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Abstract. Montiel, Ros and Urbano [7] showed a complete characterization

of compact totally real minimal submanifoldM of CPn(c) with Ricci curvature

S of M satisfying S > 3(n−2)
16

c. The purpose of this paper is to give the

other proof for answering [5] and [6] of Ogiue’s conjecture which the above
result remains true under the weaker condition of the scalar curvature ρ of M

satisfying ρ > 3n(n−2)
16

c.

1. Introduction.

Let CPn(c) be an n-dimensional complex projective space with the Fubini-
Study metric of constant holomorphic sectional curvature c > 0 and let M be an
n-dimensional compact totally real minimal submanifold isometrically immersed in
CPn(c). Let h be the second fundamental form of M in CPn(c).
Close to thirty years ago, Montiel, Ros and Urbano [7] proved the following: Let
M be an n-dimensional compact totally real [1] minimal submanifold isometrically
immersed in CPn(c). Then the Ricci curvature S of M satisfies

S >
3(n− 2)

16
c

if and only if one of the following conditions holds: a) S = n−1
4 c and M is totally

geodesic, b) S = 0, n = 2 and M is a finite Riemannian covering of a flat torus min-

imally embedded in CP 2(c) with parallel second fundamental form, c) S = 3(n−2)
16 c,

n > 2 and M is an embedded submanifold congruent to the standard embedding
of: SU(3)/SO(3), n = 5;SU(6)/Sp(3), n = 14;SU(3), n = 8; or E6/F4, n = 26.

Ogiue [9] conjectured the following: Under the weaker assumption of ρ > 3n(n−2)
16 c,

the above result remains true, where ρ is the scalar curvature of M .
With respect to this conjecture the author [3] and ,independently, Xia [12] showed:
Let M be an n-dimensional compact totally real minimal submanifold isometrically
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immersed in CPn(c). Then

|h(v, v)|2 6
1

8
c

for any v ∈ UM if and only if one of the following conditions is satisfied:A)
|h(v, v)|2 ≡ 0 and M is totally geodesic, B) |h(v, v)|2 ≡ 1

8c, n = 2 and M is a

finite Riemannian covering of a flat torus minimally embedded in CP 2(c) with
parallel second fundamental form, C) |h(v, v)|2 ≡ 1

8c, n > 2 and M is an em-
bedded submanifold congruent to the standard embedding of: SU(3)/SO(3), n =
5;SU(6)/Sp(3), n = 14;SU(3), n = 8 or E6/F4, n = 26.
Gauchman [2] showed a similar result under the assumption of |h(v, v)|2 6 n+1

12n c.
The purpose of this paper is to answer Ogiue’s conjecture.
Theorem Let M be an n-dimensional compact totally real minimal submanifold
isometrically immersed in CPn(c). Then

ρ >
3n(n− 2)

16
c

if and only if one of the following conditions holds:

A) ρ = n(n−1)
4 c and M is totally geodesic,

B) ρ = 0, n = 2 and M is a finite Riemannian covering of the unique flat torus
minimally embedded in CP 2(c) with parallel second fundamental form,

C) ρ = 3n(n−2)
16 c, n > 2 and M is an embedded submanifold congruent to the stan-

dard embedding of: SU(3)/SO(3), n = 5;SU(6)/Sp(3), n = 14;SU(3), n = 8 or
E6/F4, n = 26.
Xia [13] showed a similar result under the assumption of |h|2 < n+1

6 c.

2. Preliminaries.

Let M be a Riemannian manifold, UM its unit tangent bundle, and UMx the
fibre of UM over a point x of M .

Suppose that M is isometrically immersed in an (n+p)-dimensional Riemannian
manifold M . We denote by < , > the metric of M as well as the one induced on
M . Let h be the second fundamental form of the immersion and Aξ the Weingarten
endomorphism associated to a normal vector ξ.
Now suppose that M is an n-dimensional totally real minimal submanifold im-
mersed in the complex projective space Pn(C) endowed with the Fubini-Study
metric of constant holomorphic sectional curvature c. Let ∇ and h be the Riemann-
ian connection and the second fundamental form of the immersion, respectively. A
and ∇⊥ are the Weingarten endomorphism and the normal connection. The first
and the second covariant derivatives of the normal valued tensor h are given by

(∇h)(X,Y, Z) = ∇⊥X(h(Y, Z))− h(∇XY,Z)− h(Y,∇XZ)

and

(∇2h)(X,Y, Z,W ) = ∇⊥X((∇h)(Y,Z,W ))− (∇h)(∇XY,Z,W )

− (∇h)(Y,∇XZ,W )− (∇h)(Y, Z,∇XW ),
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respectively, for any vector fields X,Y, Z and W tangent to M .
Now, let v ∈ UMx, x ∈M . If e2, . . . , en are orthonormal vectors in UMx orthogonal
to v, then we can consider {e2, . . . , en} as an orthonormal basis of Tv(UMx). We
remark that {v = e1, e2, . . . , en} is an orthonormal basis of TxM . We denote the
Laplacian of UMx

∼= Sn−1 by ∆.
If S and ρ is the Ricci tensor of M and the scalar curvature of M , respectively, and
M is minimally immersed in M , then from the Gauss equation we have

S(v, w) =

n∑
i=1

R(v, ei, ei, w)−
n∑
i=1

< Ah(v,ei)ei, w >,(2.1)

ρ =

n∑
i,j=1

R(ej , ei, ei, ej)− |h|2,(2.2)

where R is the curvature tensor of M .
Define a function f1 on UMx, x ∈M , by

f1(v) = |Ah(v,v)v|2 =

n∑
i=1

< h(v, v), h(v, ei) >
2 .

Using the minimality of M we can prove that

(∆f1)(v) = −6(n+ 4)f1(v) + 8

n∑
i=1

< Ah(v,v)v,Ah(v,ei)ei >(2.3)

+ 8

n∑
i=1

< Ah(v,v)ei, Ah(v,ei)v > +8

n∑
i=1

< Ah(v,ei)v,Ah(v,ei)v >

+ 2

n∑
i=1

< Ah(v,v)ei, Ah(v,v)ei > .
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Similarly, define f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12 and f13 by

f2(v) =

n∑
i=1

< Ah(v,ei)v,Ah(v,ei)v >,

f3(v) =

n∑
i=1

< Ah(v,ei)v,Ah(v,v)ei >,

f4(v) =

n∑
i,j=1

< Ah(ej ,ei)ej , Ah(v,v)ei >,

f5(v) =

n∑
i=1

< Ah(v,v)v,Ah(v,ei)ei >,

f6(v) =

n∑
i,j=1

< Ah(ej ,ei)ej , Ah(v,ei)v >,

f7(v) =

n∑
i,j=1

< Ah(ei,v)ei, Ah(v,ej)ej >,

f8(v) =

n∑
i=1

< Ah(v,v)ei, Ah(v,v)ei >,

f9(v) = |h(v, v)|4,
f10(v) = |h(v, v)|2,

f11(v) =

n∑
i=1

< Ah(v,ei)ei, v > |h(v, v)|2,

f12(v) = (

n∑
i=1

< Ah(v,ei)ei, v >)2,

f13(v) = |h|2|h(v, v)|2,

respectively. Then we obtain

(∆f2)(v) = −4(n+ 2)f2(v) + 4f6(v)(2.4)

+ 4

n∑
i,j=1

< Ah(ej ,ei)v,Ah(v,ei)ej >

+ 2

n∑
i,j=1

< Ah(ej ,ei)v,Ah(ej ,ei)v >

+ 2

n∑
i,j=1

< Ah(v,ei)ej , Ah(v,ei)ej >,
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(∆f3)(v) = −4(n+ 2)f3(v) + 2f4(v)(2.5)

+ 4

n∑
i,j=1

< Ah(ej ,ei)v,Ah(ej ,v)ei >

+ 4

n∑
i,j=1

< Ah(v,ei)ej , Ah(ej ,v)ei >,

(∆f4)(v) = −2nf4(v),(2.6)

(∆f5)(v) = −4(n+ 2)f5(v) + 4f6(v) + 4f7(v) + 2f4(v),(2.7)

(∆f6)(v) = −2nf6(v) + 2

n∑
i,j,k=1

< Ah(ej ,ei)ej , Ah(ek,ei)ek >,(2.8)

(∆f7)(v) = −2nf7(v) + 2

n∑
i,j,k=1

< Ah(ej ,ei)ej , Ah(ek,ei)ek >,(2.9)

(∆f8)(v) = −4(n+ 2)f8(v) + 8

n∑
i,j=1

< Ah(ej ,v)ei, Ah(ej ,v)ei >,(2.10)

(∆f9)(v) = −8(n+ 6)f9(v) + 32f1(v)(2.11)

+ 16

n∑
i=1

< Ah(v,ei)ei, v > |h(v, v)|2,

(∆f10)(v) = −4(n+ 2)f10(v) + 8

n∑
i=1

< Ah(v,ei)ei, v > .(2.12)

(∆f11)(v) = −6(n+ 4)f11(v) + 16f5(v) + 2|h|2|h(v, v)|2 + 8f12(v),(2.13)

(∆f12)(v) = −4(n+ 2)f12(v) + 8f7(v) + 4|h|2
n∑
i=1

< Ah(v,ei)ei, v >,(2.14)

(∆f13)(v) = −4(n+ 2)f13(v) + 8|h|2
n∑
i=1

< Ah(v,ei)ei, v > .(2.15)

Since

1

2

n∑
i=1

(∇2f10)(ei, ei, v) =

n∑
i=1

< (∇2h)(ei, ei, v, v), h(v, v) >

+

n∑
i=1

< (∇h)(ei, v, v), (∇h)(ei, v, v) >,
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we have the following (See [3], [4] and [7]):
Lemma 1 Let M be an n-dimensional totally real minimal submanifold isometri-
cally immersed in Pn(C). Then for v ∈ UMx we have

1

2

n∑
i=1

(∇2f10)(ei, ei, v) =

n∑
i=1

|(∇h)(ei, v, v)|2 +
n+ 1

4
c|h(v, v)|2(2.16)

+2

n∑
i=1

< Ah(v,v)ei, Ah(ei,v)v >

−2

n∑
i=1

< Ah(v,ei)ei, Ah(v,v)v >

−
n∑
i=1

< Ah(v,v)ei, Ah(v,v)ei > .

The following generalized maximum principle due to Omori [11] and Yau [14] will
be used in order to prove our theorem.

Generalized Maximum Principle ([11] and [14]). Let Mn be a complete
Riemannian manifold whose Ricci curvature is bounded from below and
f ∈ C2(M) a function bounded from above on Mn. Then, for any ε>0,
there exists a point p ∈Mn such that

f(p) > sup f − ε, ‖grad f‖<ε, ∆f(p)<ε.

3. Proof of the Theorem

From (2.2) we have

ρ =
n(n− 1)

4
c− |h|2.

Thus we prove Theorem under the assumption

(3.1) |h|2 6
n(n+ 2)

16
c.

The following equations hold for v ∈ UMx, x ∈M (See [3] and [4]):

n∑
i,j=1

< Ah(ej ,ei)v,Ah(ej ,v)ei > =

n∑
i,j=1

< Ah(v,ei)ej , Ah(v,ej)ei >,(3.2)

n∑
i,j=1

< Ah(ej ,ei)v,Ah(ej ,ei)v > =

n∑
i,j=1

< Ah(v,ei)ej , Ah(v,ei)ej > .(3.3)
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In terms of (2.3) , (2.4) , (2.5) , (2.6) , (2.7) , (2.8) , (2.9) , (2.10) , (2.16) , (3.2) and
(3.3) we obtain

1

2

n∑
i=1

(∇2f10)(ei, ei, v)− 1

6
(∆f1)(v)− 1

3(n+ 2)
(∆f2)(v)(3.4)

+
1

6(n+ 2)
(∆f3)(v) +

1

3n(n+ 2)
(∆f4)(v) +

1

6(n+ 2)
(∆f5)(v)

− 1

3n(n+ 2)
(∆f6)(v) +

1

3n(n+ 2)
(∆f7)(v) +

1

6(n+ 2)
(∆f8)(v)

=

n∑
i=1

|(∇h)(ei, v, v)|2 +
n+ 1

4
cf10(v) + (n+ 4)f1(v)− 4f5(v)− 2f8(v).

Since M is totally real, the following equations also hold for v ∈ UMx, x ∈M (See
[4]):

f6(v) =

n∑
i,j=1

< Ah(ei,ej)ej , Ah(v,ei)v >(3.5)

=

n∑
i,j=1

< A2
JvA

2
Jejei, ei >,

the second term of (∆f8)(v) =

n∑
i,j=1

< Ah(v,ej)ei, Ah(v,ej)ei >(3.6)

=

n∑
i,j=1

< AJvA
2
JejAJvei, ei >,

where J is the complex structure. Combining (2.6) , (2.7) , (2.8) , (2.9) , (2.10) ,
(2.11) , (2.13) , (2.14) , (2.15) , (3.5) , (3.6) with (3.4) , we obtain

1

2

n∑
i=1

(∇2f10)(ei, ei, v)− 1

6
(∆f1)(v)− 1

3(n+ 2)
(∆f2)(v)(3.7)

+
1

6(n+ 2)
(∆f3)(v) +

1

3n(n+ 2)
(∆f4)(v) +

1

6(n+ 2)
(∆f5)(v)

− 1

3n(n+ 2)
(∆f6)(v) +

1

3n(n+ 2)
(∆f7)(v) +

1

6(n+ 2)
(∆f8)(v)

+
(3n+ 2)(n+ 4)

6n(n+ 2)2
(

1

n
(∆f4)(v) + (∆f5)(v))

− (6n+ 8)(n− 2)

6n2(n+ 2)2
((∆f6)(v)− (∆f7)(v))

− 1

2(n+ 2)
(∆f8)(v) +

n+ 4

8(n+ 2)
(∆f9)(v)

− 4(n+ 1)

6n(n+ 2)
((∆f11)(v) +

2

n+ 2
((∆f12)(v)− 1

2
(∆f13)(v)))
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=

n∑
i=1

|(∇h)(ei, v, v)|2 +
n+ 1

4
cf10(v)− 4(n+ 1)

n(n+ 2)
|h|2|h(v, v)|2

+
(n+ 6)(n+ 4)

n+ 2
(f1(v)− f9(v)) +

(6n+ 4)(n+ 4)

n(n+ 2)
(f11(v)− f5(v))

Now, we can choose an orthonormal basis {v = e1, e2, · · · , en} such that the matrix
n∑
i=1

A2
Jei is diagonalized, 1 6 i 6 n, since < Sv,w >=< (n+1

2 c +

n∑
i=1

A2
Jei)v, w >

and S is symmetric. Then we have

(3.8) f11(v) = f5(v),

because of f11(v) =<

n∑
i=1

A2
Jeiv, v > |h(v, v)|2 and f5(v) =<

n∑
i=1

A2
Jeiv,Ah(v,v)v >

for v ∈ UMx. Therefore from (3.8) , (3.1) and f1(v) > f9(v) we can show the

following inequality for the matirix

n∑
i=1

A2
Jei being diagonalized.

1

2

n∑
i=1

(∇2f10)(ei, ei, v)− 1

6
(∆f1)(v)− 1

3(n+ 2)
(∆f2)(v)(3.9)

+
1

6(n+ 2)
(∆f3)(v) +

1

3n(n+ 2)
(∆f4)(v) +

1

6(n+ 2)
(∆f5)(v)

− 1

3n(n+ 2)
(∆f6)(v) +

1

3n(n+ 2)
(∆f7)(v) +

1

6(n+ 2)
(∆f8)(v)

+
(3n+ 2)(n+ 4)

6n(n+ 2)2
(

1

n
(∆f4)(v) + (∆f5)(v))

− (6n+ 8)(n− 2)

6n2(n+ 2)2
((∆f6)(v)− (∆f7)(v))

− 1

2(n+ 2)
(∆f8)(v) +

n+ 4

8(n+ 2)
(∆f9)(v)

− 4(n+ 1)

6n(n+ 2)
(∆f11)(v)− 8(n+ 1)

6n(n+ 2)2
(∆f12)(v) +

4(n+ 1)

6n(n+ 2)2
(∆f13)(v)

>
n∑
i=1

|(∇h)(ei, v, v)|2.
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Define a function g on UxM by the following equation;

g(v) = −1

6
f1(v)− 1

3(n+ 2)
f2(v)

+
1

6(n+ 2)
f3(v) +

1

3n(n+ 2)
f4(v) +

1

6(n+ 2)
f5(v)

− 1

3n(n+ 2)
f6(v) +

1

3n(n+ 2)
f7(v) +

1

6(n+ 2)
f8(v)

+
(3n+ 2)(n+ 4)

6n(n+ 2)2
(

1

n
f4(v) + f5(v))

− (6n+ 8)(n− 2)

6n2(n+ 2)2
(f6(v)− f7(v))

− 1

2(n+ 2)
f8(v) +

n+ 4

8(n+ 2)
f9(v)

− 4(n+ 1)

6n(n+ 2)
(f11(v) +

2

n+ 2
(f12(v)− 1

2
f13(v))).

From the assumption of (3.1) we see that the Ricci curvature is bounded from
below. Noting that (3.5) and

g(v) 6
1

6(n+ 2)
f3(v) +

1

3n(n+ 2)
f4(v) +

1

6(n+ 2)
f5(v)

+
1

3n(n+ 2)
f7(v) +

1

6(n+ 2)
f8(v)

+
(3n+ 2)(n+ 4)

6n(n+ 2)2
(

1

n
f4(v) + f5(v))

+
(6n+ 8)(n− 2)

6n2(n+ 2)2
f7(v)

+
n+ 4

8(n+ 2)
f9(v)

+
4(n+ 1)

6n(n+ 2)2
f13(v),

by the Generalized Maximum Principe due to Omori [10] and Yau [14] and the
Codazzi equation, we can prove

(∇h)(ei, ej , ek) = 0

for ei, ej , ek, 1 6 i, j, k 6 n belonging to an orthonormal frame {v = e1, e2, · · · , en}

such that the matirix

n∑
i=1

A2
Jei is diagonalized. Since tangent vectors are their lin-

ear combinations, by the liniarity of ∇h, we conclude that M is a submanifold of
Pn(C) with parallel second fundamental form. By the classification of Naitoh [8]
we obtain Theorem.
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