Comparing closed walk counts in 3-stars

Dragan Stevanović¹

Mathematical institute, Serbian academy of sciences and arts

May 19, 2016

¹(joint work with M. Ghebleh and A. Kanso) ← □ → ← ∂ → ← ≥ → ← ≥ → ≥ ← ⊃ Dragan Stevanović Comparing closed walk counts in 3-stars A closed walk of length k in G is a sequence of adjacent vertices $w_0, w_1, \ldots, w_{k-1}, w_k$ such that $w_0 = w_k$.

A closed walk of length k in G is a sequence of adjacent vertices $w_0, w_1, \ldots, w_{k-1}, w_k$ such that $w_0 = w_k$.

$$M_k(G) = tr(A^k) = \sum_{i=1}^n \lambda_i^k.$$

 m_{A}

 $w_0 w_6$

Comparing closed walk counts can be useful

Denote $G \leq H$ if $M_k(G) \leq M_k(H)$ for each $k \geq 0$.

ゆ く き と く き とう

Comparing closed walk counts can be useful

Denote
$$G \leq H$$
 if $M_k(G) \leq M_k(H)$ for each $k \geq 0$.

From $\lambda_1(G) = \lim_{k \to \infty} \sqrt[2k]{M_{2k}(G)}$ we have

 $G \preceq H \quad \Rightarrow \quad \lambda_1(G) \leq \lambda_1(H).$

伺 と く ヨ と く ヨ と … ヨ

Denote
$$G \leq H$$
 if $M_k(G) \leq M_k(H)$ for each $k \geq 0$.
From $\lambda_1(G) = \lim_{k \to \infty} \sqrt[2k]{M_{2k}(G)}$ we have
 $G \leq H \implies \lambda_1(G) \leq \lambda_1(H)$.

Similar implications hold for Estrada and resolvent Estrada indices

$$EE(G) = \sum_{k \ge 0} \frac{M_k(G)}{k!}$$
 and $EE_r(G) = \sum_{k \ge 0} \frac{M_k(G)}{(n-1)^k}.$

高 とう きょう く ほ とう ほう

By suitably classifying closed walks and using majorization, Andriantiana & Wagner (2013) determined \leq -maximum trees among trees with a given degree sequence. By suitably classifying closed walks and using majorization, Andriantiana & Wagner (2013) determined *≤*-maximum trees among trees with a given degree sequence.

This yielded

an alternative proof of the Leydold-Biyikoglu's 2008 result on the maximum spectral radius of trees with given degree sequence,

and proved the Ilić-S 2009 conjecture on closed walk counts in trees with given maximum degree.

Li-Feng and closed walk counts

-

Li-Feng and closed walk counts

Lemma (Ilić-S, 2009)

If
$$0 \le q \le p-2$$
 then $G(p,q) \le G(p-1,q+1)$.

Proof relies on unimodality of numbers of closed walks in paths:

Numbers of closed walks of length 12 starting from a given vertex

同 ト イ ヨ ト イ ヨ ト

Li-Feng extensions

This had been extended to decorated hanging paths and led to the proof of Belardo-Li Marzi-Simić's conjecture:

Lemma (S, 2015) If $0 \le q \le p-2$ then $H_{p,q}^{u,G} \preceq H_{p-1,q+1}^{u,G}$ and $H_{p,q}^{u,v,G} \preceq H_{p-1,q+1}^{u,v,G}$.

Motivation to study 3-stars

Li-Feng lemma immediately provides initial *≤*-ordering of trees:

Motivation to study 3-stars

Li-Feng lemma immediately provides initial \leq -ordering of trees:

Question

How far \leq -ordering extends as a linear ordering of trees?

Dragan Stevanović Comparing closed walk counts in 3-stars

3-Stars

3-Star $P_{a,b,c}$ is a tree obtained from paths P_a , P_b and P_c by identifying a leaf from each of them.

Computational experiments suggest that for any two 3-stars with the same number of vertices

either
$$P_{a,b,c} \leq P_{d,e,f}$$
 or $P_{d,e,f} \leq P_{a,b,c}$.

3-Stars with a common branch length

Obvious if two 3-stars have a length in common: by Li-Feng lemma, if $b \le c - 2$ then

$$P_{a,b,c} \preceq P_{a,b+1,c-1}.$$

3-Stars with a common branch length

Obvious if two 3-stars have a length in common: by Li-Feng lemma, if $b \le c - 2$ then

$$P_{a,b,c} \preceq P_{a,b+1,c-1}.$$

If 3-stars are classified according to the shortest branch length, then \preceq is linear ordering within each class.

To show that \leq is linear ordering among all 3-stars with *n* vertices, we need to cross the boundary between two consecutive classes and show

$$P_{a,\lfloor rac{n-a}{2}
floor+1,\lceil rac{n-a}{2}
floor+1} \preceq P_{a+1,a+1,n-2a}$$

(provided $a + 1 \le n - 2a$).

To show that \leq is linear ordering among all 3-stars with *n* vertices, we need to cross the boundary between two consecutive classes and show

$$P_{a,\lfloor rac{n-a}{2}
floor+1,\lceil rac{n-a}{2}
floor+1} \preceq P_{a+1,a+1,n-2a}$$

(provided $a + 1 \le n - 2a$).

Nothing works if you try to compare them directly.

To show that \leq is linear ordering among all 3-stars with *n* vertices, we need to cross the boundary between two consecutive classes and show

$$P_{a,\lfloor rac{n-a}{2}
floor+1,\lceil rac{n-a}{2}
floor+1} \preceq P_{a+1,a+1,n-2a}$$

(provided $a + 1 \leq n - 2a$).

Nothing works if you try to compare them directly.

However, there is an interesting workaround. Suppose that $n \equiv_2 a$ and set $b = \frac{n-a}{2}$.

Common factor in characteristic polynomials

Common factor in characteristic polynomials

$$P_{a,b+1,b+1} = P_b P_{a+b} - P_{b-1} P_{a-1} P_b = P_b (P_{a+b} - P_{a-1} P_{b-1})$$
$$P_{a+1,a+1,b} = P_a P_{a+b} - P_{a-1} P_{b-1} P_a = P_a (P_{a+b} - P_{a-1} P_{b-1})$$

$$Sp(P_{a,b+1,b+1}) = Sp(P_b) \cup Sp(P_{a+b} - P_{a-1}P_{b-1})$$

$$Sp(P_{a+1,a+1,b}) = Sp(P_a) \cup Sp(P_{a+b} - P_{a-1}P_{b-1})$$

... induces relation between closed walk counts

$$Sp(P_{a,b+1,b+1}) = Sp(P_b) \cup Sp(P_{a+b} - P_{a-1}P_{b-1})$$
$$Sp(P_{a+1,a+1,b}) = Sp(P_a) \cup Sp(P_{a+b} - P_{a-1}P_{b-1})$$

$$M_{k}(P_{a,b+1,b+1}) = M_{k}(P_{b}) + \sum_{\lambda \in Sp(P_{a+b} - P_{a-1}P_{b-1})} \lambda^{k}.$$
$$M_{k}(P_{a+1,a+1,b}) = M_{k}(P_{a}) + \sum_{\lambda \in Sp(P_{a+b} - P_{a-1}P_{b-1})} \lambda^{k}.$$

... induces relation between closed walk counts

$$Sp(P_{a,b+1,b+1}) = Sp(P_b) \cup Sp(P_{a+b} - P_{a-1}P_{b-1})$$
$$Sp(P_{a+1,a+1,b}) = Sp(P_a) \cup Sp(P_{a+b} - P_{a-1}P_{b-1})$$

$$M_{k}(P_{a,b+1,b+1}) = M_{k}(P_{b}) + \sum_{\lambda \in Sp(P_{a+b} - P_{a-1}P_{b-1})} \lambda^{k}.$$
$$M_{k}(P_{a+1,a+1,b}) = M_{k}(P_{a}) + \sum_{\lambda \in Sp(P_{a+b} - P_{a-1}P_{b-1})} \lambda^{k}.$$

$$M_k(P_{a,b+1,b+1}) = M_k(P_{a+1,a+1,b}) + M_k(P_b) - M_k(P_a).$$

How to interpret $M_k(P_b) - M_k(P_a)$?

The number of closed walks in P_b containing at least one red edge.

$$\begin{aligned} M_k(P_{a,b+1,b+1}) &= & M_k(P_{a+1,a+1,b}) + M_k(P_b) - M_k(P_a) \\ &\leq & M_k(P_{a+1,a+1,2b-a}). \end{aligned}$$

This crosses the boundary between classes

Recall that $b = \frac{n-a}{2}$ (and $n \equiv_2 a$), so that this gives

$$M_k(P_{a,\frac{n-a}{2}+1,\frac{n-a}{2}+1}) \le M_k(P_{a+1,a+1,n-2a}).$$

Recall that $b = \frac{n-a}{2}$ (and $n \equiv_2 a$), so that this gives

$$M_k(P_{\boldsymbol{a},\frac{n-\boldsymbol{a}}{2}+1,\frac{n-\boldsymbol{a}}{2}+1}) \leq M_k(P_{\boldsymbol{a}+1,\boldsymbol{a}+1,\boldsymbol{n}-2\boldsymbol{a}}).$$

If $n \not\equiv_2 a$ then with $b = \lfloor \frac{n-a}{2} \rfloor$

$$M_k(P_{a,b+1,b+2}) \le M_k(P_{a+1,a+1,2b-a+1})$$

is proved in a similar way by further using that

$$M_k(P_{a,b+1,b+2}) \leq M_k(P_{a,b+2,b+2}) - M_k(P_{b+1}) + M_k(P_b).$$

Recall that $b = \frac{n-a}{2}$ (and $n \equiv_2 a$), so that this gives

$$M_k(P_{a,\frac{n-a}{2}+1,\frac{n-a}{2}+1}) \le M_k(P_{a+1,a+1,n-2a}).$$

If $n \not\equiv_2 a$ then with $b = \lfloor \frac{n-a}{2} \rfloor$

$$M_k(P_{a,b+1,b+2}) \le M_k(P_{a+1,a+1,2b-a+1})$$

is proved in a similar way by further using that

$$M_k(P_{a,b+1,b+2}) \leq M_k(P_{a,b+2,b+2}) - M_k(P_{b+1}) + M_k(P_b).$$

Hence \leq is a linear ordering on 3-stars with *n* vertices.

\leq does not like more than one vertex of degree \geq 3

→ < ∃→

э

\leq does not like more than one vertex of degree \geq 3

 However, \leq seems to be a linear ordering on other starlike trees:

- tested within 4-stars with up to 32 vertices;
- tested within 5-stars with up to 37 vertices;

Also, up to closed walks of length 40 and several values of a:

$$P_{a,a,a} \preceq P_{2,2,2,3a-5};$$

 $P_{a,a,a,a} \preceq P_{2,2,2,2,4a-7};$
 $P_{a,a,a,a,a} \preceq P_{2,2,2,2,2,5a-9}.$

Conjecture

 \leq is a linear ordering on starlike trees with n vertices.

In particular:

Let P_{a_1,\ldots,a_k} , $a_1 \leq \cdots \leq a_k$, and P_{b_1,\ldots,b_l} , $b_1 \leq \cdots \leq b_l$, be two starlike trees with *n* vertices. Then

$$P_{a_1,\ldots,a_k} \preceq P_{b_1,\ldots,b_l}$$

if:

i) k < l, or ii) $a_i = b_i$ for $i = 1, \dots, j - 1$ and $a_j < b_j$ for some j.

Thanks for your attention

draganstevanovic.wordpress.com dragance106@yahoo.com

Dragan Stevanović Comparing closed walk counts in 3-stars