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Introduction

« Mladenovic (1995) - Variable neighborhood algorithm -

a new metaheuristic for combinatorial optimization.
» Mladenovic, Hansen (1997) Variable neighborhood search.
o This paper cited around 2,000 times (Google scholar).
 This paper cited > 700 times (Web of Knowledge)
» Euro Mini Conference devoted to VNS (2005);
« Euro Mini Conference on VNS (2012), 80 contributions.

« 6 VNS special issues (JOGO, COR, JOH, EJOR, YUJOR and IMA-MAN).

o 3rd International conference on VNS, Djerba, Tunis 2014.

(www.vns-metaheuristic.com)
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« Several book Chapters.
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Variable neighborhood search

o Let Nk, (k =1,..., kmax),
a finite set of pre-selected neighborhood structures,

o Nji(x) the set of solutions in the k"
neighborhood of x.

e An optimal solution @,y (or global minimum) is a
feasible solution where a minimum is reached.

e We call ' € X a local minimum with respect to
N (w.r.t. Ny for short), if there is no
solution z € Ny (z') C X such that f(x) < f(z).

e VNS is based on three simple facts:

> A local minimum w.r.t. one neighborhood structure is not
necessarily so for another;

> A global minimum is a local minimum w.r.t. all possible
neighborhood structures;

> For many problems, local minima w.r.t. one or several N
are relatively close to each other.
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Variable neighborhood search

e In order to solve optimization problem by using several
neighborhoods, facts 1 to 3 can be used in three different ways:

> (i) deterministic;
> (ii) stochastic;
> (iii) both deterministic and stochastic.

e Some VNS variants

Variable neighborhood descent (VND) (sequential, nested)
Reduced VNS (RVNS)

Basic VNS (BVNS)

Skewed VNS (SVNS)

General VNS (GVNS)

VN Decomposition Search (VNDS)
Parallel VNS (PVNS)

Primal Dual VNS (P-D VNS)
Exterior point VNS;

VN Branching

VN Pump and VN Diving;
Continuous VNS

Mixed Nonlinear VNS (RECIPE), etc.

v Vv Vv VvV VVVVVVVvYV
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Ratio-cut divisive clustering - Introduction

Complex systems in a variety of domains are represented by networks: social, telecommuni-
cation, transportation, biological networks, and many more.

A topic of particular interest is the identification of clusters or communities.
Several models and clustering criteria have been proposed. The most used is modularity,

Let S C V be asubset of vertices. Then the degree k; can be separated into two components
k"(S) and kJ*(S).

A set of vertices S forms a community in the strong sense iff every one of its vertices has
more neighbors within the community than outside:

k"(S) > kE(S), Vi€ S.

A set of vertices S forms a community in the weak sense iff the sum of all degrees within S
is larger than the sum of all degrees joining S to the rest of the network:

> EM(S) > D> kM(S).

1esS €S
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Edge-ratio criterion

The ratio of the number of edges within a community to the number of cut edges which have
one end point only within that community is considered:

r(S) = _k"S)/ D kM(S).

€S 1eS

When dividing S, this ratio for both communities S; and S5 is considered and the smallest
value is maximized:

Sl,rrégoccv min (r(S1), r(S2)) .

where S U Sy =5, SN Sy = 0, S1, 59 75@

f(Sla 82) — Srr}ga}ecp min{fl<51)7 f2(S2)} (1)

1,52
where S; U Sy = S and SN Sy = 0.

This problem is NP hard (Noble et al 2011).
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VNS for divisive hierarchical Ratio-cut clustering

e Solution is represented in the following way:

> x = {x1,...,x)g} indices of vertices that belong to S.
o 1 if T; € Sh
> 5$j o { 0 if Ty € SH

e To efficiently update objective function values we need:

> mq — the number of vertices in set Sfy;

> mo — the number of vertices in set Ss;

> m3 — the number of vertices in set S;

> mq — the number of edges in subgraph G7;

> mso — the number of edges in subgraph Go;

> c¢1 — the number of cut edges with one end point in S; and another in V'\ .S; = SaU.S5;

> co —the number of cut edges with one end point in Sy and another in V'\ Sy = S1US3;

> k'™ — inner degree of vertex v; (both end points belong to either Sy or Sa);

> k" — cut (outer) degree of vertex v; (the number of links of v; with vertices from the
different sets)'

> f1 = 2 - —L — ratio for subgraph Gi:

> fo = 2 - —= —ratio for subgraph Gs;

> f = mln{fl, f2} — objective function value.
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e Note that all values from above are known if partition (S, S2, S3) is known (S; € P).
Therefore, to be more precise, instead of n; we can put n1(S1), instead of mo we can put

mQ(SQ), etc.

o At each hierarchy level £, we calculate the "rest” degree of each vertex from S* as

k" =k, — ky(S),v € V.

(3

e The degree of each vertex can be presented as

kv _ kz}n _"_ ch)ut _|_ k;est’
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Allocation local search

e The basic local change we use is allocation move: take some entity v from S = S; U Sy
and change its allocation: if v € S; then, after the allocation move, it will belong to S5 and
vice versa.

e In the Algorithm Move-Check(w, f, d) input values are the index of entity v that will change
its membership, current objective function value f and the current solution 4. We also
assume that, together with the solution, values of m1, ms, ¢1 and ¢, are known as well. The
next property gives the new objective function value.

Proposition 1. Let v be a vertex that moves from one subset to another. If v € S then
the new objective function value is

2. o kzn 9. kcut
FE— (m1 — k") (m2 + k") .

in _ lL.cut _ l.rest’ i __ l.cut rest
c1 + Kin — keut — rest’ oy 4 fin — feut 4 fr

If v € Sy then

2. kcut 2. . kzn
£ min{ (m1+ k") (m2 — k") .

mn __ l.cut rest’ mnm __ l.cut __ l.rest
1 + kin — kout 4 krest’ ¢y + kin — keut —
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Proof. A new value of the objective function, by definition is

2mIe 2mie ,
cnew ? new } ( )

1 Coy

If v € S1 changes its membership to S, then the following changes are evident:

mi =m; — k" (3)
M = ma K “

Indeed, the new number of inner edges m1 in Sy is reduced by k' (the inner degree of v)
(see (3)); the number of edges in Sy is augmented by the cut degree of v (see (4])). The
numbers of cut edges c; and cs of S and S5 need also to be updated:

C?ew = ¢ + k:}n . kSUt L k;est (5)
C;zew = ¢, _|_ qu)n . ksut _|_ k;est (6)

We explain now how (b)) is derived. Since v moves to Sy, the number of cut edges ¢ of
S is increased by its inner degree in Sy (+k'"). Also, it should be reduced by k"', since
its cut degree contributes to inner degree of S5. In addition, all vertices from S3 connected
with v after the move to Sy do not produce cut edges of S; any more (—k!°**). Observe
that ¢ = ¢y only if S = V, i.e., at the first hierarchy level £ = 1 subset S3 = () and
therefore the rest degrees are equal to 0. Explanation of formula ([6)) is similar.
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If vertex v belongs to S5 and moves to Sy, then new numbers of inner and cut edges in S

and S5 are

new cut
my; = mi+ k,

new __ . kzn

m2 = Mo v

new mn cut rest
¢, =ca+k, —k, +Ek,

new mn cut rest
c, =c2+k, —k, —k,

Substituting (] - (10)) into equations () we get the result.
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Pseudo-code

of move evaluation:

Algorithm 1 Allocation move

Function Move-Check(v, f,9)
if 0, then

mmq < mq — k'™, mmg < mg + kS

ccy < c1 + k' — keut — frest
cCo — Cg + k' — kCUt  frest

else

mmy < my + kS mmeg < mo — kU
cey < cp + kU — kUt  grest
| ceg < cog + KU — kSvt — frest
2-mmy | 2-mms . .
f1+ =L fo «— =220 f < mind f1, fo}

ccq cco

We denote temporally values of m1, mo, c1 and co with mmy, mmeao, ccy and ccs, respec-
tively, since we just calculate the new value f in the neighborhood; those values will be
changed once we decide to make a move.
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Update function

Proposition 2. Let v be a vertex that change its membership and let r be any adjacent
vertex tov ((v,r) € E). Then values of new inner and cut degrees of r are:

(i) kI = k" — 1, kS = k" 4 1, if both v and  belong to the same subset;

(i) K" = k" 4+ 1, k' = k" — 1, ifv and r are in different subsets.

Proof. As mentioned earlier, r; = h,;, 5 = 1,..., k, indicate all adjacent vertices of v.
There are k, of them since k, is the degree of v. Let us denote with k" and k" a new
values of inner and cut degrees (after the vertex v is moved from one to another subset of
vertices), respectively. Then there are four different cases.

Case 1. v € Sy and r; € Si. Then l_cm = km — 1 and Ecm = kC“t + 1;
Case 2. v € Sy and r; € Sy. Then km = km + 1 and kC“t = kC“t 1;
Case 3. v € Se and r; € Si. Then kff; = k:;? + 1 and kﬁ;t kC;“L 1;
Case 4. v € Sy and ; € So. Then l;:fﬂ? = k;’,? — 1 and Eﬁ;‘t = kﬁ;“ + 1.

From above result it is clear that cases 1 and 4 give the same outcome in updating degrees
of adjacent vertices to v. The same holds for cases 2 and 3. Thus, we get the result. QED.
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Function Update(v, f,d)

if 0, then

Ny ny—1, ng<+no+1
my < my — k'™, mo < mo + kS

¢1 4 ¢y + kin — ket — frest
Cg 4= g + kiIM — KCUT 4 frest

else

ng <—ng —1; ny < ny;+1

my < my + kS mo < mg — kU
¢1  c1 + kit — kgut 4 krest

Co ¢ o + ki — kCut — frest

Yy < kSUt; ROUt kU | oy
for j — 1.k, do

° VVorEJﬁ@p Mathematical Data Science, June 22, Mathematical Institute, SANU, Belgrade

T < h@'j
if (6, A 0,) V (=8, A —6,) then

feut « keut 4 1;kin « fin — 1
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The question is why we needed Algorithm [1| sice a new solution is obtained in only one
command: §, < —9,7 The answer is given by the next proposition.

Proposition 3. The worst case complexity of algorithm Update is in O(kpqz), where
kmaz is the maximum degree of GG.
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Algorithm 2 Best improvement Allocation (re-assignment) local search

Function Best-Impr-LS(x, fopt, d)
fopt <= 00; improve < true
while I'mprove do

Improve <— false
for: =1,n do

V< X
if kcu' > 0 then

Move(v, f,d)
if f < fopt then

Lfopth;wFU

mprove <— true

if =¢mprove return

e Workshop Mathematical Data Science, June 22, Mathematical Institute, SANU, Belgrade 17



Proposition 4. The time complexity of one iteration of Best-Impr-LS algorithm is O(n).
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Shaking

Algorithm 3 Steps of Shaking operator

Function Shake(k, )
l<+1
while ¢ < k do

r < 1+ (|S| —¥) -Rand
V 4— Xy

Update(v, f,d)

l<— 0+ 1;
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Algorithm 4 Steps of the basic VNS
Function BVNS (A, n,m, d,d"**", kuazs tmaz)

repeat
k<1
repeat
0’ < Shake(k,d) /* Shaking */
0" < Best-Impr-LS(d’, f) /* Local search */
k+—k+1 /* Next neighborhood */

if f(5") < f(6) then

t5<——5”; k<+1 /* Make a move */

until £ = £,

t < CpuTime ()
until t > ¢,,,,,
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Function VNS-DHC (m, n, A, P, kmaz, tmaz)
{ = 1,S£ = {’Ul,...,’Un},

P=0,d*" <« 0

Init(m,n, A, H, d)

while | S| > 1 do

S1, So < BUNS (S*, d"°*', kpaz, tmaz) //Find bipartition of S*
if £ > 1 then

t P = P Uargmin f(S1, S2)

St 51 S 5,
C+— L +1
Among {S*, ..., S}, select cluster with the largest cardinality

Exchange its position with S*
drest — d(G) . d(sﬁ)
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Computational results and analysis

dataset n m | Time VNS (sec.) | Time exact (sec.)
karate 34 78 0.0 62.10
dolphins 62 159 9.99e-3 172.2
les miserables 77 254 1.99e-2 283.49
political books 105 441 9.99e-3 716.45
football 115 613 4.99e-2 11780.79
Usair97 332 | 2126 1.5 3752906.94
netscience_main 379 014 1.17 —
s838 512 819 1.09 -
email 1133 | 5452 24.75 -
power 4941 | 6594 40.98 -

Table 1: Comparison of results obtained using VNS and an exact algorithm for
bipartition, on datasets from the literature
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communities

Partition and dendrogram obtained for dataset polbooks
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Sum-of-squared-distances on networks with VNS

e p-Median problem

min > oy d(u, V)T
s.t. Dovev Tuw =1 Yu eV
Ty < Yy VUu,v €V

(1
Z’UEV Yo =D
Tuy € {0,1} VYu,v eV
Yy, € {0,1} Vv eV
e MSSC-Network
min Y, o wed (v; {z1, ..., Tp}) (1

s.t. T1,...,Tp € N,

where, for any v € V| the distance d(v, P) from v to a nonempty finite set P of points
the network is defined as the distance to the closest point in P,

d(v,{z1,...,xp}) = min d(v, x;). (1

1<5<p
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Instance n p

SS VMSS

%

VNS1

%

VNS2

%

VNS3

%

pmedl 100 5
pmed2 100 10
pmed3 100 10
pmed4 100 20
pmed5 100 33
pmed6 200 5
pmed7 200 10
pmed8 200 20
pmed9 200 40
pmed10 200 67
pmed25 500 167
pmed26 600 5
pmed27 600 10
pmed28 600 60
pmed29 600 120
pmed30 600 200
pmed31 700 5
pmed32 700 10
pmed33 700 70
pmed34 700 140
pmed35 800 5
pmed36 800 10
pmed37 800 80
pmed38 900 5
pmed39 900 10
pmed40 900 90

450233 450233
271829 256874
295752 263385
159678 153963
45055 42671
410360 406195
222901 221631
157807 151558
68886 66525
16199 15938
13736 13372
199503 199503
147401 147096
52546 51332
27143 26017
12755 12632
172938 171963
157283 157283
49432 47425
22807 22162
160564 160564
153164 153033
50665 48411
161102 161102
126553 125175
44596 43540

0.00
5.82
12.29
3.71
5.59
1.03
0.57
4.12
3.55
1.64
2.72
0.00
0.21
2.36
4.33
0.97
0.57
0.00
4.23
2.91
0,00
0.09
4.66
0.00
1.10
2.43

450233.00
254771.67
263040.83
151396.38
40281.86
406195.00
221602.83
151170.21
63460.34
15117.98
12536.21
199503.00
147096.00
51175.28
25557.24
11769.52
171963.00
157283.00
47300.46
21665.24
160564.00
153033.00
48195.16
161102.00
125175.00
43278.99

0.00
0.83
0.13
1.70
5.93
0.00
0.01
0.26
4.83
5.42
6.67
0.00
0.00
0.31
1.80
7.33
0.00
0.00
0.26
2.29
0.00
0.00
0.45
0.00
0.00
0.60

450043.94
253069.36
259643.17
151396.38
40281.86
386642.24
221602.83
151170.21
63460.34
15117.98
12536.21
199503.00
147096.00
51175.28
25557.24
11769.52
171963.00
157283.00
47300.46
21665.24
160541.91
153033.00
48195.16
161102.00
125175.00
43278.99

0.04
0.67
1.29
0.00
0.00
4.81
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.00
0.00
0.00
0.00
0.00

450043.94
254599.75
259643.17
149058.42
41699.26
397044.84
224099.33
152541.48
73280.84
18209.92
17018.88
199503.00
149934.00
55310.61
30748.51
15726.85
171963.00
161863.00
52140.66
25854.86
163154.00
156097.00
53333.30
162355.00
126948.00
50427.37

0.00
0.60
0,00
-1.54
3.52
2.69
1.13
0.91
15.48
20.45
35.76
0.00
1.93
8.08
20.31
33.62
0.00
291
10.23
19.34
1.63
2.00
10.66
0.78
1.42
16.52

Table 2: VNS comparison
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Test Prot | EMSSC=
Instance n p | in nodes VMSSC
pmedl 100 5 NO NO
pmed2 100 10 NO NO
pmed3 100 10 NO NO
pmed4 100 20 NO YES
pmed5 100 33 NO NO
pmed6 200 5 NO NO
pmed7 200 10 NO YES
pmed8 200 20 NO YES
pmed9 200 40 NO NO
pmedl10 200 67 NO NO
pmed25 500 167 NO NO
pmed26 600 5 YES YES
pmed27 600 10 YES YES
pmed28 600 60 NO YES
pmed29 600 120 NO YES
pmed30 600 200 NO YES
pmed31 700 5 YES YES
pmed32 700 10 YES YES
pmed33 700 70 NO YES
pmed34 700 140 NO YES
pmed35 800 5 NO NO
pmed36 800 10 YES YES
pmed37 800 80 NO YES
pmed38 900 5 YES YES
pmed39 900 10 YES YES
pmed40 900 90 NO NO
able 3: s EM

e Workshop Mathematical Data-guence ‘June

VMR

emaUca?I nstitute, SANU, Belgrade

30



Beside well known network problems, we wanted to compare results of different clusteri
paradigms on classical Ruspini test instance that is usually used for the continuous MSSC

D MSSC MSSC % p-med p-med % centers
Network continuos | dev new  optimal dev | MSWP | in nodes

2 | 95250.14 89337.83 | 6.62 | 2395.80 2395.80 | 0.00 | 2385.55 NO
3 | 53390.00 51063.48 | 4.56 | 1637.81 1619.47 | 1.13 | 1609.28 YES
4 | 13169.00 12881.05 | 2.24 861.48 861.48 | 0.00 854.62 YES
5| 10572.37 10126.72 | 4.40 779.68 779.68 | 0.00 772.39 NO
6 8942.37 8575.41 | 4.28 715.88 714.65 | 0.17 706.25 NO
7 7596.37 7126.20 | 6.60 650.85 650.85 | 0.00 641.88 NO
8 6537.37 6149.64 | 6.30 600.01 600.01 | 0.00 591.06 NO
9 5534.37 5181.65 | 6.81 555.35 555.35 | 0.00 546.40 NO
10 4760.32 4446.28 | 7.06 512.81 512.81 | 0.00 506.50 NO

Table 4:
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Thank you for your attention!

nenadmladenovic12@gmail.com
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