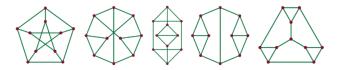
Resistive distances on networks

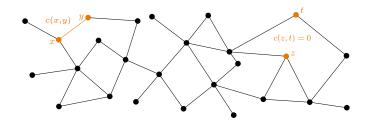
Á. Carmona, A. M. Encinas and M. Mitjana

Departament de Matemàtiques

In honor of Dragoš Cvetković for his 75th birthday Spectra of Graphs and applications, 2016 May 18-20, 2016, Serbian Academy of Sciences and Arts, Belgrade, Serbia



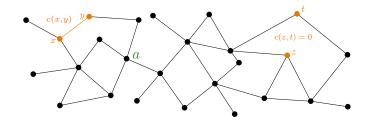
 $\Gamma = (V, c) \text{ <u>connected</u> Network, } n = |V|, E = \{(x, y) \in V \times V : c(x, y) > 0\}$



 $c \colon V \times V \longrightarrow [0, +\infty)$ conductance (symmetric function)

$$\begin{split} \kappa \colon V \longrightarrow (0, +\infty), \quad \kappa(x) &= \sum_{y \in V} c(x, y) \quad \text{(generalized) degree} \\ \omega \colon V \longrightarrow (0, +\infty), \quad \sum_{x \in V} \omega(x)^2 &= 1 \quad \text{(unitary) weight} \end{split}$$

 $\Gamma = (V, c) \text{ <u>connected</u> Network, } n = |V|, E = \{(x, y) \in V \times V : c(x, y) > 0\}$



 $c \colon V \times V \longrightarrow [0, +\infty)$ conductance (symmetric function)

 $\rightsquigarrow a$ separates x and z if every path joining x and z passes by a

$$\rightsquigarrow d_c(x,z) = \min_{x=x_0 \sim \dots \sim x_k=z} \left\{ \sum_{i=0}^{k-1} \frac{1}{c(x_i,x_{i+1})} \right\} \text{ geodesic distance}$$

A.M. Encinas (UPC)

Resistive distances on networks

SGA 2016, Belgrade

Resistive distance

- ► The effective resistance between two vertices x, y ∈ V, R(x, y) is the potential difference we need to impose between x and y to get a current flow of 1 Volt from x to y
- ► The effective resistance determines a **distance** on the network:

 $\label{eq:symmetric} \begin{array}{ll} \mbox{symmetric and} \ R(x,y) \geq 0, & \mbox{with equality iff} \ x=y \\ R(x,y) \leq R(x,z) + R(z,y), & \mbox{with equality iff} \ z \ \mbox{separates} \ x \ \mbox{and} \ y \end{array}$

- ▶ $R(x,y) \leq d_c(x,y)$. Equality iff there is only one path joining x and y
- R(x,y) measures how difficult for a current is to get from x to y
- ► The effective resistance is highly sensitive with respect to small perturbations on the conductances

Effective Resistances and Kirchhoff Index

Effective resistances can be expressed in terms of the group inverse of the Laplacian matrix:

$$R(x,y) = \mathsf{L}^\#(x,x) + \mathsf{L}^\#(y,y) - 2\mathsf{L}^\#(x,y)$$

▶ The Kirchhoff index, K, the sum of all effective resistances, is a global parameter introduced in the 90's in Organic Chemistry, that measures the rigidity of the network. $K = n \operatorname{tr}(L^{\#})$

- The Kirchhoff index has been established as a better alternative to other parameters used for discriminating among different molecules with similar shapes and structures
- ▶ In the framework of Markov Chains, the Kirchhoff index coincides with the Kemeny Constant. In the context of Electrical Networks, it is called Total Resistance A.M. Encinas (UPC)

Forest metrics

- ✓→ Introduced by P. Chebotarev and E. Shamis at the end of the 90s
 They interpret them as a measure of the accessibility
- ▶ Given $\varepsilon > 0$, the relative forest accessibility matrix is $G^{\varepsilon} = (I + \varepsilon L)^{-1}$, where I is the identity and L the Laplacian
- ▶ Given $\varepsilon > 0$, if $G^{\varepsilon} = (g^{\varepsilon}(x, y))$, the adjusted forest distance is

$$d^{\varepsilon}(x,y) = \varepsilon \big(g^{\varepsilon}(x,x) + g^{\varepsilon}(y,y) - 2g^{\varepsilon}(x,y) \big)$$

• d^{ε} is a distance on the network and moreover

•
$$d^{\varepsilon} \leq R$$

• $d^{\varepsilon} \leq d^{\delta}$ when $\varepsilon \leq \delta$
• $\lim_{\varepsilon \to 0} d^{\varepsilon} = 0$ and $\lim_{\varepsilon \to +\infty} d^{\varepsilon} = R$

Consider
$$q \in C(V)$$
, the operator $\mathcal{L}_q \colon \mathcal{C}(V) \longrightarrow \mathcal{C}(V)$
 $\mathcal{L}_q(u)(x) = \sum_{y \in V} c(x, y) (u(x) - u(y)) + q(x)u(x), x \in V.$

▶ Matrix version: $V = \{x_1, \ldots, x_n\}$, $d_i = \kappa(x_i) + q(x_i)$, $c_{ij} = c(x_i, x_j)$

$$\mathsf{M} = \begin{bmatrix} d_1 & -c_{12} & \cdots & -c_{1n} \\ -c_{12} & d_2 & \cdots & -c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ -c_{1n} & -c_{2n} & \cdots & d_n \end{bmatrix}$$

A.M. Encinas (UPC)

Consider
$$q \in C(V)$$
, the operator $\mathcal{L}_q \colon \mathcal{C}(V) \longrightarrow \mathcal{C}(V)$
 $\mathcal{L}_q(u)(x) = \sum_{y \in V} c(x, y) (u(x) - u(y)) + q(x)u(x), \quad x \in V.$

▶ Matrix version: $V = \{x_1, \ldots, x_n\}$, $d_i = \kappa(x_i) + q(x_i)$, $c_{ij} = c(x_i, x_j)$

$$\mathsf{M} = \begin{bmatrix} d_1 & -c_{12} & \cdots & -c_{1n} \\ -c_{12} & d_2 & \cdots & -c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ -c_{1n} & -c_{2n} & \cdots & d_n \end{bmatrix}$$

• \mathcal{L}_q is selfadjoint; that is, $\langle \mathcal{L}_q(u), v \rangle = \langle \mathcal{L}_q(v), u \rangle$, $u, v \in \mathcal{C}(V)$

Consider $q \in C(V)$, the Schrödinger operator $\mathcal{L}_q \colon \mathcal{C}(V) \longrightarrow \mathcal{C}(V)$

$$\mathcal{L}_q(u)(x) = \sum_{y \in V} c(x, y) \big(u(x) - u(y) \big) + q(x)u(x), \quad x \in V$$

and the energy $\mathcal{E}_q(u,v) = \langle \mathcal{L}_q(u),v
angle$,

$$\mathcal{E}_{q}(u,v) = \frac{1}{2} \sum_{x,y \in V} c(x,y) \left(u(x) - u(y) \right) \left(v(x) - v(y) \right) + \sum_{x \in V} q(x)u(x)v(x)$$

Consider $q \in C(V)$, the Schrödinger operator $\mathcal{L}_q \colon \mathcal{C}(V) \longrightarrow \mathcal{C}(V)$

$$\mathcal{L}_q(u)(x) = \sum_{y \in V} c(x, y) \big(u(x) - u(y) \big) + q(x)u(x), \quad x \in V$$

and the energy $\mathcal{E}_q(u,v) = \langle \mathcal{L}_q(u),v
angle$,

• Given $\omega \in \Omega(V)$, its Doob potential is $q_\omega = -\omega^{-1} \mathcal{L}(\omega)$

Consider $q \in C(V)$, the Schrödinger operator $\mathcal{L}_q \colon \mathcal{C}(V) \longrightarrow \mathcal{C}(V)$

$$\mathcal{L}_q(u)(x) = \sum_{y \in V} c(x, y) \big(u(x) - u(y) \big) + q(x)u(x), \quad x \in V$$

and the energy $\mathcal{E}_q(u,v) = \langle \mathcal{L}_q(u), v \rangle$,

$$\mathcal{E}_{q}(u,v) = \frac{1}{2} \sum_{x,y \in V} c(x,y) \left(u(x) - u(y) \right) \left(v(x) - v(y) \right) + \sum_{x \in V} q(x)u(x)v(x)$$

▶ Given $\omega \in \Omega(V)$, its Doob potential is $q_{\omega} = -\omega^{-1}\mathcal{L}(\omega)$

 $\blacktriangleright \quad \mathsf{Perron-Frobenius} \Longrightarrow \mathcal{C}(V) = \left\{ q_{\omega} + \lambda : \omega \in \Omega(V) \text{ y } \lambda \in \mathbb{R} \right\}$

$$\mathcal{L}_{q}(u)(x) = \frac{1}{\omega(x)} \sum_{y \in V} c(x, y)\omega(x)\omega(y) \left(\frac{u(x)}{\omega(x)} - \frac{u(y)}{\omega(y)}\right) + \lambda u(x)$$
$$\mathcal{E}_{q}(u, u) = \frac{1}{2} \sum_{x, y \in V} c(x, y)\omega(x)\omega(y) \left(\frac{u(x)}{\omega(x)} - \frac{u(y)}{\omega(y)}\right)^{2} + \lambda \sum_{x \in V} u^{2}(x)$$

$$\mathcal{L}_{q}(u)(x) = \frac{1}{\omega(x)} \sum_{y \in V} c(x, y)\omega(x)\omega(y) \left(\frac{u(x)}{\omega(x)} - \frac{u(y)}{\omega(y)}\right) + \lambda u(x)$$
$$\mathcal{E}_{q}(u, u) = \frac{1}{2} \sum_{x, y \in V} c(x, y)\omega(x)\omega(y) \left(\frac{u(x)}{\omega(x)} - \frac{u(y)}{\omega(y)}\right)^{2} + \lambda \sum_{x \in V} u^{2}(x)$$

- ▶ $\mathcal{L}_q(\omega) = \lambda \omega$, λ is the lowest eigenvalue and it is simple
- ▶ \mathcal{E}_q is positive semidefinite iff $\lambda \ge 0$ and positive definite iff $\lambda > 0$

$$\mathcal{L}_q(u)(x) = \frac{1}{\omega(x)} \sum_{y \in V} c(x, y) \omega(x) \omega(y) \left(\frac{u(x)}{\omega(x)} - \frac{u(y)}{\omega(y)}\right) + \lambda u(x)$$
$$\mathcal{E}_q(u, u) = \frac{1}{2} \sum_{x, y \in V} c(x, y) \omega(x) \omega(y) \left(\frac{u(x)}{\omega(x)} - \frac{u(y)}{\omega(y)}\right)^2 + \lambda \sum_{x \in V} u^2(x)$$

L_q(ω) = λω, *λ* is the lowest eigenvalue and it is simple
 E_q is positive semidefinite iff *λ* ≥ 0 ⇒ positive definite on *ω*[⊥]

$$\mathcal{L}_{q}(u)(x) = \frac{1}{\omega(x)} \sum_{y \in V} c(x, y)\omega(x)\omega(y) \left(\frac{u(x)}{\omega(x)} - \frac{u(y)}{\omega(y)}\right) + \lambda u(x)$$
$$\mathcal{E}_{q}(u, u) = \frac{1}{2} \sum_{x, y \in V} c(x, y)\omega(x)\omega(y) \left(\frac{u(x)}{\omega(x)} - \frac{u(y)}{\omega(y)}\right)^{2} + \lambda \sum_{x \in V} u^{2}(x)$$

▶ $\mathcal{L}_q(\omega) = \lambda \omega$, λ is the lowest eigenvalue and it is simple

- ▶ \mathcal{E}_q is positive semidefinite iff $\lambda \ge 0 \Rightarrow$ positive definite on ω^{\perp}
- ▶ \mathcal{L}_q is an automorphism on ω^{\perp}

$$\mathcal{L}_{q}(u)(x) = \frac{1}{\omega(x)} \sum_{y \in V} c(x, y)\omega(x)\omega(y) \left(\frac{u(x)}{\omega(x)} - \frac{u(y)}{\omega(y)}\right) + \lambda u(x)$$
$$\mathcal{E}_{q}(u, u) = \frac{1}{2} \sum_{x, y \in V} c(x, y)\omega(x)\omega(y) \left(\frac{u(x)}{\omega(x)} - \frac{u(y)}{\omega(y)}\right)^{2} + \lambda \sum_{x \in V} u^{2}(x)$$

▶ $\mathcal{L}_q(\omega) = \lambda \omega$, λ is the lowest eigenvalue and it is simple

- ▶ \mathcal{E}_q is positive semidefinite iff $\lambda \ge 0 \Rightarrow$ positive definite on ω^{\perp}
- ▶ \mathcal{L}_q is an automorphism on ω^{\perp}
- ▶ $\mathcal{G}_q: \omega^{\perp} \longrightarrow \omega^{\perp}$, the inverse of \mathcal{L}_q , is the Green operator

$$\mathcal{L}_{q}(u)(x) = \frac{1}{\omega(x)} \sum_{y \in V} c(x, y)\omega(x)\omega(y) \left(\frac{u(x)}{\omega(x)} - \frac{u(y)}{\omega(y)}\right) + \lambda u(x)$$
$$\mathcal{E}_{q}(u, u) = \frac{1}{2} \sum_{x, y \in V} c(x, y)\omega(x)\omega(y) \left(\frac{u(x)}{\omega(x)} - \frac{u(y)}{\omega(y)}\right)^{2} + \lambda \sum_{x \in V} u^{2}(x)$$

▶ $\mathcal{L}_q(\omega) = \lambda \omega$, λ is the lowest eigenvalue and it is simple

- ▶ \mathcal{E}_q is positive semidefinite iff $\lambda \ge 0 \Rightarrow$ positive definite on ω^{\perp}
- ▶ \mathcal{L}_q is an automorphism on ω^{\perp}
- $\blacktriangleright \ {\mathcal G}_q \colon {\mathcal C}(V) \longrightarrow {\mathcal C}(V)$ and its matrix ${\sf G}_q$ is the Green function

$$\mathcal{L}_{q}(u)(x) = \frac{1}{\omega(x)} \sum_{y \in V} c(x, y)\omega(x)\omega(y) \left(\frac{u(x)}{\omega(x)} - \frac{u(y)}{\omega(y)}\right) + \lambda u(x)$$
$$\mathcal{E}_{q}(u, u) = \frac{1}{2} \sum_{x, y \in V} c(x, y)\omega(x)\omega(y) \left(\frac{u(x)}{\omega(x)} - \frac{u(y)}{\omega(y)}\right)^{2} + \lambda \sum_{x \in V} u^{2}(x)$$

► $\mathcal{G}_q: \mathcal{C}(V) \longrightarrow \mathcal{C}(V)$ and its matrix G_q is the Green function ► \mathcal{G}_q is self-adjoint, positive semidefinite and $\mathcal{G}_q(\omega) = 0$ ► If $\lambda > 0 \Longrightarrow \mathcal{L}_q^{-1} = \mathcal{G}_q + \lambda^{-1} \mathcal{P}_\omega$, where $\mathcal{P}_\omega(f) = \omega \sum_{x \in V} \omega(x) f(x)$

$$\mathcal{L}_{q}(u)(x) = \frac{1}{\omega(x)} \sum_{y \in V} c(x, y)\omega(x)\omega(y) \left(\frac{u(x)}{\omega(x)} - \frac{u(y)}{\omega(y)}\right) + \lambda u(x)$$
$$\mathcal{E}_{q}(u, u) = \frac{1}{2} \sum_{x, y \in V} c(x, y)\omega(x)\omega(y) \left(\frac{u(x)}{\omega(x)} - \frac{u(y)}{\omega(y)}\right)^{2} + \lambda \sum_{x \in V} u^{2}(x)$$

G_q: C(V) → C(V) and its matrix G_q is the Green function
G_q is self-adjoint, positive semidefinite and G_q(ω) = 0
L[#]_q = G_q + λ[#]ww[⊥], where w is the vector associated with ω and λ[#] = 0 if λ = 0 or λ[#] = λ⁻¹ if λ ≠ 0

Consider
$$q = q_{\omega} + \lambda$$
, $\lambda \ge 0$, $\mathcal{L}_q \colon \mathcal{C}(V) \longrightarrow \mathcal{C}(V)$ given by
 $\mathcal{L}_q(u)(x) = \sum_{y \in V} c(x, y) (u(x) - u(y)) + q(x)u(x)$
 \mathcal{G}_q , the Green Operator and G_q , the Green function

►
$$\omega$$
-Dipole between $x, y \in V$: $\tau_{xy} = \frac{\varepsilon_x}{\omega(x)} - \frac{\varepsilon_y}{\omega(y)} \in \omega^{\perp}$

Consider
$$q = q_{\omega} + \lambda$$
, $\lambda \ge 0$, $\mathcal{L}_q \colon \mathcal{C}(V) \longrightarrow \mathcal{C}(V)$ given by
 $\mathcal{L}_q(u)(x) = \sum_{y \in V} c(x, y) (u(x) - u(y)) + q(x)u(x)$
 \mathcal{G}_q , the Green Operator and G_q , the Green function

•
$$\omega$$
-Dipole between $x, y \in V$: $\tau_{xy} = \frac{\varepsilon_x}{\omega(x)} - \frac{\varepsilon_y}{\omega(y)} \in \omega^{\perp}$

▶ The Poisson equation $\mathcal{L}_q(u) = \tau_{xy}$ is solvable. Its solutions maximize

$$\mathcal{J}_{xy}(u) = 2\left[\frac{u(x)}{\omega(x)} - \frac{u(y)}{\omega(y)}\right] - \mathcal{E}_q(u)$$

▶ Effective Resistance between $x, y \in V$: $R_q(x, y) = \max_{u \in \mathcal{C}(V)} \{\mathcal{J}_{xy}(u)\}$

Consider
$$q = q_{\omega} + \lambda$$
, $\lambda \ge 0$, $\mathcal{L}_q \colon \mathcal{C}(V) \longrightarrow \mathcal{C}(V)$ given by
 $\mathcal{L}_q(u)(x) = \sum_{y \in V} c(x, y) (u(x) - u(y)) + q(x)u(x)$
 \mathcal{G}_q , the Green Operator and G_q , the Green function

►
$$\omega$$
-Dipole between $x, y \in V$: $\tau_{xy} = \frac{\varepsilon_x}{\omega(x)} - \frac{\varepsilon_y}{\omega(y)} \in \omega^{\perp}$

▶ Effective Resistance between $x, y \in V$: $R_q(x, y) = \max_{u \in \mathcal{C}(V)} \{\mathcal{J}_{xy}(u)\}$

▶ The Poisson equation $\mathcal{L}_q(u) = \tau_{xy}$ is solvable. If u is any solution

$$R_q(x,y) = \mathcal{E}_q(u) = \frac{u(x)}{\omega(x)} - \frac{u(y)}{\omega(y)}$$

Consider
$$q = q_{\omega} + \lambda$$
, $\lambda \ge 0$, $\mathcal{L}_q \colon \mathcal{C}(V) \longrightarrow \mathcal{C}(V)$ given by
 $\mathcal{L}_q(u)(x) = \sum_{y \in V} c(x, y) (u(x) - u(y)) + q(x)u(x)$
 \mathcal{G}_q , the Green Operator and G_q , the Green function

•
$$\omega$$
-Dipole between $x, y \in V$: $\tau_{xy} = \frac{\varepsilon_x}{\omega(x)} - \frac{\varepsilon_y}{\omega(y)} \in \omega^{\perp}$

▶ Effective Resistance between $x, y \in V$: $R_q(x, y) = \max_{u \in \mathcal{C}(V)} \{\mathcal{J}_{xy}(u)\}$

▶ $u = \mathcal{G}_q(\tau_{xy})$ is a solution of the Poisson equation $\mathcal{L}_q(u) = \tau_{xy}$. Then,

$$R_q(x,y) = \mathcal{E}_q(u) = rac{u(x)}{\omega(x)} - rac{u(y)}{\omega(y)} = \langle au_{xy}, \mathcal{G}_q(au_{xy})
angle$$

Consider
$$q = q_{\omega} + \lambda$$
, $\lambda \ge 0$, $\mathcal{L}_q : \mathcal{C}(V) \longrightarrow \mathcal{C}(V)$ given by
 $\mathcal{L}_q(u)(x) = \sum_{y \in V} c(x, y) (u(x) - u(y)) + q(x)u(x)$
 \mathcal{G}_q , the Green Operator and G_q , the Green function

- ▶ Effective Resistance between $x, y \in V$: $R_q(x, y) = \max_{u \in \mathcal{C}(V)} \{\mathcal{J}_{xy}(u)\}$
- \blacktriangleright The effective resistance R_q determines a distance on the network:

 $R_q(x,y) \leq R_q(x,z) + R_q(z,y)$ with equality iff $\lambda = 0$ and z separates x and y

▶ $R_q(x,y) \le d_{\hat{c}}(x,y)$, where $\hat{c}(x,y) = c(x,y)\omega(x)\omega(y)$

Consider
$$q = q_{\omega} + \lambda$$
, $\lambda \ge 0$, $\mathcal{L}_q \colon \mathcal{C}(V) \longrightarrow \mathcal{C}(V)$ given by
 $\mathcal{L}_q(u)(x) = \sum_{y \in V} c(x, y) (u(x) - u(y)) + q(x)u(x)$
 \mathcal{G}_q , the Green Operator and G_q , the Green function

▶ Effective Resistance between $x, y \in V$: $R_q(x, y) = \max_{u \in \mathcal{C}(V)} \{\mathcal{J}_{xy}(u)\}$ ▶ If $0 \leq \hat{\lambda} \leq \lambda$ and $\hat{q} = q_{\omega} + \hat{\lambda}$, then

$$R_q \leq R_{\hat{q}} \leq R_{q_\omega}$$
, $\lim_{\lambda o +\infty} R_q = 0$ and $\lim_{\lambda o 0} R_q = R_{q_\omega}$

► $R_q(x,y) \le d_{\hat{c}}(x,y)$, where $\hat{c}(x,y) = c(x,y)\omega(x)\omega(y)$

Consider
$$q = q_{\omega} + \lambda$$
, $\lambda \ge 0$, $\mathcal{L}_q : \mathcal{C}(V) \longrightarrow \mathcal{C}(V)$ given by
 $\mathcal{L}_q(u)(x) = \sum_{y \in V} c(x, y) (u(x) - u(y)) + q(x)u(x)$
 \mathcal{G}_q , the Green Operator and G_q , the Green function

$$\blacktriangleright \quad R_q(x,y) = \frac{\mathsf{G}_q(x,x)}{\omega(x)^2} + \frac{\mathsf{G}_q(y,y)}{\omega(y)^2} - \frac{2\mathsf{G}_q(x,y)}{\omega(x)\omega(y)}$$

► Kirchhoff Index of Γ : $\mathsf{K}(\lambda, \omega) = \frac{1}{2} \sum_{x.y \in V} R_q(x, y) \omega(x)^2 \omega(y)^2$

$$\blacktriangleright \mathsf{K}(\lambda,\omega) = \sum_{x \in V} \mathsf{G}_q(x,x) = \operatorname{tr}(\mathsf{G}_q)$$

Consider
$$q = q_{\omega} + \lambda$$
, $\lambda \ge 0$, $\mathcal{L}_q : \mathcal{C}(V) \longrightarrow \mathcal{C}(V)$ given by
 $\mathcal{L}_q(u)(x) = \sum_{y \in V} c(x, y) (u(x) - u(y)) + q(x)u(x)$
 \mathcal{G}_q , the Green Operator and G_q , the Green function

$$\mathbf{R}_q(x,y) = \frac{\mathsf{L}_q^{\#}(x,x)}{\omega(x)^2} + \frac{\mathsf{L}_q^{\#}(y,y)}{\omega(y)^2} - \frac{2\mathsf{L}_q^{\#}(x,y)}{\omega(x)\omega(y)}$$

• Kirchhoff Index of Γ : $\mathsf{K}(\lambda,\omega) = \frac{1}{2} \sum_{x,y \in V} R_q(x,y)\omega(x)^2 \omega(y)^2$ • $\mathsf{K}(\lambda,\omega) = \sum_{x \in V} \mathsf{L}_q^{\#}(x,x) - \lambda^{\#} = \operatorname{tr}(\mathsf{L}_q^{\#}) - \lambda^{\#}$

Back to the Forest metric

► The standard effective resistance, R, corresponds to $\lambda = 0$ and $\omega \in \Omega(V)$ constant; *i.e.*, $\omega = \frac{1}{\sqrt{n}} \Longrightarrow q = 0$

$$R_0 = nR$$
 and $\mathsf{K} \left(0, rac{1}{\sqrt{n}}
ight) = rac{1}{n}\mathsf{K}$

▶ Given $\varepsilon > 0$, the relative forest accessibility matrix is

$$\mathsf{G}^{\varepsilon} = (\mathsf{I} + \varepsilon \mathsf{L})^{-1} = \varepsilon^{-1} \mathsf{L}_q^{-1} \text{ where } \omega = \tfrac{1}{\sqrt{n}}, \lambda = \varepsilon^{-1} \Longrightarrow q = \varepsilon^{-1}$$

▶ Given $\varepsilon > 0$, if $G^{\varepsilon} = (g^{\varepsilon}(x, y))$, the adjusted forest distance is

$$\begin{aligned} d^{\varepsilon}(x,y) &= \varepsilon \big(g^{\varepsilon}(x,x) + g^{\varepsilon}(y,y) - 2g^{\varepsilon}(x,y) \big) \\ &= \mathsf{L}_{q}^{-1}(x,x) + \mathsf{L}_{q}^{-1}(y,y) - 2\mathsf{L}_{q}^{-1}(x,y) = \frac{1}{n}R_{q}(x,y) \end{aligned}$$