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Introductory notes

The problem of determining graphs by spectral means is
one of the oldest problems in the spectral graph theory,
and it is studied in the literature for various kinds of graph
spectra and various classes of graphs.

We will consider this problem for Smith graphs and with
respect to the
Some marks:

the adjacency spectrum of G will be denoted by G;

the G1 and Go will be denoted
by Gi1 + G2, while for the union of their spectra we will
use the following mark Gi + Go.
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Cospectral graphs

Definition

Cospectral Two graphs G; and Go are , denoted by
G1 ~ Go, if their spectra coincide.
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Cospectral graphs

Definition

Two graphs G; and Go are , denoted by
G1 ~ Go, if their spectra coincide.

Definition

The determined by G
under ~ is the set of all graphs cospectral to G, including

G.

Definition

A graph G is , Or it is a
, if whenever there is a graph H which is
cospectral to a graph G, then H is isomorphic to G.
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Smith graphs

The class of graphs whose spectral radius is at most 2
have been constructed by J.H. Smith. Therefore these
graphs are usually called the Smith graphs.
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Smith graphs

The class of graphs whose spectral radius is at most 2
have been constructed by J.H. Smith. Therefore these
graphs are usually called the

Smith graphs

This class of graphs includes the following connected
graphs: a path P, on n vertices, a cycle Cy on n vertices,
a snake Z, with n 4 2 vertices, a double snake W, with
n + 4 vertices, and trees Tq, Ty, T3, T4, T5 and Tg on six
till nine vertices.
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Smith graphs

Smith graphs

The class of graphs whose spectral radius is at most 2
have been constructed by J.H. Smith. Therefore these
graphs are usually called the

This class of graphs includes the following connected
graphs: a path P, on n vertices, a cycle Cy on n vertices,
a snake Z, with n 4 2 vertices, a double snake W, with
n + 4 vertices, and trees Tq, Ty, T3, T4, T5 and Tg on six
till nine vertices.

Eigenvalues of some of these graphs have been
determined in the paper of L. Collatz and U. Sinogowitz
(1957), and also in the paper of D. Cvetkovi¢ and I.
Gutman (1975).
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Smith graphs

Graphs P, (n> 1), Z, (n > 4), Ty, Ty and T3 are
tral connected Smith graphs with index less than 2.

Smith graphs

1 T, T,
*—o—0—o H—.—<
P, z,
Y
e . ! Note that Z; coincide with P3.
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Smith graphs

The graphs Cn (n = 3)7 Wn (n = 6)7 K1,4; T47 T5) and T6
tral are connected Smith graphs with index equal to 2.

Smith graphs

Ts T T,
So Cq w,
clh
DS g ! Note that W coincide with the star K 4.
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Smith graphs

Some pairs of cospectral nonisomorphic Smith graphs

D. Cvetkovié¢ and I. Gutman have been proved (1975) that
all ei%envalues of connected Smith graphs are of the form
2 cos q75 where p, q are integers and q # 0 = some pairs

of cospectral nonisomorphic graphs:

Smith graphs

o~

W, =Cy4+P,,
Zn+Po=Pony1 + Py,
Con 4+ 2P, =Cy +2P,_4,
Ti+Ps+ Py =Py + P, + Py,
Ty +Pg +Ps = Py; + P, + Py, (1)
T3+ Py +Pg+P;=Poy+DP,+P,+ Py,
T4+131 :(A]4+2§2,
Ts+P1=Cy+ Py +Ps,
Tg+P, =Cy+ Py +Ps.
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Determination of the cospectral equivalence class of a
given graph?

Research tasks

According to the paper of J. Wang, Q. Huang, Y. Liu, R.
Liu, C. Ye (2009) it seems more difficult to determine the
cospectral equivalence class of a given graph than prove it
to be a DS-graph.
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Bipartite Smith graphs

Only bipartite Smith graphs will be considered! The set of
all these graphs is denoted by &.

Bipartite Smith
graphs
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Bipartite Smith graphs

Only bipartite Smith graphs will be considered! The set of
all these graphs is denoted by &.

Any graph G from the set & can be represented in the

following way:
G= E SiSi,
gBer}L);]x;tslte Smith SIEG

where s; > 0 is a repetition factor, that tells us how many
times S; € G is appearing as a component in G.
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Bipartite Smith
graphs

Bipartite Smith graphs

[
L
The set of
all these graphs is denoted by

Any graph G from the set & can be represented in the
following way:
G= ZE: SiSi,
S;€6

where s; > 0 is a repetition factor, that tells us how many
times S; € G is appearing as a component in G.

According to the introduced marks for graphs from the set
S, we have the following non-negative integers as s;’ s:

p1,p27p31'",Z21Z31"'1W1|W21W37"'|C2VC3V"'1
t1, b2, t3, t4, t5, te.
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Bipartite Smith graphs

Theorem (D. Cvetkovi¢, I. Gutman (1975))

Let G € &. Then its spectrum can be represented in a,
unique way as a linear combination of the form:

Bipartite Smith
graphs

m
00Cy + Z o;Pi,
i—1

where the number m is bounded by a function of the
number of vertices, while oy is always non-negative and the
non-vanishing coefficient oj with the greatest i is positive.
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A system of
linear
Diofantine
equations

A system of linear Diofantine equations

Main article

In the paper:

Cvetkovi¢ D., Gutman I., On the spectral structure of
graphs having the maximal eigenvalue not greater than
two, Publ. Inst. Math. (Belgrade), 18(32)(1975), 39-45.
an effective procedure which enables the determination of

all graphs having the spectrum equal to a given system of
numbers of the form 2 cos %T[ is exposed.

These graphs can be obtained by solving a system of linear
Diofantine equations as follows.
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A system of linear Diofantine equations

Main idea

Given a symmetric system S of numbers of the form
2 cos gn, we try to represent it as a linear combination of

Cy, Py, Py, ...

A system of
linear
Diofantine
equations
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A system of linear Diofantine equations

Main idea

Given a symmetric system S of numbers of the form
2 cos gn, we try to represent it as a linear combination of

Cy, Py, Py, ...

If this is not possible, Sis not a spectrum of any graph.
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Main idea

Given a symmetric system S of numbers of the form
2 cos gn, we try to represent it as a linear combination of
Cy,P1, Py, .. ..

[ If this is not possible, Sis not a spectrum of any graph.
linear

Dicfantine In the case such a representation is possible, the
mentioned linear combination is unique.

Principles of finding the corresponding coefficients are
clear since among Cg4, Py, P2, ... no two systems have the
same greatest element.
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A system of
linear
Diofantine
equations

A system of linear Diofantine equations

Let now S be represented as:

S = (Yo( 4+ O"1Pl + U)PZ + -+ opPm. (2)
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A system of linear Diofantine equations

Let now S be represented as:

S = O—O(Aj/‘_k + (Tlf)l + Ggfg + -+ 0opmPm
Suppose that S is the spectrum of a graph G.

A system of
linear
Diofantine
equations
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A system of linear Diofantine equations

Let now S be represented as:
S = O—O(Arj_k + O"lf)l + (Tgf’g + - Gmf’m. (2)
Suppose that S is the spectrum of a graph G.

Presenting S as a linear combination of spectra of the
: components we get:

A system of
linear

Diofantine S =p Py + poPy + psPs + -+ + 297y + 2373 + - - -
+ Wi Wi +woWo 4 -+ +oCs +csCe 4+ (3)

+ t1T1 + tQTQ + t3T3 + t4'T‘4 + t5T5 + tfﬁﬁ,

for some non-negative integers (i.e. parameters of G):

P1.P2,P3,---,%22,723,...,W1,W2,W3,...,C2,C3,...,
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A system of
linear
Diofantine
equations

A system of linear Diofantine equations

The coefficients F

Using relations (1) one can express the equation (3) in the
form: . . A R
S =FoCs+F Py +FoPo+---, (5)

where the coefficients Fj, i =0, 1, ... are functions of
variables (4).
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A system of linear Diofantine equations

The coefficients F;

Using relations (1) one can express the equation (3) in the
form: . i i .
S =FoCs +F 1Py +FoPy+ -, (5)

where the coefficients Fj, i =0, 1, ... are functions of
variables (4).

The coefficients Fi, i = 0,1, ... are of the following form:

Fo=(wi+wa+wsg+---)+(cat+c3+---)+ta+ts5+ te;
Fi=pi+wi+(z2+2z3+--)—2(cs+ca+--)+
t] +to +t3 —t4 — t5 — tg;
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A system of
linear
Diofantine
equations

A system of linear Diofantine equations

The coefficients F

Fori>1andi#23,4,528,9,11,14,17,29 we have:
F; = F;,
where

F— pi —zi + wi + 2¢iq1, if i even
"7 pitzis —zitwit 264, ifiodd
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A system of linear Diofantine equations

The coefficients F;

For the excluded values of i we have:

F. — p3—z3+ws+2cs+hg, ifi=3
"l Fithy, in all other cases,

A system of where
linear

Diofantine

equations

ho =t1 +to +t3 +2t4 + t5 + te;

hg = —t; +t5; hg =t3 +tg;

hs = —t; —to —t3; hg =—ty; hg = —t3;
hiy =t1; hig = —t3; hiz =to; hog =ts.
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A system of
linear
Diofantine
equations

A system of linear Diofantine equations

| [ |
L

Comparing (2) and (5) we get the following system of
linear algebraic equations in unknowns:

p17p2’p37'"1Z21Z31"'7W1|W27W3|""C2|C3|"'Y
t1, bo, t3, t4, ts5, te.

The system of linear Diofantine equations

Fi=0, i=012...,m (6)

The system of equations (6) will be called
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Comparing (2) and (5) we get the following system of
linear algebraic equations in unknowns:

p17p2’p37'"1Z21Z31"'7W1|W27W3|""C2|C3|"'Y
t1, bo, t3, t4, ts5, te.

A system of The system of linear Diofantine equations

linear
Diofantine
equations

Fi=0, i=012...,m (6)

The system of equations (6) will be called

Equation F; = o3 will be denoted by E;, for any
non-negative integer 1i.
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A system of
linear
Diofantine
equations

A system of linear Diofantine equations

Theorem (D. Cvetkovi¢, I. Gutman (1975))

Let S be a symmetric system of numbers of the form
2 cos %7’(, where p, q are integers and q # 0. A necessary

condition for S to be a graph spectrum is that S can be
represented in the form (2). In this case, to every solution
of the system of equations (6) in unknowns (4), these
quantities being non-negative integers, a graph
corresponds, the spectrum of which is S. All graphs having
the spectrum equal to S can be obtained in this way.
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Some important remarks - Remark 1

Extending m

Equality (2) can be formulated as S =0¢Cy4 + Zf;olo 011/51,

with o5 =0 for i > m. Together with equalities (6) we can
. consider equalities F; = 0 for i > m and they are also
remarke fulfilled.
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Some important remarks - Remark 2

The system always has a solution

System (6) always has a solution

cg = 0p,pP1 = 01, ..., Pm = Om with other variables being
equal to 0, giving rise to a hypothetical graph

00C4 + 01P1 + 09P5 + - - - + o Pm-

cauat However, this formal linear combination does not

imporyant correspond to a graph if among coefficients o; are some
that are negative. In this case, we know that still a
solution exists since we assume that the system is
associated to a graph G. This solution is expressed
through parameters of G.
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Some important remarks - Remark 3

Solution of the system

By considering the system (6) one can distinguish between
the following two outcomes:

system (6) has a of non-negative integers,
which implies that a considered graph G is a DS-graph,
- or
ek system (6) has a over the set of

non-negative integers, which means that a considered
graph G is not a DS-graph. In that case, these solutions
form the cospectral equivalence class of G.
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Spectral characterization of Wy + Ty

Proposition [D. Cvetkovi¢, I. M. Jovanovi¢|

The cospectral equivalence class of graph Wy + Ty is:
(Wi 4+ Tyl ={Wi +T4,P1 +Cs+ Wi, P +Cs + T4, Py +
C4 + Wy, 2Py + 2Cy4, 2Ws, Cg + Cy4 + 2P }.

Some
cospectral

equivalence
classes
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Spectral characterization of Wy + T}y

Proposition [D. Cvetkovi¢, I. M. Jovanovi¢|

The cospectral equivalence class of graph Wy + Ty is:
(Wi 4+ Tyl ={Wi +T4,P1 +Cs+ Wi, P +Cs + T4, Py +
C4 + Wy, 2Py + 2Cy4, 2Ws, Cg + Cy4 + 2P }.

Proof.
Graph W1 4+ T4 has 12 vertices.

Some
cospectral

equivalence
classes
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Some
cospectral
equivalence
classes

Spectral characterization of Wy + T}y

Proposition [D. Cvetkovi¢, I. M. Jovanovi¢]

The cospectral equivalence class of graph Wy + Ty is:
(Wi 4+ Tyl ={Wi +T4,P1 +Cs+ Wi, P +Cs + T4, Py +
C4 + Wy, 2Py + 2Cy4, 2Ws, Cg + Cy4 + 2P }.

Proof.
Graph W1 4+ T4 has 12 vertices.
Relevant variables are:

P1.P2,...,P12,22,23,...,210, W1, W2,...,Wg,C2,C3,...,Cq,
t1, to, t3, t4, ts, te.
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Some
cospectral

equivalence
classes

Spectral characterization of Wy + T}y

Proposition [D. Cvetkovi¢, I. M. Jovanovi¢|

The cospectral equivalence class of graph Wy + Ty is:
(Wi 4+ Tyl ={Wi +T4,P1 +Cs+ Wi, P +Cs + T4, Py +
C4 + Wy, 2Py + 2Cy4, 2Ws, Cg + Cy4 + 2P }.

Proof.
Graph W1 4+ T4 has 12 vertices.

Relevant variables are:

t1, to, t3, t4, t5, tg.

According to (1) we find: \/N\l + T4 = 264 + 2132.
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Some
cospectral
equivalence
classes

Spectral characterization of Wy + T}y

System of linear equations (6) as ted to Wy + T

The system (6) associated to Wy + T}y is:

FO =wW; +Wg + ...+ Wg+Ca +C3+...+C6+t4+t5+t6:2,

Fi=p1+wi+224+23+...+210—2c3 —2c4 —...—2c6+
ty +to+t3—tg —ts —tg =0,

Fs =ps — 2y + wa 4+ 2c3 + t1 + tg + t3 + 2t4 + t5 + tg = 2,

F3 =p3s —z3 +w3+2¢c4 —t; +t5 =0,

Fio=ps—2z4+ws+2c5 +t3+t6 =0,

Fs =ps +722 — 25 + W5 +2¢c6 —t; —ta —t3 =0,

Fe =ps — 76 +ws =0,

F; =pr+23 —27 + wy =0,

Fg =ps — 28 + wg —t2 =0,

Fg =pg +24 —29 —t3 =0,

Dr. Irena M. Jovanovié
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Some
cospectral
equivalence
classes

Som
DS-g

Spectral characterization of Wy + T

System of linear equations (6) as ted to Wy + T

Dr. Irena M. Jovanovié

Fi0 =p10 — 210 =0,
Fi11 =p11 +2z5 +t1 =0,

Fi2 =p12 =0,
Fi3 =26 =0,

Fiy =—t3 =0,
Fi5 =27 =0,

Fi7 =25+t =0,
Fi9 =29 =0,

F21 =210 =0.
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Spectral characterization of Wy + T

System of linear equations (6) associated to Wy + 1

Fi0 =p10 — 210 =0,
Fi11 =p11 +2z5 +t1 =0,

Fi2 =p12 =0,
Fi3=12¢ =0,
Fis=—t3=0,
e Fi5 =27 =0,
oon Fir =28 +1t2 =0,
Fi9 =29 =0,
Fy =210 =0.
Some
cospectral By considering the equations E; of this system, for
°“f‘f‘“5 ie{11,12,13,14,15,17,19, 21}, we find that
DS-g
P11 =pP12=0,25 =26 =... =210 =0, t; =t3 =t3 =0. (7
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Spectral characterization of Wy + T}y

Using equalities (7), from equations Ej, for
ie€{5,6,7,8,9,610}, we get:
Ps=ps=...=p1o=0, z2 =23 =24 =0,

Wy = Wg = W7 = Wg, C6:0. (8)

Using (7) and (8), from equations Eg and E4, we have:

ps=p1=0, wg=wy =0, ¢y =c5 =0, t5 =t =0. (9)

Some
cospectral
equivalence
classes
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Spectral characterization of Wy + T}y

Using equalities (7), from equations Ej, for
ie€{5,6,7,8,9,610}, we get:

Ps =P =...=p1o =0, 22 =23 =24 =0,
Wy = Wg = W7 = Wg, C6:0. (8)
Using (7) and (8), from equations Eg and E4, we have:
ps=p1=0, wg=wy =0, ¢y =c5 =0, t5 =t =0. (9)
Having in mind (7), (8) and (9), equations Eg, E; and E;

reduce to:
SO tral Fo=wi + wo + ¢ + ¢ + tg = 2
Sfuiyalence Fi=py + wiy — 23 — t4 = 0 } (10)
F2 = P2 + Wy + 2C3 + 2t4 = 2
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Some
cospectral
equivalence
classes

Spectral characterization of Wy + Ty

By considering the equation Fg = 2 of system (10), one
can distinguish the following five cases.
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Spectral characterization of Wy + T}y

By considering the equation Fg = 2 of system (10), one
can distinguish the following five cases.

If c3 =1 and py = wo = t4 = 0, then there are
two sets of possible solutions: wiy =1, co =0
and py =1,orco =1, w; =0 and p; = 2.
Therefore, P1 + Cg + W1 ~ Wy + Ty and
Ce+Cy+2P1 ~ Wy + Ty

Some
cospectral
equivalence
classes
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Spectral characterization of Wy + T}y

By considering the equation Fg = 2 of system (10), one
can distinguish the following five cases.

If c3 =1 and py = wo = t4 = 0, then there are
two sets of possible solutions: wiy =1, co =0
and py =1,orco =1, w; =0 and p; = 2.
Therefore, P1 + Cg + W1 ~ Wy + Ty and
Ce+Cy+2P1 ~ Wy + Ty
If t4 =1 and py = wg = c3 = 0, then there are
two sets of possible solutions: p; =1, w; =0
e and cg =1,0r pp =0, w; =1 and ¢ =0, so
g;i}fi;sféﬂe Py +C4+ T4 and Wy + T4 are the
corresponding resulting graphs.
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Spectral characterization of Wy + Ty

For po = w9 =1 and c3 = t4 =0, one finds
p1 =w; =0and ca =1, so
Po+Cy+Wo~W; 4+ Ty.

Some
cospectral
equivalence
classes
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Spectral characterization of Wy + Ty

For po = w9 =1 and c3 = t4 =0, one finds
pr=wi =0and cy =1, so
Po4+Cq+Wo~ Wy +Ty.

If po =2 and wo9 =c3 =t4 =0, then

p1 =w; =0and cs =2, so

2Py +2C4 ~ W1 + T4.

Some
cospectral
equivalence
classes
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Spectral characterization of Wy + Ty

For po = w9 =1 and c3 = t4 =0, one finds
pr=wi =0and cy =1, so
Po4+Cq+Wo~ Wy +Ty.

If po =2 and wo9 =c3 =t4 =0, then

p1 =w; =0and cs =2, so

2Py +2C4 ~ W1 + T4.

If wo =2 and ps =c3 =t4 =0, then
pr=wi; =co =0, and 2W9 ~ W + T4.

Some
cospectral
equivalence
classes
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Spectral characterizations of Wy + T';

and T5 + T

Proposition [D. Cvetkovi¢, I. M. Jovanovi¢|

The cospectral equivalence class of graph Wy + T is:
(W1 +T5] ={W1 +T5, P2 + P3 +2C4, P2+ Cy + W3, Wa +
P34+ Cy, Wy + W3, Ty +Cy + Py}

Proposition [D. Cvetkovi¢, I. M. Jovanovi¢|

Graph Ty + Tg is not DS-graph. Its cospectral equivalence
- class is: [T5 + Tgl =
cospeciral {T5+ T¢, P33+ P4+ Cyq + Cqg, Py + Cg + W3, P3 + Cg + Wyl

equivalence
classes
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Spectral characterization of Z, + P,

Theorem (D. Cvetkovié¢, I. M. Jovanovi¢)

Graph Z, + Py, for n > 9 is DS-graph.

Some
DS-graphs
’
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Spectral characterization of Z, + P,

Theorem (D. Cvetkovié¢, I. M. Jovanovi¢)

Graph Z, + Py, for n > 9 is DS-graph.

Proof.
Graph Z, + Pq has n + 3 vertices.

Some
DS-graphs
’
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Spectral characterization of Z, + P,

Theorem (D. Cvetkovié¢, I. M. Jovanovi¢)
Graph Z, + Py, for n > 9 is DS-graph.

Proof.
Graph Z, + Pq has n + 3 vertices.

The relevant variables are:

P1.P2y.--Pn+3,22,23,...,2n+1, W1, W2, ..., Wn_1,

€2,C3, .. -.CL%SJ.t1,t2.t3,t4.t5,t6-

Some
DS-graphs
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Spectral characterization of Z, + P

Theorem (D. Cvetkovié¢, I. M. Jovanovi¢)
Graph Z, + Py, for n > 9 is DS-graph.
Proof.

Graph Z, + Pq has n + 3 vertices.

The relevant variables are:

P1.P2y.--Pn+3,22,23,...,2n+1, W1, W2, ..., Wn_1,

€2,C3, .. -.CL%SJ.t1,t2.t3,t4.t5,t6-

According to (1) we have: Zn+P1 =2P, — P, +Ponyi.

Some
DS-graphs
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Spectral characterization of Z, + P

Equation Eg

Equation Eg of the system of linear equations (6) that is
associated to Z, + P reads:

Fo :Wl+W2+"'+WH—1+C2+C3+"'+C|_I‘T+3j+
ty+1t5+t6 =0,

wherefrom we get: wy =we =... =wp_1 =0,
C2:C3:...:C|—nT+3J :Oandt4:t5:t6:0.
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’
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Spectral characterization of Z, + P

Equation Eg

Equation Eg of the system of linear equations (6) that is
associated to Z, + P reads:
Fo =W1 +W2+"'+Wn_1+C2+C3+"'+C|_DT+3J+
t4 +t5 +t¢ =0,
wherefrom we get: wy =we =... =wp_1 =0,
C2:C3:...:C|—nT+3J :Oandt4:t5:t6:0.
Therefore the equation Eq becomes:

F1:p1+Z2+23+...+Zn+1+t1+t2+t3:2. (11)
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Spectral characterization of Z, + P

Equation E;

‘We have:

Fy=p2+2=0, ift; =2 for exactly oneie€{1,2,3};
Fo=p,+2=0, ift;=t;=1for exactly onei##je{l,2, 3}
Fy =p,+1=0, ifp, =t; =1 for exactly one i€ {1,2,3};
Fy=ps+1=0, ift;=1 for exactly onei€{1,2,3}and

z; = 1, for exactly one j €{3,4,..., n+1}.

Let us now assume that t; = 1 for exactly one i € {1, 2,3} and z5, = 1.
Then we have:

0, if n #11; . L
F11*P11+17{_1’ fn—11 ift; =1;
0, ifn#17; .
F17:P17+1:{ ~1, ifni17i . if by =15
F4:p4+1:0, 1ft3:1
Some
DS-graphs From the considered cases we conclude t; = t, = t3 = 0.
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Spectral characterization of Z, + P

l:(ll,l"'l tion I':—_vu 1

From the equation Eq, 1 we find Fopq =2, = 1.

cquivale
F:
Some
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’
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Spectral characterization of Z, + Py

Equation Es;,

O
From the equation Eq, 1 we find Fopq =2, = 1.

This, together with (11), means that exactly one of the
variables p1, 292,23, ...,2n—1,2n+1 1S equal to 1.

ui
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Spectral characterization of Z, + P

Equation Ej,

From the equation Eq, 1 we find Fopq =2, = 1.

This, together with (11), means that exactly one of the
variables p1, 292,23, ...,2n—1,2n+1 1S equal to 1.

Let us suppose that z; = 1, for exactly one
1ie{2,3,...,n—1,n+1}
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Spectral characterization of Z, + P

Equation Es;, 4

[
-
From the equation Eq, 1 we find Fopq =2, = 1.

This, together with (11), means that exactly one of the
variables p1, 292,23, ...,2n—1,2n+1 1S equal to 1.

Let us suppose that z; = 1, for exactly one
1ie{2,3,...,n—1,n+1}

Then the equation Esj.q is of the form:

Foiy1 = poip1 = —1 —— contradiction!

Therefore, zg =23 = ... =231 = zp+1 = 0, and from (11)
we have p; = 1.
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Spectral characterization of Z, + P

Equation Es;, 4

[
-
From the equation Eq, 1 we find Fopq =2, = 1.

This, together with (11), means that exactly one of the
variables p1, 292,23, ...,2n—1,2n+1 1S equal to 1.

Let us suppose that z; = 1, for exactly one
1ie{2,3,...,n—1,n+1}

Then the equation Esj.q is of the form:

Foiy1 = poiy1 =—1

Therefore, zg =23 = ... =231 = zp+1 = 0, and from (11)
we have p; = 1.

Equations E;, fori €{2,3,...,n+ 3} are of the form
Fi=pi=0,s0 wefind po=p3=... =ppa3=0.

Dr. Irena M. Jovanovié 32/36



Some
DS-graphs
’

Spectral characterization of Z, + P

Equation Es;, 4

[
-
From the equation Eq, 1 we find Fopq =2, = 1.

This, together with (11), means that exactly one of the
variables p1, 292,23, ...,2n—1,2n+1 1S equal to 1.

Let us suppose that z; = 1, for exactly one
1ie{2,3,...,n—1,n+1}

Then the equation Esj.q is of the form:

Foit1 =paoiq1 =—1

Therefore, zg =23 = ... =231 = zp+1 = 0, and from (11)
we have p; = 1.

Equations E;, fori €{2,3,...,n+ 3} are of the form
Fi=pi=0,s0 we find pp =p3s =... =pnss =0.

Since the associated system (6) has unique solution, graph
Zm + Py is DS-graph.

Dr. Irena M. Jovanovié 32/36



Spectral characterization of Cs,, + P-
¢ 2n 1

Theorem (D. Cvetkovié¢, I. M. Jovanovi¢)

Graph Cop + Py, for n > 4 is DS-graph.

Theorem (in progress :))

The cospectral equivalence class of graph Z, + W, for
n>2 n#58is: [Zy, + Wyl ={Zn + W, W1 +
Pont1, Wany1 +P1, Py +Zn + Cy, Py + Panyg + Cyl

Some
DS-graphs
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Goodbye :)

THANK YOU FOR YOUR ATTENTION!
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