Special graphs and quasigroup functional equations

Aleksandar Krapež

Mathematical Institute of the SASA Belgrade, Serbia

Spectra of graphs and applications 2016 Belgrade, May 19–20, 2016.

Dedication

Dedicated to D. Cvetković at the occasion of his 75th birthday

∃ → < ∃</p>

Quasigroups

Quasigroups are algebras (Q; \cdot , /, \setminus) satisfying:

$$xy/y \approx x$$
 $x \setminus xy \approx y$
 $(x/y)y \approx x$ $x(x \setminus y) \approx y$

Quasigroups

Quasigroups are algebras (Q; \cdot , /, \setminus) satisfying:

$$xy/y \approx x$$
 $x \setminus xy \approx y$
 $(x/y)y \approx x$ $x(x \setminus y) \approx y$

Best known quasigroups are groups:

$$x \setminus y \approx x^{-1} \cdot y$$
 $x/y \approx x \cdot y^{-1}$

글 🖌 🖌 글 🕨

Quasigroups

- in algebra: Quasigroups
- in combinatorics: Latin squares
- in geometry: 3-nets

∃ → < ∃</p>

Homotopy / isotopy

Let $(Q; \cdot, /, \backslash)$ and $(R; \circ, /, \backslash)$ be two quasigroups. Homotopy is a triple of functions $f, g, h : Q \mapsto R$ such that

$$f(x \cdot y) = g(x) \circ h(y)$$

A homotopy is an *isotopy* if all three components are bijective.

Homotopy (isotopy) is a generalization of homomorphism (isomorphism).

(4月) (4日) (4日)

Parastrophy

Operations $\cdot, \backslash, /, *, \mathbb{N}, /\!\!/$, defined by:

 $x \cdot y \approx z$ iff $x \setminus z \approx y$ iff $z/y \approx x$ iff $y * x \approx z$ iff $z \backslash x \approx y$ iff $y / / z \approx x$

are *parastrophes* of \cdot (and of each other).

A P

A B + A B +

Parastrophy

Operations $\cdot, \backslash, /, *, \mathbb{N}, /\!\!/$, defined by:

are *parastrophes* of \cdot (and of each other).

In groups:

$$\begin{array}{lll} x \cdot y \approx xy & x \backslash y \approx x^{-1}y & x/y \approx xy^{-1} \\ x \ast y \approx yx & x \backslash y \approx y^{-1}x & x/\!\!/ y \approx yx^{-1} \end{array}$$

A 10

(*) *) *) *)

Isostrophy

lsostrophy is a composition
(in any order)
of isotopies and parastrophies

∃ → < ∃</p>

Generalized quadratic quasigroup functional equations

- Operation symbols always represent quasigroups (*quasigroup* functional equations)
- Every operation symbol appears only once in the equation (generalized equations)
- Every (object) variable appears exactly twice in the equation (*quadratic* equations)

伺 ト イ ヨ ト イ ヨ ト

Generalized associativity and bisymmetry

In the paper:

J. Aczél, V. D. Belousov, M. Hosszú: Generalized associativity and bisymmetry on quasigroups, Acta. Math. Acad. Sci. Hung. 11, (1960).

the following two theorems are proved:

Generalized associativity

Theorem. A general solution of the functional equation of generalized associativity:

$$A_1(A_2(x,y),z) \approx A_3(x,A_4(y,z))$$

is given by:

$$A_i(x,y) = \alpha_i(\lambda_i x + \varrho_i y) \quad (i = 1, \dots, 4)$$

where:

• + is an arbitrary group
•
$$\alpha_i, \lambda_i, \varrho_i$$
 $(i = 1, ..., 4)$
are arbitrary permutations such that:
 $\alpha_1 = \alpha_3 = \text{Id}$
 $\alpha_2 = \lambda_1^{-1}$
 $\lambda_2 = \lambda_3$
 $\varrho_2 = \lambda_4$
 $\varphi_1 = \varrho_4$.

Generalized bisymmetry

Theorem. A general solution of the functional equation of generalized bisymmetry:

$$A_1(A_2(x,y),A_3(u,v)) \approx A_4(A_5(x,u),A_6(y,v))$$

is given by:

$$A_i(x,y) = \alpha_i(\lambda_i x + \varrho_i y) \quad (i = 1, \dots, 6)$$

where:

$$\begin{array}{ccc} \alpha_2 = \lambda_1^{-1} & \alpha_3 = \varrho_1^{-1} & \alpha_5 = \lambda_4^{-1} & \alpha_6 = \varrho_4^{-1} \\ \lambda_2 = \lambda_5 & \varrho_2 = \lambda_6 & \lambda_3 = \varrho_5 & \varrho_3 = \varrho_6. \end{array}$$

Serbian group

- S. B. Prešić formed the Serbian group
- J. Ušan generalized *n*-ary associativity
- S. Milić 3-sorted quasigroups and GD-groupoids
- Z. Stojaković infinitary quasigroups
- B. Alimpić solved generalized balanced equations
- A. Krapež solved generalized *n*-ary balanced equations
- S. Krstić solved quadratic equations using graphs

S. Krstić

In his PhD thesis S. Krstić proved:

Theorem

Generalized quadratic quasigroup functional equations Eq and Eq' are parastrophically equivalent iff their Krstić graphs $\Gamma(Eq)$ and $\Gamma(Eq')$ are isomorphic.

3.1

Definitions

Krstić graphs are connected cubic multigraphs.

Image: Image:

Definitions

Parastrophic equivalence is defined by example:

Functional equations of generalized associativity:

$$A(B(x,y),z) \approx C(x,D(y,z))$$

and generalized transitivity:

$$A(B(x,y),F(y,u)) \approx C(x,u)$$

are parastrophically equivalent because $D = F^{-1}$ i.e. they are parastrophes of each other.

4 3 b

Definitions

For a generalized quadratic equation Eq, the Krstić graph $\Gamma(Eq)$ is given by:

- The vertices of $\Gamma(Eq)$ are operation symbols from Eq
- The edges of $\Gamma(Eq)$ are subterms of Eq
- If F(t₁, t₂) is a subterm of Eq then the vertex F is incident to edges t₁, t₂, F(t₁, t₂) and no others.

伺 ト イ ヨ ト イ ヨ ト

Example: Krstić graph of an equation

Figure: (a) The trees of terms s and t of the equation s = t. (b) The graph $\Gamma(s = t)$ of the equation s = t (\bigcirc - red vertex, \bullet - blue vertex).

Krstić theorem again

Theorem

Generalized quadratic quasigroup functional equations Eq and Eq' are parastrophically equivalent iff their Krstić graphs $\Gamma(Eq)$ and $\Gamma(Eq')$ are isomorphic.

4 3 5 4 3 5

Example

There are exactly 100 generalized quadratic equations parastrophically equivalent to generalized associativity.

Example

There are exactly 100 generalized quadratic equations parastrophically equivalent to generalized associativity.

We need to augment properties of Krstić graphs so that such graph uniquely defines corresponding equation.

Special graphs

A special graph is a structure $\mathcal{G} = (V, E; I, i, \alpha, \omega)$ where:

- (i) the triple G = (V, E; I) is an underlying Krstić (multi)graph of G;
- (ii) $i \in E$ is a unique designated edge;
- (iii) $\alpha: V \to \{red, blue\}$ is a vertex (bi)coloring;
- (iv) ω is a bidirection of edges defined below.

・ 同 ト ・ ヨ ト ・ ヨ ト

-

Bidirection

Bidirection is a mapping $\omega : uv \mapsto \{(u, \alpha), (v, \delta)\}$ where $\alpha, \delta \in \{0, 1, 2\}$. The numbers correspond to direction of edges at each end: the "incoming" direction (0), and two "outcomming" directions (1,2).

Figure: Incoming and outcoming ends of edges.

(4月) イヨト イヨト

Bidirection

Bidirected graphs were defined first in:

J. Edmonds, E. L. Johnson:

Matching: A Well–Solved Class of Integer Linear Programs, in the book:

M. Junger, G. Reinelt, G. Rinaldi (eds.):

Combinatorial Optimization Eureka, You Shrink!,

Lecture Notes in Computer Science 2570,

Springer

Berlin, Heidelberg

(2003)

but we have edges with two different types of outcomming ends.

- 4 回 ト 4 ヨト 4 ヨト

Bidirection

With such definition, at every vertex we have situation like this:

Figure: The degrees of a vertex.

3 N

Result

Theorem

Generalized quadratic quasigroup functional equations Eq and Eq' are logically equivalent iff their special graphs $\mathcal{G}(Eq)$ and $\mathcal{G}(Eq')$ are isomorphic.

A B + A B +

A D

Example: special graph of an equation

Figure: (a) The trees of terms s and t of the equation s = t. (b) The graph $\Gamma(s = t)$ of the equation s = t (\bigcirc - red vertex, \bullet - blue vertex).