclic structure like graph B 

(Figure 1) is 1G -type graph if the following conditions are 

satisfied: 

1.1. All cycles of the graph G are free. 

1.2. There is only one L-component, for example 1L  ( 1 1L T v= − ) , 

and it is a supergraph of some Smith tree. 

1.3. For every vertex u of the component 1L , which has the degree 

1 in the graph G, the condition 1 1( ) 2L uλ − ≤  holds. 

  



2G -type 

We say that graph G which has the cyclic structure like graph B 

(Figure 1) is 2G -type graph if the following conditions are 

satisfied: 

2.1. There is no tree leaned on the vertex v. 

2.2. One of the K-components, for example 1K  ( 1 1K C v= − ) is a 

supergraph of some Smith tree, while all other K- components are 

paths. 

2.3. For every vertex u of the component 1K , which has the degree 

1 in the graph G, the condition 1 1( ) 2K uλ − ≤  holds. 



Theorem 1. Let G be a reflexive graph with the cyclic structure as of graph 

B  (Figure 1), that does not belong to the familyG∞ . Then, G contains as a 

subgraph either a 1G -type graph  or a 2G -type graph. 

Theorem 2. 1) Let the graph G be the 1G -type graph. Then, it is reflexive if 

and only if the following condition holds 
1 1
(2) 2 (2) 0T LP kP− ≤ .  

2) Let the graph G be the 2G -type graph. Then, it is reflexive if and only if 

the following condition holds: 
1 1
(2) 2( 1) (2) 0C KP k P− − ≤ . 

Proof.  In these two cases, the assessment of the maximum number of 

cycles in graph G ( 1G -type or 2G -type) is based on the examination of the 

sign of (2)GP .  Let H G u= − , where u is the vertex of the component 1L  (

1K ) of the graph G v− , whose degree is 1 in the graph G. By RS-theorem 



2( ) 2Hλ <  and (2) 0HP <  hold, because 1 1( ) 2L uλ − ≤  ( 1 1( ) 2K uλ − ≤ ) holds. 

Therefore, using the Interlacing theorem, we get 2(2) 0 ( ) 2GP Gλ≤ ⇔ ≤ , 

so now we shall calculate (2)GP  for both our cases. 

Let G be 1G -type graph. Applying Scwenk's lemma to the vertex v we get  

1 1

1 1 1 1

1 1 2 1 2 1 1

1 2 1 3 1 1 1

(2) 2 ... (2) 2 (2)(( 1) ... ( 1)... ... ... ( 1))

(2) ... 2 (2)( ... ... ... ... ) ... (2(1 ) (2) (2)),

G k L L k k k k

L b k L k k k k L L b

P n n P P n n n n n n n n n

P n n P n n nn n n n n n k P P

−

− − −

= − − + − + + − −

− + + + = − −  

(b is the black vertex of the tree 1T ) and by applying it to the vertex v and 

the graph 1T  we get 
1 1 1
(2) 2 (2) (2)T L L bP P P −= − . 

Therefore, the condition (2) 0GP ≤  becomes equivalent to the condition 

1 1
(2) 2 (2) 0.T LP kP− ≤  



Let G  be 2G -type graph. Applying Scwenk's lemma to the vertex v we get 

1 1 1 1 2

1

1 1

1 1 1 1 2

2 2

2 3 2 3 2 1

2 2 1 3 1 1

2

(2) 2 (2) ... ( (2) (2)) ...

2 (2)(( 1) ... ( 1)... ... ... ( 1))

2 (2) ... 2 (2)( ... ... ... ... )

... (2 (2) (2) (2)

G K k K b K b k

K k k k k

C C k K k k k

k K K b K b

P P n n P P n n

P n n n n n n n n n

P n n P n n n n n n n

n n P P P

− −

−

− −

− −

= − + −

− + − + + − −

− + + + =

− −
1 1

2( 1) (2) 2 (2))K C Ck P P −− − −

 

where 1b  and 2b  are black vertices of the unicyclic subgraph 1C  and C 

denotes the cycle of the length 1n  that belongs to the subgraph 1C ; and 

applying Schwenk's lemma to the vertex v and the graph 1C , we get 

1 1 1 1 1 2 1
(2) 2 (2) (2) (2) 2 (2)C K K b K b C CP P P P P− − −= − − −  



and, therefore, the condition (2) 0GP ≤  becomes equivalent to the condition 

1 1
(2) 2( 1) (2) 0C KP k P− − ≤ .□ 

Now we shall discuss the structure of the component 1K  ( 1L ). The 

component which is a supergraph of some Smith tree must contain 

at least one of the trees 1 9,...,F F  (Figure 2), because they are 

minimal forbidden trees for the property 1 2λ ≤ .  



 

Figure 2: Minimal forbidden trees for the property 1 2λ ≤  

F1 F2 F3

F4 F5

F6 F7 F8 F9



Vertices of the component 1K  (i.e. 1L ) adjacent to the vertex v in 

graph G, which is 1G -type ( 2G -type), are denoted by 1b  and 2b  

(i.e.  b) and they are called the black vertices. Let the component 

1K  (i.e. 1L ) contain a tree F ( { }1 9
,...,F F F∈ ). Then at least one of 

the vertices that belong to F must be the black vertex of the 

corresponding component, otherwise removing the black vertices 

from the graph G  produces RS-decidable graph for which 

2 1 2( ) 2G b bλ − − > (i.e. 2( ) 2G bλ − > ) holds and therefore 2( ) 2Gλ >  

holds.  



A.  G  is 1
G - type 

In this case, the black vertex b of the component 1L  must belong to 

the tree iF  ( 1,...,9i = ) contained in the component, so it is sufficient 

to analyze the cases when 1 iL F= . Further, the vertex x cannot be 

the black vertex, because otherwise graph G b−  becomes RS-

decidable and nonreflexive. However, any other vertex of the tree 

iF  different from x may be the black vertex. 

 

 

 



B. G  is 2
G -type graph 

If graph F ( { }1 9,...,F F F∈ ), subgraph of the component 1K , contains 

both black vertices of the component 1K , then 1
K F= . 

If graph F ( { }1 9,...,F F F∈ ), subgraph of the component 1K , contains 

only one black vertex (for example 1b ) of this component, then 1K  

can be presented as  F,  extended in such way that in 1K  exists the 

pendant edge, not belonging to F, whose end is the other black 

vertex 2b . Now we discuss the place of the vertex x in 1K  and we 

see 4 possibilities: 

A) x is not one of the vertices of cycle and the degree of x is greater than 1. 



The component 1K  can be minimized by deleting the tree, disjoint from F, 

which is  leaned on the vertex x, so in order to find maximal number of 

cycles in G  we can ignore this case. 

B) x is not one of the vertices of cycle and the degree of x is 1. 

1K x−  is still the supergraph of some Smith tree and the condition 

1 1( ) 2K xλ − ≤ does not hold, so we reject this case , too. 

C) x is 1b . 

1 1 2K b b− −  is a supergraph of some Smith tree and then, by applying RS-

theorem, 2 1 2( ) 2G b bλ − − >  holds, i.e. G is not reflexive; or 1 1 2K b b− −  is one 

of the Smith trees and then, by applying RS-theorem, we get 

2 1 2( ) 2G b bλ − − ≥  wherein the equality holds (and G is reflexive) only in 



case that G contains only two cycles, and that is the minimal number of 

cycles in G, so this case is not of interest, too. 

D) x is one of the vertices of cycle different from black vertices (and, of 

course, different from v). 

The degree of  x in 1K  is at least 2 and in this case we can say that 

1 1i
K F P+= ⋅  (coalescence is at vertex x), where 1iP+  is the path of the length 

i which belongs to the cycle and connects x with 2b  and its vertices are 

1 1 2, ,..., ,i ix x x x b− = . Now, if we remove the vertex 2b  from the graph G, we 

get the graph 2G b−  which is a supergraph (proper or not) of some 1G -type 

graph. However, the number of cycles in the graph G cannot exceed the 

number of cycles in the corresponding 1G -type graph, so this case is not of 

interest for us. 



Results 
Based on Theorem 2 we can determine the maximum number k of cycles in 

a bundle by discussing possible cases.  

First we show Table 1, for the cases 1L F=  ( { }1 9,...,F F F∈ ).  

F  1F  2F  3F  4F  5F  6F  7F  8F  9F  

maxk  2 4 7 11 22 4 4 4 4 

Table 1 

The detailed description is given only for the graph 4F  in Table 2, as an 

example. The black vertex b is one of the vertices of the graph F different 

from the vertex x and the values 
1
(2)TP , 

1
(2)T vP −  and 

1 1
(2) 2( 1) (2)T T vP k P −− −  

are also listed. 



4F  b  
1
(2)TP  

1
(2)T vP −  1 1

(2) 2 (2)T T vP kP −−  maxk  

 1s  8−  2−  4( 2)k −  2 

 2s  16−  2−  4( 4)k −  4 

 3s  28−  2−  4( 7)k −  7 

 4s  44−  2−  4( 11)k −  11 

 5s  25−  2−  4 25k −  6* 

 6s  12−  2−  4( 3)k −  3 

 7s  5−  2−  4 5k −  1* 

 8s  13−  2−  4 13k −  3* 

Table 2 



The numbers with the asterisk stand for the cases where the strict inequality 

1 1
(2) 2 (2) 0T LP kP− <  holds and in the unmarked cases the equality is reached. 

In the next table we show the results for the cases when 1K F=

{ }1 9( ,..., )F F F∈ . The details of computations we show only for the case 

1 2K F=  in Table 4, as an example.  

F  1F  2F  3F  4F  5F  6F  7F  8F  9F  

maxk  4 10 20 32 74 13 13 13 13 

Table 3 

In Table 4 vertices that are identified with black vertices are listed in 

column 1 2( , )b b , and in other columns we show the values 
1
(2)CP , 

1
(2)C vP −  

and 
1 1
(2) 2( 1) (2)C C vP k P −− − , as well as maximal value of k, based on the 

condition (1).  



2F  1 2( , )b b  
1
(2)CP  

1
(2)C vP −  

1 1
(2) 2( 1) (2)C C vP k P −− −  

maxk  

 1( , )x s  24−  4−  8( 4)k −  4 

 2( , )x s  48−  4−  8( 7)k −  7 

 3( , )x s  20−  4−  4(2 7)k −  3* 

 1 2( , )s s  72−  4−  8( 10)k −  10 

 1 3( , )s s  36−  4−  4(2 11)k −  5* 

 2 3( , )s s  60−  4−  4(2 17)k −  8* 

 3 4( , )s s  28−  4−  4(2 9)k −  4* 

Table 4 

  



Theorem 4. The maximum number of cycles in a 1G -type graph is 22. 

Theorem 5. The maximum number of cycles in a 2G -type  graph  is 74. 

From the two previous theorems follows the next one. 

Theorem 6.  The maximum number of cycles in RS-undecidable 

reflexive graph with a bundle is 74. 

Now we can state the main result. 

Theorem 7. The maximum number of cycles in RS-undecidable 

reflexive graph is 74. 

 (As mentioned before, the number of cycles in RS-decidable cacti is not limited.) 

 



 

 

THANK YOU! 
 


