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Finite Network

Γ = (V, c) connected Network, n = |V |, E =
{

(x, y)∈V ×V :c(x, y) > 0
}

2
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c(z, t) = 0

c(x,y)

c : V × V −→ [0,+∞) conductance (symmetric function)

κ : V −→ (0,+∞), κ(x) =
∑
y∈V

c(x, y) (generalized) degree

ω : V −→ (0,+∞),
∑
x∈V

ω(x)2 = 1 (unitary) weight
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Finite Network

Γ = (V, c) connected Network, n = |V |, E =
{

(x, y)∈V ×V :c(x, y) > 0
}

2
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c(z, t) = 0

c(x,y)

a

c : V × V −→ [0,+∞) conductance (symmetric function)

 a separates x and z if every path joining x and z passes by a∑
y∈V

c(x, y)

 dc(x, z) = min
x=x0∼···∼xk=z

{
k−1∑
i=0

1

c(xi, xi+1)

}
geodesic distance
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Resistive distance

I The effective resistance between two vertices x, y ∈ V , R(x, y) is

the potential difference we need to impose between x and y to get

a current flow of 1 Volt from x to y

I The effective resistance determines a distance on the network:

symmetric and R(x, y) ≥ 0, with equality iff x = y

R(x, y) ≤ R(x, z) +R(z, y), with equality iff z separates x and y

I R(x, y) ≤ dc(x, y). Equality iff there is only one path joining x and y

I R(x, y) measures how difficult for a current is to get from x to y

I The effective resistance is highly sensitive with respect to

small perturbations on the conductances
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Effective Resistances and Kirchhoff Index

I Effective resistances can be expressed in terms of the group inverse

of the Laplacian matrix:

R(x, y) = L#(x, x) + L#(y, y)− 2L#(x, y)

I The Kirchhoff index, K, the sum of all effective resistances,

is a global parameter introduced in the 90’s in Organic Chemistry,

that measures the rigidity of the network. K = n tr(L#)

I The Kirchhoff index has been established as a better alternative

to other parameters used for discriminating among different

molecules with similar shapes and structures

I In the framework of Markov Chains, the Kirchhoff index

coincides with the Kemeny Constant. In the context of

Electrical Networks, it is called Total Resistance
A.M. Encinas (UPC) Resistive distances on networks SGA 2016, Belgrade



Forest metrics

 Introduced by P. Chebotarev and E. Shamis at the end of the 90s

They interpret them as a measure of the accessibility

I Given ε > 0, the relative forest accessibility matrix is

Gε = (I + εL)−1, where I is the identity and L the Laplacian

I Given ε > 0, if Gε =
(
gε(x, y)

)
, the adjusted forest distance is

dε(x, y) = ε
(
gε(x, x) + gε(y, y)− 2gε(x, y)

)
I dε is a distance on the network and moreover

dε ≤ R
dε ≤ dδ when ε ≤ δ
lim
ε→0

dε = 0 and lim
ε→+∞

dε = R
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Schrödinger Operators

Consider q ∈ C(V ), the operator Lq : C(V ) −→ C(V )

Lq(u)(x) =
∑
y∈V

c(x, y)
(
u(x)− u(y)

)
+ q(x)u(x), x ∈ V.

I Matrix version: V = {x1, . . . , xn}, di = κ(xi) + q(xi), cij = c(xi, xj)

M =


d1 −c12 · · · −c1n
−c12 d2 · · · −c2n

...
...

. . .
...

−c1n −c2n · · · dn
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Schrödinger Operators

Consider q ∈ C(V ), the operator Lq : C(V ) −→ C(V )

Lq(u)(x) =
∑
y∈V

c(x, y)
(
u(x)− u(y)

)
+ q(x)u(x), x ∈ V.

I Matrix version: V = {x1, . . . , xn}, di = κ(xi) + q(xi), cij = c(xi, xj)

M =


d1 −c12 · · · −c1n
−c12 d2 · · · −c2n

...
...

. . .
...

−c1n −c2n · · · dn


I Lq is selfadjoint; that is, 〈Lq(u), v〉 = 〈Lq(v), u〉, u, v ∈ C(V )
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Schrödinger Operators

Consider q ∈ C(V ), the Schrödinger operator Lq : C(V ) −→ C(V )

Lq(u)(x) =
∑
y∈V

c(x, y)
(
u(x)− u(y)

)
+ q(x)u(x), x ∈ V

and the energy Eq(u, v) = 〈Lq(u), v〉,

Eq(u, v) =
1

2

∑
x,y∈V

c(x, y)
(
u(x)−u(y)

)(
v(x)−v(y)

)
+
∑
x∈V

q(x)u(x)v(x)
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Schrödinger Operators

Consider q ∈ C(V ), the Schrödinger operator Lq : C(V ) −→ C(V )

Lq(u)(x) =
∑
y∈V

c(x, y)
(
u(x)− u(y)

)
+ q(x)u(x), x ∈ V

and the energy Eq(u, v) = 〈Lq(u), v〉,

Eq(u, v) =
1

2

∑
x,y∈V

c(x, y)
(
u(x)−u(y)

)(
v(x)−v(y)

)
+
∑
x∈V

q(x)u(x)v(x)

I Given ω ∈ Ω(V ), its Doob potential is qω = −ω−1L(ω)
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Schrödinger Operators

Consider q ∈ C(V ), the Schrödinger operator Lq : C(V ) −→ C(V )

Lq(u)(x) =
∑
y∈V

c(x, y)
(
u(x)− u(y)

)
+ q(x)u(x), x ∈ V

and the energy Eq(u, v) = 〈Lq(u), v〉,

Eq(u, v) =
1

2

∑
x,y∈V

c(x, y)
(
u(x)−u(y)

)(
v(x)−v(y)

)
+
∑
x∈V

q(x)u(x)v(x)

I Given ω ∈ Ω(V ), its Doob potential is qω = −ω−1L(ω)

I Perron–Frobenius =⇒ C(V ) =
{
qω + λ : ω ∈ Ω(V ) y λ ∈ R

}
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Doob Transform

Consider q ∈ C(V )⇒ q = qω + λ, where ω ∈ Ω(V ) and λ ∈ R.
The Doob Transform associated with the weight ω is

Lq(u)(x) =
1

ω(x)

∑
y∈V

c(x, y)ω(x)ω(y)

(
u(x)

ω(x)
− u(y)

ω(y)

)
+ λu(x)

Eq(u, u) =
1

2

∑
x,y∈V

c(x, y)ω(x)ω(y)

(
u(x)

ω(x)
− u(y)

ω(y)

)2

+ λ
∑
x∈V

u2(x)
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Doob Transform

Consider q ∈ C(V )⇒ q = qω + λ, where ω ∈ Ω(V ) and λ ∈ R.
The Doob Transform associated with the weight ω is

Lq(u)(x) =
1

ω(x)

∑
y∈V

c(x, y)ω(x)ω(y)

(
u(x)

ω(x)
− u(y)

ω(y)

)
+ λu(x)

Eq(u, u) =
1

2

∑
x,y∈V

c(x, y)ω(x)ω(y)

(
u(x)

ω(x)
− u(y)

ω(y)

)2

+ λ
∑
x∈V

u2(x)

I min
〈u,u〉=1

{
Eq(u, u)

}
= λ and Eq(u, u) = λ⇔ u = ±ω

I Lq(ω) = λω, λ is the lowest eigenvalue and it is simple

I Eq is positive semidefinite iff λ ≥ 0 and positive definite iff λ > 0
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Doob Transform

Consider q ∈ C(V )⇒ q = qω + λ, where ω ∈ Ω(V ) and λ ∈ R.
The Doob Transform associated with the weight ω is

Lq(u)(x) =
1

ω(x)

∑
y∈V

c(x, y)ω(x)ω(y)

(
u(x)

ω(x)
− u(y)

ω(y)

)
+ λu(x)

Eq(u, u) =
1

2

∑
x,y∈V

c(x, y)ω(x)ω(y)

(
u(x)

ω(x)
− u(y)

ω(y)

)2

+ λ
∑
x∈V

u2(x)

I Lq(ω) = λω, λ is the lowest eigenvalue and it is simple

I Eq is positive semidefinite iff λ ≥ 0⇒ positive definite on ω⊥
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Doob Transform

Consider q ∈ C(V )⇒ q = qω + λ, where ω ∈ Ω(V ) and λ ∈ R.
The Doob Transform associated with the weight ω is

Lq(u)(x) =
1

ω(x)

∑
y∈V

c(x, y)ω(x)ω(y)

(
u(x)

ω(x)
− u(y)

ω(y)

)
+ λu(x)

Eq(u, u) =
1

2

∑
x,y∈V

c(x, y)ω(x)ω(y)

(
u(x)

ω(x)
− u(y)

ω(y)

)2

+ λ
∑
x∈V

u2(x)

I Lq(ω) = λω, λ is the lowest eigenvalue and it is simple

I Eq is positive semidefinite iff λ ≥ 0⇒ positive definite on ω⊥

I Lq is an automorphism on ω⊥
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Doob Transform

Consider q ∈ C(V )⇒ q = qω + λ, where ω ∈ Ω(V ) and λ ∈ R.
The Doob Transform associated with the weight ω is

Lq(u)(x) =
1

ω(x)

∑
y∈V

c(x, y)ω(x)ω(y)

(
u(x)

ω(x)
− u(y)

ω(y)

)
+ λu(x)

Eq(u, u) =
1

2

∑
x,y∈V

c(x, y)ω(x)ω(y)

(
u(x)

ω(x)
− u(y)

ω(y)

)2

+ λ
∑
x∈V

u2(x)

I Lq(ω) = λω, λ is the lowest eigenvalue and it is simple

I Eq is positive semidefinite iff λ ≥ 0⇒ positive definite on ω⊥

I Lq is an automorphism on ω⊥

I Gq : ω⊥ −→ ω⊥, the inverse of Lq, is the Green operator
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Doob Transform

Consider q ∈ C(V )⇒ q = qω + λ, where ω ∈ Ω(V ) and λ ∈ R.
The Doob Transform associated with the weight ω is

Lq(u)(x) =
1

ω(x)

∑
y∈V

c(x, y)ω(x)ω(y)

(
u(x)

ω(x)
− u(y)

ω(y)

)
+ λu(x)

Eq(u, u) =
1

2

∑
x,y∈V

c(x, y)ω(x)ω(y)

(
u(x)

ω(x)
− u(y)

ω(y)

)2

+ λ
∑
x∈V

u2(x)

I Lq(ω) = λω, λ is the lowest eigenvalue and it is simple

I Eq is positive semidefinite iff λ ≥ 0⇒ positive definite on ω⊥

I Lq is an automorphism on ω⊥

I Gq : C(V ) −→ C(V ) and its matrix Gq is the Green function
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Doob Transform

Consider q ∈ C(V )⇒ q = qω + λ, where ω ∈ Ω(V ) and λ ∈ R.
The Doob Transform associated with the weight ω is

Lq(u)(x) =
1

ω(x)

∑
y∈V

c(x, y)ω(x)ω(y)

(
u(x)

ω(x)
− u(y)

ω(y)

)
+ λu(x)

Eq(u, u) =
1

2

∑
x,y∈V

c(x, y)ω(x)ω(y)

(
u(x)

ω(x)
− u(y)

ω(y)

)2

+ λ
∑
x∈V

u2(x)

I Gq : C(V ) −→ C(V ) and its matrix Gq is the Green function

I Gq is self–adjoint, positive semidefinite and Gq(ω) = 0

I If λ > 0 =⇒ L−1q = Gq + λ−1Pω, where Pω(f) = ω
∑
x∈V

ω(x)f(x)
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Doob Transform

Consider q ∈ C(V )⇒ q = qω + λ, where ω ∈ Ω(V ) and λ ∈ R.
The Doob Transform associated with the weight ω is

Lq(u)(x) =
1

ω(x)

∑
y∈V

c(x, y)ω(x)ω(y)

(
u(x)

ω(x)
− u(y)

ω(y)

)
+ λu(x)

Eq(u, u) =
1

2

∑
x,y∈V

c(x, y)ω(x)ω(y)

(
u(x)

ω(x)
− u(y)

ω(y)

)2

+ λ
∑
x∈V

u2(x)

I Gq : C(V ) −→ C(V ) and its matrix Gq is the Green function

I Gq is self–adjoint, positive semidefinite and Gq(ω) = 0

I L#
q = Gq + λ#ww⊥, where w is the vector associated with ω

and λ# = 0 if λ = 0 or λ# = λ−1 if λ 6= 0
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Effective Resistances

Consider q = qω + λ, λ ≥ 0, Lq : C(V ) −→ C(V ) given by

Lq(u)(x) =
∑
y∈V

c(x, y)
(
u(x)− u(y)

)
+ q(x)u(x)

Gq, the Green Operator and Gq, the Green function

I ω–Dipole between x, y ∈ V : τxy =
εx
ω(x)

− εy
ω(y)

∈ ω⊥
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Effective Resistances

Consider q = qω + λ, λ ≥ 0, Lq : C(V ) −→ C(V ) given by

Lq(u)(x) =
∑
y∈V

c(x, y)
(
u(x)− u(y)

)
+ q(x)u(x)

Gq, the Green Operator and Gq, the Green function

I ω–Dipole between x, y ∈ V : τxy =
εx
ω(x)

− εy
ω(y)

∈ ω⊥

I The Poisson equation Lq(u)=τxy is solvable. Its solutions maximize

Jxy(u) = 2

[
u(x)

ω(x)
− u(y)

ω(y)

]
− Eq(u)

I Effective Resistance between x, y ∈ V : Rq(x, y)= max
u∈C(V )

{
Jxy(u)

}
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Effective Resistances

Consider q = qω + λ, λ ≥ 0, Lq : C(V ) −→ C(V ) given by

Lq(u)(x) =
∑
y∈V

c(x, y)
(
u(x)− u(y)

)
+ q(x)u(x)

Gq, the Green Operator and Gq, the Green function

I ω–Dipole between x, y ∈ V : τxy =
εx
ω(x)

− εy
ω(y)

∈ ω⊥

I Effective Resistance between x, y ∈ V : Rq(x, y)= max
u∈C(V )

{
Jxy(u)

}
I The Poisson equation Lq(u)=τxy is solvable. If u is any solution

Rq(x, y) = Eq(u) =
u(x)

ω(x)
− u(y)

ω(y)
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Effective Resistances

Consider q = qω + λ, λ ≥ 0, Lq : C(V ) −→ C(V ) given by

Lq(u)(x) =
∑
y∈V

c(x, y)
(
u(x)− u(y)

)
+ q(x)u(x)

Gq, the Green Operator and Gq, the Green function

I ω–Dipole between x, y ∈ V : τxy =
εx
ω(x)

− εy
ω(y)

∈ ω⊥

I Effective Resistance between x, y ∈ V : Rq(x, y)= max
u∈C(V )

{
Jxy(u)

}
I u = Gq(τxy) is a solution of the Poisson equation Lq(u)=τxy. Then,

Rq(x, y) = Eq(u) =
u(x)

ω(x)
− u(y)

ω(y)
= 〈τxy,Gq(τxy)〉
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Effective Resistances

Consider q = qω + λ, λ ≥ 0, Lq : C(V ) −→ C(V ) given by

Lq(u)(x) =
∑
y∈V

c(x, y)
(
u(x)− u(y)

)
+ q(x)u(x)

Gq, the Green Operator and Gq, the Green function

I Effective Resistance between x, y ∈ V : Rq(x, y)= max
u∈C(V )

{
Jxy(u)

}
I The effective resistance Rq determines a distance on the network:

Rq(x, y) ≤ Rq(x, z) + Rq(z, y) with equality
iff λ = 0 and z separates x and y

I Rq(x, y) ≤ dĉ(x, y), where ĉ(x, y) = c(x, y)ω(x)ω(y)
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Effective Resistances

Consider q = qω + λ, λ ≥ 0, Lq : C(V ) −→ C(V ) given by

Lq(u)(x) =
∑
y∈V

c(x, y)
(
u(x)− u(y)

)
+ q(x)u(x)

Gq, the Green Operator and Gq, the Green function

I Effective Resistance between x, y ∈ V : Rq(x, y)= max
u∈C(V )

{
Jxy(u)

}
I If 0 ≤ λ̂ ≤ λ and q̂ = qω + λ̂, then

Rq ≤ Rq̂ ≤ Rqω , lim
λ→+∞

Rq = 0 and lim
λ→0

Rq = Rqω

I Rq(x, y) ≤ dĉ(x, y), where ĉ(x, y) = c(x, y)ω(x)ω(y)
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Effective Resistances

Consider q = qω + λ, λ ≥ 0, Lq : C(V ) −→ C(V ) given by

Lq(u)(x) =
∑
y∈V

c(x, y)
(
u(x)− u(y)

)
+ q(x)u(x)

Gq, the Green Operator and Gq, the Green function

I Rq(x, y) =
Gq(x, x)

ω(x)2
+

Gq(y, y)

ω(y)2
− 2Gq(x, y)

ω(x)ω(y)

I Kirchhoff Index of Γ: K(λ, ω) =
1

2

∑
x,y∈V

Rq(x, y)ω(x)2ω(y)2

I K(λ, ω) =
∑
x∈V

Gq(x, x) = tr(Gq)
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Effective Resistances

Consider q = qω + λ, λ ≥ 0, Lq : C(V ) −→ C(V ) given by

Lq(u)(x) =
∑
y∈V

c(x, y)
(
u(x)− u(y)

)
+ q(x)u(x)

Gq, the Green Operator and Gq, the Green function

I Rq(x, y) =
L#
q (x, x)

ω(x)2
+

L#
q (y, y)

ω(y)2
− 2L#

q (x, y)

ω(x)ω(y)

I Kirchhoff Index of Γ: K(λ, ω) =
1

2

∑
x,y∈V

Rq(x, y)ω(x)2ω(y)2

I K(λ, ω) =
∑
x∈V

L#
q (x, x)− λ# = tr(L#

q )− λ#
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Back to the Forest metric

I The standard effective resistance, R, corresponds to

λ = 0 and ω ∈ Ω(V ) constant; i.e., ω = 1√
n

=⇒ q = 0

I R0 = nR and K
(
0, 1√

n

)
= 1

nK

I Given ε > 0, the relative forest accessibility matrix is

Gε = (I + εL)−1 = ε−1L−1q where ω = 1√
n
, λ = ε−1 =⇒ q = ε−1

I Given ε > 0, if Gε =
(
gε(x, y)

)
, the adjusted forest distance is

dε(x, y) = ε
(
gε(x, x) + gε(y, y)− 2gε(x, y)

)
= L−1q (x, x) + L−1q (y, y)− 2L−1q (x, y) = 1

nRq(x, y)
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