Some graphs with just three eigenvalues

P. Rowlinson

Mathematics and Statistics Group University of Stirling Scotland

Belgrade, 2016

Notation and examples

G = connected non-regular non-bipartite graph whose adjacency matrix has spectrum $\rho, \mu^{(k)}, \lambda^{(l)}$ where $\rho > \mu > \lambda$.

Three infinite families:

(1) conical type [Muzychuk & Klin 1998]

 $\mathcal{G}=\mathsf{cone}\;\mathsf{over}\;\mathsf{SRG}(\lambda^2\mu+\lambda^2-\lambda\mu,\mu-\lambda\mu,2\mu+\lambda,\mu)$

Notation and examples

G = connected non-regular non-bipartite graph whose adjacency matrix has spectrum $\rho, \mu^{(k)}, \lambda^{(l)}$ where $\rho > \mu > \lambda$. Three infinite families:

(1) conical type [Muzychuk & Klin 1998]

 $\mathcal{G}=\mathsf{cone}\;\mathsf{over}\;\mathsf{SRG}(\lambda^2\mu+\lambda^2-\lambda\mu,\mu-\lambda\mu,2\mu+\lambda,\mu)$

(2) symmetric type [van Dam 1996]

G obtained from the incidence graph of a symmetric 2- $(q^3 - q + 1, q^2, q)$ design by adding all edges between blocks $[\rho = q^3, \mu = q - 1, \lambda = -q]$

Notation and examples

G = connected non-regular non-bipartite graph whose adjacency matrix has spectrum $\rho, \mu^{(k)}, \lambda^{(l)}$ where $\rho > \mu > \lambda$. Three infinite families:

(1) conical type [Muzychuk & Klin 1998]

 $\mathcal{G}=\mathsf{cone}\;\mathsf{over}\;\mathsf{SRG}(\lambda^2\mu+\lambda^2-\lambda\mu,\mu-\lambda\mu,2\mu+\lambda,\mu)$

(2) symmetric type [van Dam 1996]

G obtained from the incidence graph of a symmetric $2 \cdot (q^3 - q + 1, q^2, q)$ design by adding all edges between blocks $[\rho = q^3, \mu = q - 1, \lambda = -q]$

(3) affine type [van Dam 1998]

G obtained from the incidence graph of an affine 2- $(q^3, q^2, q+1)$ design by adding all edges between intersecting blocks $[\rho = q^3 + q^2 + q, \mu = q, \lambda = -q]$

Observations

Graphs of all three types have the properties:

(i) μ is non-main, i.e. $\mathcal{E}(\mu)$ is orthogonal to the all-1 vector **j**, (ii) $\delta(G) = 1 + \mu - \lambda \mu$.

Note: always μ non-main $\Rightarrow \delta(G) \ge 1 + \mu - \lambda \mu$; moreover ρ, μ, λ are integers.

Graphs of all three types have the properties:

(i) μ is non-main, i.e. $\mathcal{E}(\mu)$ is orthogonal to the all-1 vector **j**, (ii) $\delta(G) = 1 + \mu - \lambda \mu$.

Note: always μ non-main $\Rightarrow \delta(G) \ge 1 + \mu - \lambda \mu$; moreover ρ, μ, λ are integers.

We show conversely that if G satisfies (i) and (ii) then G is of one of three types:

(1) conical, (2) symmetric $(\lambda + \mu = -1)$, (3') quasi-symmetric $(\lambda + \mu \ge 0)$.

Graphs of type (3') with $\lambda + \mu = 0$ are of affine type. Are there any with $\lambda + \mu > 0$?

(I)
$$(A - \mu I)(A - \lambda I) = \mathbf{a}\mathbf{a}^{\top}$$
, where $A\mathbf{a} = \rho \mathbf{a}$ and $\mathbf{a} = (a_1, \dots, a_n)^{\top}$ with all $a_i > 0$,

э

(I)
$$(A - \mu I)(A - \lambda I) = \mathbf{a}\mathbf{a}^{\top}$$
, where
 $A\mathbf{a} = \rho \mathbf{a}$ and $\mathbf{a} = (a_1, \dots, a_n)^{\top}$ with all $a_i > 0$,

(II) $(A - \rho I)(A - \lambda I)\mathbf{j} = \mathbf{0}$

because ρ, λ are the main eigenvalues of G.

(I)
$$(A - \mu I)(A - \lambda I) = \mathbf{a}\mathbf{a}^{\top}$$
, where
 $A\mathbf{a} = \rho \mathbf{a}$ and $\mathbf{a} = (a_1, \dots, a_n)^{\top}$ with all $a_i > 0$,

(II) $(\boldsymbol{A} - \rho \boldsymbol{I})(\boldsymbol{A} - \lambda \boldsymbol{I})\mathbf{j} = \mathbf{0}$

because ρ,λ are the main eigenvalues of ${\it G}.$

From (I), the degrees are $a_i^2 - \lambda \mu$ (i = 1, ..., n), and

$$\mathbf{a}(\mathbf{a}^{\top}\mathbf{j}) = A^2\mathbf{j} - (\lambda + \mu)A\mathbf{j} + \lambda\mu\mathbf{j}.$$

(I)
$$(A - \mu I)(A - \lambda I) = \mathbf{a}\mathbf{a}^{\top}$$
, where $A\mathbf{a} = \rho \mathbf{a}$ and $\mathbf{a} = (a_1, \dots, a_n)^{\top}$ with all $a_i > 0$,

(II) $(\boldsymbol{A} - \rho \boldsymbol{I})(\boldsymbol{A} - \lambda \boldsymbol{I})\mathbf{j} = \mathbf{0}$

because ρ, λ are the main eigenvalues of G.

From (I), the degrees are $a_i^2 - \lambda \mu$ $(i = 1, \dots, n)$, and

$$\mathbf{a}(\mathbf{a}^{\top}\mathbf{j}) = A^2\mathbf{j} - (\lambda + \mu)A\mathbf{j} + \lambda\mu\mathbf{j}.$$

From (II), $A^2 \mathbf{j} = (\rho + \lambda)A\mathbf{j} - \lambda\rho\mathbf{j}$ and so

$$\mathbf{a}(\mathbf{a}^{\top}\mathbf{j}) = (\rho - \mu)A\mathbf{j} - \lambda(\rho - \mu)\mathbf{j}.$$

That is, $\mathbf{a} = rA\mathbf{j} - \lambda r\mathbf{j}$, where $r = (\rho - \mu)/\mathbf{a}^{\top}\mathbf{j}$.

From $\mathbf{a} = rA\mathbf{j} - \lambda r\mathbf{j}$, we have $a_i = r(a_i^2 - \lambda \mu) - \lambda r$, that is, $a_i^2 - r^{-1}a_i - \lambda(\mu + 1) = 0.$

Hence two values α_1, α_2 for the a_i , and two degrees $d_1 = \alpha_1^2 - \lambda \mu$, $d_2 = \alpha_2^2 - \lambda \mu$, where $\alpha_1 \alpha_2 = -\lambda(\mu + 1)$. Take $d_1 > d_2$ and let V_1, V_2 be the sets of vertices of degrees d_1, d_2 respectively. From $\mathbf{a} = rA\mathbf{j} - \lambda r\mathbf{j}$, we have $a_i = r(a_i^2 - \lambda \mu) - \lambda r$, that is, $a_i^2 - r^{-1}a_i - \lambda(\mu + 1) = 0.$

Hence two values α_1, α_2 for the a_i , and two degrees $d_1 = \alpha_1^2 - \lambda \mu$, $d_2 = \alpha_2^2 - \lambda \mu$, where $\alpha_1 \alpha_2 = -\lambda(\mu + 1)$. Take $d_1 > d_2$ and let V_1, V_2 be the sets of vertices of degrees d_1, d_2 respectively.

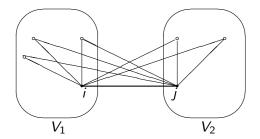
Now
$$\langle A\mathbf{j},\mathbf{j}\rangle = \left\langle \left(\begin{array}{c} d_{1}\mathbf{j} \\ d_{2}\mathbf{j} \end{array}\right), \left(\begin{array}{c} \mathbf{j} \\ \mathbf{j} \end{array}\right) \right\rangle = \left\langle \left(\begin{array}{c} \mathbf{j} \\ \mathbf{0} \end{array}\right), \left(\begin{array}{c} \mathbf{0} \\ \mathbf{j} \end{array}\right) \right\rangle,$$

and since this subspace is A-invariant, $V_1 \stackrel{.}{\cup} V_2$ is an equitable partition.

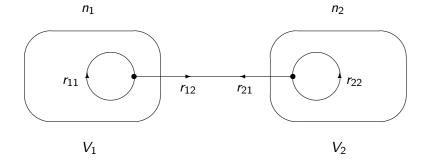
We can now see also that $\delta(G) \ge 1 + \mu - \lambda \mu$ whenever μ is non-main.

Let $i \in V_1$, $j \in V_2$ with $i \sim j$ and consider the *i*-*j* walks of length two. From the equation $(A - \mu I)(A - \lambda I) = \mathbf{a}\mathbf{a}^{\top}$ we have $a_{ij}^{(2)} = \alpha_1 \alpha_2 + \lambda + \mu = -\lambda(\mu + 1) + \lambda + \mu = \mu - \lambda\mu$.

Let $i \in V_1$, $j \in V_2$ with $i \sim j$ and consider the *i*-*j* walks of length two. From the equation $(A - \mu I)(A - \lambda I) = \mathbf{a}\mathbf{a}^\top$ we have $a_{ij}^{(2)} = \alpha_1 \alpha_2 + \lambda + \mu = -\lambda(\mu + 1) + \lambda + \mu = \mu - \lambda\mu$. But $a_{ij}^{(2)} \leq \deg(j) - 1 = d_2 - 1 = \delta(G) - 1$ and so $\delta(G) \geq 1 + \mu - \lambda\mu$.



Henceforth assume that $\delta(G) = 1 + \mu - \lambda \mu$. Then $\alpha_2^2 = 1 + \mu$. When $i \not\sim j$, we have $a_{ij}^{(2)} = \alpha_1 \alpha_2 \leq d_2$, i.e. $-\lambda(\mu + 1) \leq \delta(G)$, whence $\lambda + \mu \geq -1$. Notation: $G_1 = G - V_2$ and $G_2 = G - V_1$; $|V_1| = n_1$ and $|V_2| = n_2$.



Can show: if $r_{22} \neq 0$ then G is of conical type (with $|V_1| = 1$).

Here we discuss the case $r_{22} = 0$ (i.e V_2 is independent). Then all structural parameters are expressible in terms of λ and μ :

э

Here we discuss the case $r_{22} = 0$ (i.e V_2 is independent). Then all structural parameters are expressible in terms of λ and μ :

$$\begin{aligned} d_1 &= \lambda^2 (\mu + 1) - \lambda \mu, \qquad d_2 = r_{21} = 1 + \mu - \lambda \mu, \\ \rho &= -\lambda (1 + \mu - \lambda \mu), \qquad r_{11} = \mu \lambda^2 - \lambda \mu, \qquad r_{12} = \lambda^2, \\ n_1 &= \frac{(1 + \mu - \lambda \mu)(\lambda + \lambda \mu - \lambda^2 \mu + \mu)}{\lambda(\mu + 1)}, \qquad n_2 = \frac{\lambda(\lambda + \lambda \mu - \lambda^2 \mu + \mu)}{\mu + 1}, \\ k &= \frac{(\lambda^2 - 1)(1 + \mu - \lambda \mu)}{\mu + 1}, \qquad I = \frac{(1 + \mu - \lambda \mu)(\lambda + \lambda \mu - \lambda^2 \mu + \mu)}{\lambda(\mu + 1)} \end{aligned}$$

Hence integrality conditions. Also, $n_1 \ge n_2$.

.

Here we discuss the case $r_{22} = 0$ (i.e V_2 is independent). Then all structural parameters are expressible in terms of λ and μ :

$$\begin{aligned} d_1 &= \lambda^2 (\mu + 1) - \lambda \mu, \qquad d_2 = r_{21} = 1 + \mu - \lambda \mu, \\ \rho &= -\lambda (1 + \mu - \lambda \mu), \qquad r_{11} = \mu \lambda^2 - \lambda \mu, \qquad r_{12} = \lambda^2, \\ n_1 &= \frac{(1 + \mu - \lambda \mu)(\lambda + \lambda \mu - \lambda^2 \mu + \mu)}{\lambda (\mu + 1)}, \qquad n_2 = \frac{\lambda (\lambda + \lambda \mu - \lambda^2 \mu + \mu)}{\mu + 1}, \\ k &= \frac{(\lambda^2 - 1)(1 + \mu - \lambda \mu)}{\mu + 1}, \qquad I = \frac{(1 + \mu - \lambda \mu)(\lambda + \lambda \mu - \lambda^2 \mu + \mu)}{\lambda (\mu + 1)} \end{aligned}$$

Hence integrality conditions. Also, $n_1 \ge n_2$.

Note that $n_1 = l$, i.e. $|V_1| =$ multiplicity of λ .

This means that G_2 (= $G - V_1$) is a star complement for λ , since the co-clique G_2 does not have λ as an eigenvalue.

Thus if
$$A = \begin{pmatrix} A_1 & B^T \\ B & O \end{pmatrix}$$
 then $\lambda I - A_1 = B^T (\lambda I - O)^{-1} B$, that is,
 $\lambda^2 I - \lambda A_1 = B^T B.$

 V_1 V_2 Thus the V_2 -neighbourhoods form a quasi-symmetric design with intersection numbers 0 and $-\lambda$, and with block graph G_1 [SRG]. Here $BB^{\top} = d_2 I + (\mu + 1)(J - I) = -\lambda \mu I + (\mu + 1)J$, with spectrum $-\lambda \mu + (\mu + 1)n_2, -\lambda \mu^{(n_2 - 1)}.$

Hence $B^{\top}B$ has spectrum

$$-\lambda\mu + (\mu + 1)n_2, -\lambda\mu^{(n_2-1)}, 0^{(n_1-n_2)}.$$

Since $\lambda^2 I - \lambda A_1 = B^\top B$, the spectrum of A_1 is

$$\lambda^2 \mu - \lambda \mu, (\lambda + \mu)^{(n_2-1)}, \lambda^{(n_1-n_2)}.$$

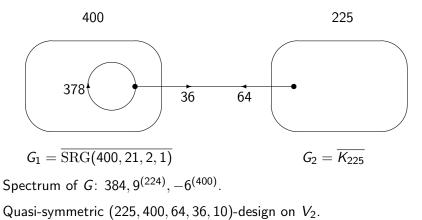
Hence $G_1 = SRG(n_1, r_{11}, e, f)$ where $e = \lambda^2(\mu + 1) + 2\lambda + \mu$, $f = \lambda^2(\mu + 1)$.

If $\lambda + \mu = -1$ then $n_1 = n_2$, G_1 is complete and G is of symmetric type.

If $\lambda + \mu = 0$ then $G_1 = \overline{(1 + \mu + \mu^2)K_{\mu}}$ and G is of affine type.

Otherwise, G is of type (3') with $\lambda + \mu > 0$. Then the feasible values of λ, μ with smallest $\mu - \lambda$ are $\lambda = -6$, $\mu = 9$. In this case we have $d_1 = 414$, $d_2 = 64$, $n_1 = 400$, $n_2 = 225$ and $G_1 = SRG(400, 378, 357, 360)$.

Otherwise, G is of type (3') with $\lambda + \mu > 0$. Then the feasible values of λ, μ with smallest $\mu - \lambda$ are $\lambda = -6$, $\mu = 9$. In this case we have $d_1 = 414$, $d_2 = 64$, $n_1 = 400$, $n_2 = 225$ and $G_1 = SRG(400, 378, 357, 360)$.



Can show: any quasi-symmetric design with parameters $(n_2, n_1, 1 + \mu - \lambda \mu, \lambda^2, 1 + \mu)$ and intersection numbers $0, -\lambda$ yields a graph with just 3 distinct eigenvalues. Hence:

Can show: any quasi-symmetric design with parameters $(n_2, n_1, 1 + \mu - \lambda \mu, \lambda^2, 1 + \mu)$ and intersection numbers $0, -\lambda$ yields a graph with just 3 distinct eigenvalues. Hence:

Theorem. Let G be a connected non-regular non-bipartite graph whose distinct eigenvalues are ρ , λ , μ , where $\rho > \mu > \lambda$. If μ is non-main then $\delta(G) \ge 1 + \mu - \lambda \mu$, with equality if and only if G is of one of three types:

(1) conical, $G = \text{cone over SRG}(\lambda^2 \mu + \lambda^2 - \lambda \mu, \mu - \lambda \mu, 2\mu + \lambda, \mu);$

(2) symmetric, obtained from a symmetric 2- $(q^3 - q + 1, q^2, q)$ design with $q = \mu + 1 = -\lambda$;

(3') quasi-symmetric, obtained from a quasi-symmetric

 $(n_2, n_1, 1 + \mu - \lambda \mu, \lambda^2, 1 + \mu)$ -design with intersection numbers $0, -\lambda$, where

$$n_1 = rac{(1+\mu-\lambda\mu)(\lambda+\lambda\mu-\lambda^2\mu+\mu)}{\lambda(\mu+1)}, \quad n_2 = rac{\lambda(\lambda+\lambda\mu-\lambda^2\mu+\mu)}{\mu+1}.$$

ゆ く き と く ゆ と