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Notation

G = (V,E)⇐⇒ graph on n vertices;

G⇐⇒ complement graph of G;

A = A(G)⇐⇒ adjacency matrix of G;

λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G)⇐⇒ eigenvalues of G.

λi = λi(G), i ∈ {1, 2, . . . , n}.
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H-join of graphs

Definition:
Let H be a graph with vertex set V (H) = {vi, i ∈ {1, ..., k}}. Let
F = {Gi, i ∈ {1, ..., k}} be a family of graphs Gi with order ni. For each
vi ∈ V (H), i ∈ {1, ..., k}, a graph Gi ∈ F is assigned. The H-join of
graphs in F is a graph G such that

V (G) = (
⋃

i=1,k

V (Gi) )

and

E(G) = (
⋃

i=1,k

E(Gi) ) ∪ (
⋃

vivj∈E(H)

{uw : u ∈ V (Gi), w ∈ V (Gj)} ).

G is denoted by H[G1, G2, ....., Gk].
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Subfamily of H-join graphs —H(P4)

Let G be a graph with order n, G ' H[G1, G2, G3, G4] and H ' P4 such that,
for 1 ≤ i ≤ 4, Gi is a complete graph or the complement of a complete graph.
Let p ≥ 1 and q ≥ 1 natural numbers.

For n = 2(p+ q),

Hp,q,q,p = P4[Kp,Kq,Kq,Kp];

and, for n = 2(p+ q) + 1,

Hp,q,q,p+1 = P4[Kp,Kq,Kq,Kp+1].

So, we consider the following family of graphs:

H(P4) = {Hp,q,q,p , Hp,q,q,p+1 ; p, q ≥ 1}.
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Contributions
Example:

Graphs H2,5,5,2 and H2,4,4,3
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The complement of graphs in the family H(P4)

It is easy to see that:

Hp,q,q,p = P4(Kp,Kq,Kq,Kp) = P4(Kq,Kp,Kp,Kq) = Hq,p,p,q ∈ H(P4)

and

Hp,q,q,p+1 = P4(Kp,Kq,Kq,Kp+1) = P4(Kq,Kp,Kp+1,Kq) /∈ H(P4).

So, when n is even, the complement operation is closed in the family H(P4), but
it does not hold for n odd.
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Complementary graphs

H1,2,2,1 and H2,1,1,2 graphs
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Spectrum of Hp,q,q,p
Graphs Hp,q,q,p

Straight from the application of Theorem 5, Cardoso et al (2013):

Let 1 ≤ p ≤ q be integer numbers such that n = 2(p+ q) is the order of Hp,q,q,p. If
r = p− q − 1, s2 = q(q + 2p+ 2) + (p− 1)2 and t2 = q(q + 6p− 2) + (p− 1)2,

Spec(Hp,q,q,p) =

r − t
2

,
r + 2q − s

2
,−1, . . . ,−1︸ ︷︷ ︸

2(p−1)

, 0, . . . , 0︸ ︷︷ ︸
2(q−1)

,
r + t

2
,
r + 2q + s

2

 .

λ2 =
r + t

2
, that is, λ2 =

p− q − 1 +
√
q(q + 6q − 2) + (p+ 1)2

2
.

Nair Abreu A new Nordhaus-Gaddum upper bound to the second eigenvalue of a graphBelgrade, May 2016 8 / 37



Graphs Hp,q,q,p
Application

Graph H2,2,2,2

Spec(H2,2,2,2) =

{
−3,−1,−1, 3−

√
17

2
, 0, 0, 2,

3 +
√
17

2

}
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Contributions
Graphs Hp,q,q,p

Proposition 1
For given integers p ≥ 1 and t ≥ 1 with q = p+ t− 1, the sequence
(zt)t∈N such that zt = λ2(Hp,q,q,p) is increasing and converges to 2p− 1.
Moreover, zt < 2p− 1.

Trick of the proof
All we need is to show that, for every x ≥ −4p+ 2 + 2

√
p(2p− 1), the function

f(x) =
−x+

√
(x+ 4p− 2)2 − 4p(2p− 1)

2

is increasing and converges to 2p− 1.
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Contributions
Graphs Hp,q,q,p

Remark 2
For a given p, 2 ≤ p and for every q, p ≤ q, we have

−1 +
√

4p(2p− 1) + 1

2
≤ λ2(Hp,q,q,p) < 2p− 1.

Remark 3
For p = 1 and q ≥ 1 we have

√
5− 1

2
≤ λ2(H1,q,q,1) < 1;

Futhermore,
p ≥ 2⇐⇒ λ2(Hp,q,q,p) ≥ 2.
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Contributions
Graphs Hp,q,q,p

Remark 4
Let p and q be integers such that 1 ≤ p ≤ q. Then,

λ2(Hp,q,q,p) = λ2(Hp,q,q,p) + q − p;

Remark 5
For every connected graph G on even order n, we have

λ2(G) ≤ n

2
− 2 + λ2

(
H1,n

2
−1,n

2
−1,1

)
.
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Complementary graphs

H1,2,2,1 and H2,1,1,2 graphs

λ2 = 0.73205 λ2 = 1.73205
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NG−relations

Definition:
A Nordhaus-Gaddum (NG)-problem is of the type:

max{p(G) + p(G) : |G| = n}; min{p(G) + p(G) : |G| = n}.

This problem was introduced by Nordhaus-Gaddum in (1956). It has been studied
for a great variety of graph parameters.

This kind of problems are useful in helping us study extremal graph theory.

Aouchiche and Hansen (2013), in a complete survey, presented a large number of
Nordhaus-Gaddum inequalities (NG-inequalities) concerning a large number of
distinct invariants of graphs.

They finish their paper with a section devoted to the spectral NG-inequalities to
the distinct matrices of graphs A(G);L(G) and Q(G).
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NG−relations

There is almost no NG-relations to λ2, except to those presented by
Nikiforov (2007 and 2014).

Nikiforov and Yuan (2014) revisited this subject and presented more
NG-bounds to the eigenvalues of G, in particular, NG-bounds to λ2.
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NG−relation to λ2

Theorem 6 (Nikiforov, 2007)
Let G be a graph with order n. The following NG−inequalities hold:

n√
2
− 3 < λ2(G) + λ2(G) ≤

n√
2
.
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NG−relation to λ2

Theorem 7 (Nikiforov and Yuan, 2014)
Let G be a graph with order n. If s ∈ N, 2 ≤ s ≤ n and 15(s− 1) ≤ n then

|λs(G)|+ |λs(G)| ≤ −1 +
n√

2(s− 1)
.

For s = 2 so n ≥ 15,

and,
λ2(G) + λ2(G) ≤ −1 +

n√
2
.
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An useful result on λ2

Proposition 8 (Smith, 1970)

For n ≥ 2 and G 6' Kn, we have λ2(G) ≥ 0.
The equality holds iff G is a complete k-partite graph, 1 ≤ k ≤ n− 1.

Nair Abreu A new Nordhaus-Gaddum upper bound to the second eigenvalue of a graphBelgrade, May 2016 18 / 37



Simple results
NG−relation to λ2

Remark 9

Let G be a graph with order n ≥ 2. The following sentences hold:
(i) G ' Kn ⇐⇒ λ2(G) + λ2(G) = −1;
(ii) If G 6' Kn then λ2(G) + λ2(G) ≥ 0;
(iii) There is no graph such that λ2(G) + λ2(G) ∈ (−1, 0).
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Split complete graph

Definition
Let n and p be natural numbers, p ≤ n. The graph

CS(n, p) = Kp ∨Kn−p

is as a known split complete graph.

It has n vertices, a clique of size p as an induced subgraph and an independent set of
order n− p.

Graph CS(8, 3)
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Contributions
NG-relations to λ2

Proposition 10
Let G a graph with order n ≥ 3 without isolated vertices. Then, for each
p ∈ N, 2 ≤ p ≤ n− 1,

G ' CS(n, p)⇐⇒ λ2(G) + λ2(G) = 0.
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Demonstration

Proof:
Let G be a graph under the hypothesis conditions.

(=⇒) Let G ' CS(n, p).

Since CS(n, p) is a complete (p+ 1)-partite graph, from Proposition 1 (Smith 1970) ,
λ2(G) = 0.

Besides, G ' qK1 ∪Kn−p. So, Spec(G) has q null eigenvalues, one eigenvalue equal to
n− p− 1 and the remaining eigenvalues equal to −1. Consequently, λ2(G) = 0 and
λ2(G) + λ2(G) = 0.

(⇐=) Now, let λ2(G) + λ2(G) = 0. Since G 6' Kn, from Proposition 9,
λ2(G) = λ2(G) = 0.

From Proposition 8, G is a complete k-partite graph. So, there are interger
p1, p2, . . . , pk such that 1 ≤ p1 ≤ · · · ≤ pk and 1 < pk.

Then, G ' Kp1 ∪ · · · ∪Kpk and λ2(G) = pk−1 − 1.

But, λ2(G) = 0 and, so, pk−1 = 1. Consequently, p1 = p2 = · · · = pk−1 = 1 and then,
G ' K1,...,1,pk ' CS(n, k − 1).
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Contribution
NG-relations to λ2

Theorem 11
Let p and q be integers such that 1 ≤ p ≤ q. If G ' Hp,q,q,p, then

λ2(G) + λ2(G) = −1 +
√

(q + 6p− 2)q + (p− 1)2.

Besides, the sum is maximal ⇐⇒ p =
⌊n
4

⌋
and q =

⌈n
4

⌉
.
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Example
NG-relations to λ2

Graphs H1,3,3,1 and H2,2,2,2

λ2(H1,3,3,1) + λ2(H1,3,3,1) = −1 +
√
21 ≈ 3.5826

λ2(H2,2,2,2) + λ2(H2,2,2,2) = 4
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Our main contribution
NG-relations to λ2

Theorem A
If G is a graph on n vertices with girth g 6= 3 and g 6= 4 then

λ2(G) + λ2(G) ≤ −1 +
√
n2

2
− n+ 1.

Equality holds if and only if G ' Hn
4
,n
4
,n
4
,n
4
, n ≡ 0 (mod 4).
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Our main contribution
Under these conditions of Theorem A, our upper bound,

λ2(G) + λ2(G) ≤ −1 +
√
n2

2
− n+ 1.

is a little better that one recently found by Nikiforov and Yuan (2014).

λ2(G) + λ2(G) ≤ −1 +
n√
2
.

See that the inequalities below hold:

−1 +
√
n2

2
− n+ 1 = −1 + n√

2

√
1− 2

n
+

2

n2
< −1 + n√

2
.

The graphs Hn
4
,n
4
,n
4
,n
4
which constitute an infinite subclass of P4-join on

n ≡ 0 (mod 4) vertices are extremal ones to the upper bound from
Theorem A.
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Our main contribution
Proof of Theorem A

Two cases are considered in this proof:

1 G is a tree T on n vertices;
2 G is a graph with n vertices and g ≥ 5.
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Our main contribution
Proof of Theorem A: Case 1: the first part - trees with order odd
Case 1 - Part 1. Let n be odd.

For, n = 3, 5, from An atlas of graphs (Read and Wilson (1998), the result is true.

Let n ≥ 7. From Weyl’s inequalities and of the known result (Collatz and Sinogowitz (1957) that, for every T ,
λ1(T ) ≤

√
n− 1, we have,

λ2(T ) ≤ −1− λn(T ) = −1 + λ1(T )

≤ −1 +
√
n− 1. (1)

Since n is odd, from the inequality of Neumaier (1982) and the fact that (x + y)2 ≤ 2(x2 + y2), we get

λ2(T ) + λ2(T ) ≤ −1 +

√
n− 3

2
+
√
n− 1

≤ −1 +

√
2

(
n− 1 +

n− 3

2

)
= −1 +

√
3n− 5. (2)

For, n ≥ 7,

3n− 5 =

(
n2

2
− n + 1

)
−
(
n2

2
− 4n + 6

)

≤
n2

2
− n + 1. (3)

So, the first part folows from (2) e (3).
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Our main contribution
Proof of Theorem A: Case 1: the second part - trees on even
Case 1 - Part 2: Let n be even. Again, for n = 2, n = 4 and n = 6, by An atlas of graphs (Read and Wilson
(1998), the result is true.

Let n ≥ 8. From Theorem of Shao (1989), as (x + y)2 ≤ 2(x2 + y2) and by (1), we obtain

λ2(T ) + λ2(T ) ≤ −1 +

√
n

2
+ x2 − 1 +

√
n− 1

≤ −1 +
√

3n + 2x2 − 4, (4)

where x2 is the second largest root of the g(x) = x3 + (
n

2
− 2)x2 − 2x− 1. From the last fact, −

1

2
≤ x2 < 0

and, by (4),

λ2(T ) + λ2(T ) < −1 +
√
3n− 4. (5)

For n ≥ 7,

3n− 4 =

(
n2

2
− n + 1

)
−
(
n2

2
− 4n + 5

)

≤
n2

2
− n + 1, (6)

The result follows from (5) and (6).
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Our main contribution
Proof of Theorem A: Case 2: graphs with g ≥ 5

Let G be a graph with n vertices and g ≥ 5.

Again, we divide this proof into two parts:

Case 2 - Part 1: Let G be a graph with order n and girth g ∈ [5, 8].

There are 26 non isomorphic graphs which attend these conditions. All they are
unicycles and display in the next frames.

Since λ1 ≤ 1
2

√
n2

2 − n+ 1, it is known that

λ2(G) + λ2(G) ≤ −1 +
√
n2

2
− n+ 1.
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Figure: Graphs with order and girth in the interval [5, 8].
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Two technical results

Proposition 12
Simić(1987): If G is a unicycle graph on n vertices then

2 ≤ λ1(G) ≤ λ1(S∗n),

when S∗n is the unicycle graph obtained by the star Sn plus an edge linking
two pendent vertices of Sn. Moreover, for n ≥ 9, we have λ1(S∗n) ≤

√
(n).

Proposition 13
Favaron et al. (1993): If G is a graph on n vertices with girth g(G) ≥ 5
then

λ1(G) ≤
√
(n− 1).
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Our main contribution
Proof of Theorem A: Case 2- Part 2: graphs with g ≥ 5
Let G be a graph on n ≥ 9 and g ≥ 5.

If n ≥ 9 then,

4(n− 1) =

(
n2

2
− n+ 1

)
−
(
n2

2
− 5n+ 5

)
<

n2

2
− n+ 1. (7)

For n ≥ 9 and g ≥ 5 , from the inequality above and Proposition of Favaron et al.
(1993), we get,

λ1(G) ≤
√
n− 1

<
1

2

√
n2

2
− n+ 1.

But, it is known, if λ1 ≤ 1
2

√
n2

2
− n+ 1 then,

λ2(G) + λ2(G) ≤ −1 +
√
n2

2
− n+ 1.
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