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Bipartite regular graphs

Bipartite regular graphs with three distinct non-negative
eigenvalues of the adjacency matrix, their relations with
two-class symmetric partially balanced incomplete block
designs and some constructions



Some structural and spectral properties

Let G be a connected r -regular bipartite graph with three
distinct non-negative eigenvalues. Then G is walk-regular.

The eigenvalues and the number of vertices of connected
r -regular bipartite graph with three distinct non-negative
eigenvalues determine the multiplicities of the eigenvalues

Let G be a connected bipartite r -regular graph with six
distinct eigenvalues, let σ1 > σ2 be the squares of distinct
eigenvalues of G (different from ±r ). Then σ2 < r holds.



Some structural and spectral properties

Let G be a connected r -regular bipartite graph with three
distinct non-negative eigenvalues. Then G is walk-regular.

The eigenvalues and the number of vertices of connected
r -regular bipartite graph with three distinct non-negative
eigenvalues determine the multiplicities of the eigenvalues

Let G be a connected bipartite r -regular graph with six
distinct eigenvalues, let σ1 > σ2 be the squares of distinct
eigenvalues of G (different from ±r ). Then σ2 < r holds.



Some structural and spectral properties

Let G be a connected r -regular bipartite graph with three
distinct non-negative eigenvalues. Then G is walk-regular.

The eigenvalues and the number of vertices of connected
r -regular bipartite graph with three distinct non-negative
eigenvalues determine the multiplicities of the eigenvalues

Let G be a connected bipartite r -regular graph with six
distinct eigenvalues, let σ1 > σ2 be the squares of distinct
eigenvalues of G (different from ±r ). Then σ2 < r holds.



Definition of a two-class symmetric PBIBD

Two-class symmetric PBIBD:
a design with constant replication r and constant block size
b, r = b;
Nj = NT j = r j;
incidence matrix N satisfies the equation

NNT = rI + λ1A + λ2(J− I−A), (1)

where A is the adjacency matrix of a strongly regular graph
H, and λ1 > λ2 ≥ 0 are suitable integers (we say that the
design is based on the strongly regular graph H)



Relations with PBIBDs

Let G be a bipartite distance-regular graph with three
distinct non-negative eigenvalues. Then G is the incidence
graph of a two-class symmetric PBIBD based on the
(strongly regular) halved graph of G.

Let G be a connected r -regular bipartite graph on 2n
vertices with six distinct eigenvalues, one of them, different
from ±r , being simple. Then this eigenvalue is the second
largest, n is even, and G is the incidence graph of a
two-class symmetric PBIBD based on the disjunct union of
two complete graphs on n

2 vertices.
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Relations with PBIBDs

Let G be a connected r -regular bipartite graph with three
distinct non-negative eigenvalues, suppose that G contains
no quadrangles. Then G is the incidence graph of a
two-class symmetric PBIBD.

Let G be connected r -regular bipartite graph on 2n vertices
with three distinct non-negative eigenvalues, let
σ1 > σ2 ≥ 0 be the squares of distinct eigenvalues of G
(different from ±r ) and let

(σ1 + σ2−2r + 1)r −σ1σ2 +
(r2−σ1)(r2−σ2)

n
= 0

Then G is the incidence graph of a two-class symmetric
PBIBD.
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Relations with PBIBDs

Let G be a connected r -regular bipartite graph on 2n
vertices with three distinct non-negative eigenvalues, let
σ1 > σ2 be the squares of distinct eigenvalues of G
(different from ±r ). If there is an integer λ2, such that

(σ1 + σ2)r −σ1σ2 +
(r2−σ1)(r2−σ2)

n
− r2+

+λ2((n−1)λ2−2r(r −1)) = r(r −1)−λ2(n−1)

holds, (i.e. there is a non-negative integer solution of the
quadratic equation

(n−1)t2 + (n−1−2r(r −1))t + (σ1 + σ2 + 1)r−

−σ1σ2 +
(r2−σ1)(r2−σ2)

n
−2r2 = 0)

then G is the incidence graph of a two-class symmetric
PBIBD, with λ1 = λ2 + 1.



Examples

1. The bipartite complement of the disjoint union of isomorphic
incidence graphs of a symmetric BIBD always produces a
regular bipartite graph with six distinct eigenvalues. Also, the
bipartite double of any non-bipartite strongly regular graph with
parameters (n, r ,e, f ), f 6= r , or the extended bipartite double of
any strongly regular graph is again a regular bipartite graph
with six distinct eigenvalues.

2. Take the conference matrix C of size m, and replace an entry
0 by O2, an entry +1 by I2 and an entry −1 by J2− I2. It is easy
to verify that 2m×2m matrix constructed in this way is the
incidence matrix of two-class symmetric PBIBD, and that the
incidence graph of the obtained design has the spectrum
±(m−1)2, [± (m−1)]m, [±1](m−1).



Examples

1. The bipartite complement of the disjoint union of isomorphic
incidence graphs of a symmetric BIBD always produces a
regular bipartite graph with six distinct eigenvalues. Also, the
bipartite double of any non-bipartite strongly regular graph with
parameters (n, r ,e, f ), f 6= r , or the extended bipartite double of
any strongly regular graph is again a regular bipartite graph
with six distinct eigenvalues.

2. Take the conference matrix C of size m, and replace an entry
0 by O2, an entry +1 by I2 and an entry −1 by J2− I2. It is easy
to verify that 2m×2m matrix constructed in this way is the
incidence matrix of two-class symmetric PBIBD, and that the
incidence graph of the obtained design has the spectrum
±(m−1)2, [± (m−1)]m, [±1](m−1).



Examples

3.

N =


Ik Jk Ok Jk
Jk Ik Jk Ok
Jk Ok Ik Jk
Ok Jk Jk Ik


N is the incidence matrix of a three-class symmetric PBIBD,
whose incidence graph has spectrum:

±(2k + 1), [±
√

2k2−2k + 1]2, [±1](4k−3)

In this way we constructed a family of connected
(2k + 1)-regular bipartite graphs on 8k vertices (k ≥ 2) with six
distinct eigenvalues.



Distance spectrum

Distance-regular graphs with diameter d have at most
d + 1 distinct D-eigenvalues
(F. Atik and P. Panigrahi, On the distance spectrum of
distance-regular graphs, Linear Algebra Appl. 478 (2015),
256–273.)

Distance-regular graphs with small diameter and at most
four distinct eigenvalues of their distance matrix:

diameter is three and the corresponding graphs have also
three distinct D-eigenvalues
diameter is four and the corresponding graphs are bipartite
and have four of less distinct D-eigenvalues

Infinite family of semiregular bipartite graphs with diameter
four and also four distinct D-eigenvalues
The connection between the eigenvalues of the distance
and adjacency matrix of bipartite (semi)regular graphs with
diameter 3
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Distance-regular graphs with diameter 3

Let G be a distance-regular graph with n vertices, diameter
three, intersection array {b0,b1,b2;c1,c2,c3}, and
spectrum

Σ = {[λ1]1, [λ2]m2 , [λ3]m3 , [λ4]m4}.

Then the D-eigenvalues of G are:
ρ1 = 3n− λ 2

1
c2
−
(

2− b0−b1−c1
c2

)
λ1−

(
3− b0

c2

)
and

ρi =−λ 2
i

c2
−
(

2− λ1−b1−c1
c2

)
λi −

(
3− b0

c2

)
, where 2≤ i ≤ 4.

If a3−b2 >−1 then G has exactly three distinct
D-eigenvalues if and only if λ2 is equal to b0−b2 + c2−c3,
while if a3−b2 ≤−1 then G has exactly three distinct
D-eigenvalues if and only if exactly one of λ2 or λ3 is equal
to the same value.
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Bipartite distance-regular graphs with diameter 3

Let G be a bipartite distance-regular graph with diameter
three. Then G has exactly three distinct D-eigenvalues if
and only if it is the incidence graph of a Menon design with
parameters (4s2,2s2 + s,s2 + s), where s is an integer
different from 0 and −1, and the distance spectrum of G is
{[16s2−2s−2]1, [2s−2]4s2

, [−2s−2]4s2−1}



Bipartite distance-regular graphs with diameter 4

Let G be a bipartite distance-regular graph with diameter
four, intersection array {b0,b1,b2,b3;c1,c2,c3,c4}, and
spectrum

Σ = {[λ1]1, [λ2]m1 , [0]m2 , [−λ2]m1 , [−λ1]1}.

Then G has less than five distinct D-eigenvalues if and
only if λ2 =

∣∣∣b0− 2c2c3
2c3−b0

∣∣∣ or λ2 = c2.

Let G be a bipartite distance-regular graph with diameter
four. If G has exactly three distinct D-eigenvalues, then G
is the Hadamard graph with intersection array
{4,3,2,1;1,2,3,4}. Its D-spectrum is {[32]1, [0]11, [−8]4}.



Bipartite distance-regular graphs with diameter 4

Let G be a bipartite distance-regular graph with diameter
four, intersection array {b0,b1,b2,b3;c1,c2,c3,c4}, and
spectrum

Σ = {[λ1]1, [λ2]m1 , [0]m2 , [−λ2]m1 , [−λ1]1}.

Then G has less than five distinct D-eigenvalues if and
only if λ2 =

∣∣∣b0− 2c2c3
2c3−b0

∣∣∣ or λ2 = c2.

Let G be a bipartite distance-regular graph with diameter
four. If G has exactly three distinct D-eigenvalues, then G
is the Hadamard graph with intersection array
{4,3,2,1;1,2,3,4}. Its D-spectrum is {[32]1, [0]11, [−8]4}.



Diameter 4 and four distinct distance eigenvalues

BIBD with parameters
(
n,
(n

2

)
,n−1,2,1

)
, where n ≥ 4

incidence graph G is semiregular bipartite: the vertices in
one colour class of G have degree two, and the vertices in
the other colour class have degree n−1 (G can be
obtained by inserting a vertex onto each edge of Kn)
the diameter of G is four
the distance spectrum of G is{

[ρ1]1, [0]
(n−2)(n+1)

2 , [ρ2]1, [−2(n−1)]n−1
}
,

where ρ1 and ρ2 are roots of the quadratic equation
ρ2−2(n−1)2ρ− n2(n−1)

2 = 0
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Bipartite regular graphs with diameter 3

The characteristic polynomial of the distance matrix of
bipartite r -regular graph on 2n vertices with diameter 3 is
determined by

DG(x) =
PG(−1

2(x + 2))
1
4(x + 2)2− r2

×

×
(

x2−4(n−1)x −8n−5n2−4r2 + 12rn + 4
)

Let G be bipartite r -regular graph on 2n vertices with
diameter 3. If the eigenvalues of G are
λ1 = r ,λ2, · · · ,λ2n =−r , then the distance eigenvalues of G
are −2λi −2, 2≤ i ≤ 2n−1, and 5n−2r −2 and 2r −n−2.
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Bipartite regular equienergetic graphs

Let G1 and G2 be bipartite regular graphs of degree r1 and
r2 respectively, on 2n vertices, both with diameter 3, and let
2ri −n−2≥ 0 hold, for 1≤ i ≤ 2. Let
Σ1 = {[±r1]1, [±λ2]m1 , . . . , [±λk ]mk} and
Σ2 = {[±r2]1, [±µ2]l1 , . . . , [±µp]lp} be the adjacency spectra
of G1 and G2. Then G1 and G2 have the same distance
energy if and only if
∑λi∈Σ1,λi<−1,λi 6=−r1

(1 + λi) = ∑µi∈Σ2,µi<−1,µi 6=−r2
(1 + µi), and

in that case their distance energy is
2(4n−4−2∑λi∈Σ1,λi<−1,λi 6=−r1

(1 + λi))
(2(4n−4−2∑µi∈Σ2,µi<−1,µi 6=−r2

(1 + µi))).



Example

p ≥ 3, p odd, q = 3p+1
2 + 1, m = p+1

2 , n = 3p, or

p ≥ 4, p even, q = 3p
2 −1, m = p

2 , n = 3p−2

The graphs:

G1 – the bipartite complement of p disjoint copies of the
qK2 and

G2 = mKn,n – the bipartite complement of m disjoint copies
of Kn,n

are distance equienergetic
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Bipartite regular equienergetic graphs

Let G1 and G2 be bipartite r -regular equienergetic graphs
on 2n vertices, both with diameter 3. If all eigenvalues of
those two graphs lie outside the interval (−1,1), then G1
and G2 are distance equienergetic, and their distance
energy is 5n−6r −2 + |2r −n−2|+ 2E(Gi).



Example

G1 and G2 are two non-cospectral regular graphs, both on
n vertices, both of degree r ≥ 4

According to Y. Hou, L. Xu, Equienergetic bipartite graphs,
MATCH Commun. Math. Comput. Chem., 57 (2007),
363–370, the graphs Fi = ebd(L2(Gi)), 1≤ i ≤ 2, are
equienergetic bipartite graphs with the same degree
nr(r−1)

2 −4r + 6 and order nr(r −1), and their spectra are
[±(nr(r−1)

2 −4r + 6)]1, [±(−λ2(Gi)−3r +

6)], . . . , [±(−λn(Gi)−3r + 6)], [±(−2r + 6)]
n(r−2)

2 , [±2]
nr(r−2)

2 }.
F1 and F2 are distance equienergetic and their distance
energy is 2(5nr2−9nr −8r + 10)
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