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Introduction

Aim:
Show that, for any graph G, the information contained in its
spectrum, preintersection polynomials, and preintersection numbers
is equivalent
How?
By using some algebraic and combinatorial techniques.
Applications?
Characterizations of distance-regularity which are based on the
above concepts.
Instances?
The so-called spectral excess theorem: (A connected regular graph
G is distance-regular if and only if its spectral excess equals the
average excess).
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Some basic notation

.

I Γ = (V,E) stands for a (simple and finite) connected graph
with vertex set V and edge set E.

I We denote by n the number of vertices and by e the number
of edges.

I Adjaceny between vertices u and v (uv ∈ E) will be denoted
by u ∼ v.

I The adjacency matrix A of Γ is the 01-matrix, with rows and
columns indexed by the vertices, such that (A)uv = 1 if and
only if u ∼ v.
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Three equivalent pieces of
information
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The spectrum

The spectrum of Γ is the set of eigenvalues of its adjacency matrix
A togheter with their multiplicities:

sp Γ = {λm0
0 , λm1

1 , . . . , λmd
d }, (1)

where λ0 > λ1 > · · · > λd, and the superscript mi stand for the
multiplicity of the eigenvalue λi, for i = 0, . . . , d. Notice that,
since Γ is connected, m0 = 1, and if Γ is k-regular, then λ0 = k.
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The predistance polynomials

The predistance polynomials p0, . . . , pd, introduced by F. and
Garriga (1997), are polynomials in Rd[x], with dgr pi = i, which
are orthogonal with respect to the scalar product

〈f, g〉Γ =
1

n
tr(f(A)g(A)) =

1

n

d∑
i=0

mif(λi)g(λi), (2)

and normalized in such a way that ‖pi‖2Γ = pi(λ0) (this always
makes sense since it is known that pi(λ0) > 0 for every
i = 0, . . . , d ).
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Basic properties
Let Γ be a graph with average degree k = 2e/n, predistance
polynomials pi, and consider their sums qi = p0 + · · ·+ pi, for
i = 0, . . . , d. Then,

(a) p0 = 1, p1 = (λ0/k)x, and the constants of the three-term
recurrence

xpi = βi−1pi−1 + αipi + γi+1pi+1, (3)

where β−1 = γd+1 = 0, satisfy:
(a1) αi + βi + γi = λ0, for i = 0, . . . , d;
(a2) pi−1(λ0)βi−1 = pi(λ0)γi, for i = 1, . . . , d.

(b) pd(λ0) = n

(
d∑

i=0

π2
0

miπ2
i

)−1

, where πi =
∏
j 6=i

|λi − λj |, for

i = 0, . . . , d.
(c) 1 = q0(λ0) < q1(λ0) < · · · < qd(λ0) = n, and qd(λi) = 0 for

every i 6= 0. Thus, qd = H is the Hoffman polynomial
characterizing the regularity of Γ by the condition H(A) = J ,
where J stands for the all-1 matrix (Hoffman (1963) ).

8 / 28



Basic properties(cont.)

(d) The three-term recurrence (3) can be represented through a
tridiagonal (d+ 1)× (d+ 1) matrix R such that, in the
quotient ring R[x]/(m), where (m) is the ideal generated by
the minimal polynomial m =

∏d
i=0(x− λi) of A, it satisfies

xp = x


p0

p1

p2
...
pd

 =


α0 γ1

β0 α1 γ2

β1 α2

. . . γd
βd−1 αd




p0

p1

p2
...
pd

 = Rp .

(4)
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The preintersection numbers

The preintersection numbers ξhij , i, j, h ∈ {0, . . . , d}, are the
Fourier coefficients of pipj in terms of the basis {ph}0≤h≤d, that is,

ξhij =
〈pipj , ph〉Γ
‖ph‖2Γ

=
1

nph(λ0)

d∑
r=0

m(λr)pi(λr)pj(λr)ph(λr). (5)

Notice that, in particular, the coefficients of the three-term
recurrence (3) are αi = ξi1,i, βi = ξi1,i+1, and γi = ξi1,i−1.
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Formulas and procedures for
equivalence
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From the spectrum to the predistance polynomials

To obtain the predistance polynomials from the spectrum we
consider the scalar product defined in (2) and apply the
Gram-Schmidt method to the basis {1, x, . . . , xd}, normalizing the
obtained sequence of orthogonal polynomials in such a way that
||pi||2 = pi(λ0).
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From the predistance polynomials to the spectrum

Proposition

Let p0, p1, . . . , pd be the predistance polynomials of a graph Γ, and
consider the Hoffman polynomial H = p0 + p1 + · · ·+ pd. Then,

(a) The different eigenvalues λi 6= λ0 of Γ are the d distinct zeros
of H.

(b) The value of the spectral radius λ0 is the largest root of the
polynomial

h =

 d∑
i=1

λi
pd(λi)

d∏
j=1
j 6=i

x− λj
λi − λj

 pd(x)− x. (6)

(A more direct computation of λ0 can be done in terms of the
coefficients of p1 and p2.)
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...

(c) The multiplicity of each eigenvalue can be calculated as

mi =
φ0 pd(λ0)

φi pd(λi)
, for i = 0, . . . , d, (7)

where φi =
∏d

j=0,j 6=i(λ0 − λj) (F. 2002).
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From the predistance polynomials to the preintersection
numbers

Proposition

Given the coefficients ωj
i of the predistance polynomials of a graph

Γ, its preintersection numbers are:

(a) α0 = −ω0
1

ω1
1

, αi =
ωi−1
i

ωi
i
− ωi

i+1

ωi+1
i+1

(1 ≤ i ≤ d− 1);

(b) βi =
ωi−1
i+1

ωi
i
− ωi

i+1

ωi
i

(
ωi
i+1

ωi+1
i+1

− ωi+1
i+2

ωi+2
i+2

)
− ωi+1

i+1

ωi+2
i+2

ωi
i+2

ωi
i

(0 ≤ i ≤ d− 2);

(c) γi =
ωi−1
i−1

ωi
i

(1 ≤ i ≤ d).

15 / 28



From the preintersection numbers to the predistance
polynomials

We can also compute pi by using the principal submatrix of the
recurrence matrix R in (4). Namely,

Ri =


α0 γ1

β0 α1 γ2

β1 α2

. . . γi
βi−1 αi

 , i = 0, 1, . . . , d.

Proposition

The predistance polynomial pi associated to the recurrence matrix
R is

pi =
1

γ0 · · · γi
pc(Ri−1), i = 1, . . . , d, (8)

where pc(Ri−1) stands for the characteristic polynomial of Ri−1.
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From the preintersection numbers to the spectrum

Proposition

Given a graph Γ with d distinct eigenvalues and matrix R of
preintersection numbers, its spectrum sp Γ = {λm0

0 , λm1
1 , . . . , λmd

d }
can be computed in the following way:

(a) The different eigenvalues λ0 > λ1 > · · · > λd of Γ are the
eigenvalues of R, that is the (distinct) zeros of the its
characteristic polynomial pc(R) = det(xI −R).

(b) Let ui and vi be the standard (with first component 1) left
and right eigenvectors corresponding to λi. Then, the
multiplicities are given by the formulas

mi =
n

〈ui,vi〉
i = 0, . . . , d, (9)

where n = detR is the number of vertices of Γ.
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From the spectrum to the preintersection numbers

As far as we know, there are not formulas relating directly the
preintersection numbers to the spectrum of a graph. Thus, Van
Dam and Haemers (JACO, 2002) wrote: “... we sketch a proof of
the following result: For a distance-regular graph the spectrum
determines the intersection array.

Their method consists of three steps: first, use the scalar product
(2) to find the distance polynomials; second, compute the distance
matrices of the graph by applying the distance polynomials to its
adjacency matrix; and third, calculate the intersection parameters
from the distance matrices.

In our context of a general graph, this method does not apply,
since neither the distance matrices can be obtained from the
predistance polynomials, not the preintersection numbers are
related to such matrices. Instead, after computing the predistance
polynomials we can calculate directly the preintersection numbers
as explained before.
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An example
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An example

Figura: The graph 4.47 in Table 4 of [D.M. Cvetković, M. Doob, and H.
Sachs, Spectra of Graphs. Theory and Application]
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The spectrum and the predistance polynomials

sp Γ =

31,

(
−1 +

√
13

2

)2

, 03, (−1)1,

(
−1−

√
13

2

)2
 .

By applying the Gram-Schmidt orthogonalization process, starting
from the sequence 1, x, x2, x3, x4, we obtain

p0(x) = 1,

p1(x) =
9

8
x,

p2(x) = −268

157
− 201

1256
x+

201

314
x2,

p3(x) =
23607

50711
− 83082

50711
x− 732

2983
x2 +

183

646
x3,

p4(x) =
78

323
+

547

1292
x− 32

57
x2 − 113

969
x3 +

1

12
x4.
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The preintersection numbers

R =


α0 γ1

β0 α1 γ2

β1 α2 γ3

β2 α3 γ4

β3 α4



=


0 8/9
3 1/4 471/268

67/36 387/628 21641/9577
6588/10519 27036/50711 1098/323

4082/19703 −129/323

 .
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with. . .
characteristic polynomial φΓ(x) = x5 − x4 − 8x3 + 3x2 + 9x, with
roots at

λ0 = 3, λ1 =
1

2
(−1+

√
13), λ2 = 0, λ3 = −1, λ4 =

1

2
(−1−

√
13).

To compute the multiplicities, let us consider, for example, the
eigenvalue λ2 = 0. Then, the corresponding left and right
normalized eigenvectors of R are

u2 =

(
1, 0,−32

67
, 0,

86

183
, 4

)

v2 =

(
1, 0,−286

157
, 0,

23607

50711
,

78

323

)
then we get

m(λ2) =
n

〈u2,v2〉
= 3,

and similar computations give the other multiplicities.
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Some applications
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The spectral excess theorem

Theorem

(Garriga, F., 1997) Let Γ = (V,E) be a regular graph with
spectrum/predistance polynomials/preintersection numbers as
above. Then Γ is distance-regular if an only if its spectral excess

pd(λ0) =
β0β1 · · ·βd−1

γ1γ2 · · · γd
= n

(
d∑

i=0

π2
0

miπ2
i

)−1

,

(where πi =
∏
j 6=i

|λi − λj |, for i = 0, . . . , d) equals the average

excess

kd =
1

n

∑
u∈V

Γd(u).
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Other characterizations of distance-regularity(1)

Theorem

(Abiad,Van Dam, F., 2016) Let Γ be a graph with d+ 1 distinct
eigenvalues and preintersection numbers γi, i = 1, . . . , d.

(a) If γ1 = · · · = γd−1 = 1, then Γ is distance-regular.

(b) If Γ is bipartite and γ1 = · · · = γd−2 = 1, then Γ is
distance-regular.
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Other characterizations of distance-regularity(2)

Theorem

(Abiad,Van Dam, F., 2016) Let Γ be a graph with d+ 1 distinct
eigenvalues and predistance polynomials pi, i = 0, 1, . . . , d.

(a) If all the pi’s, are monic for i = 1, . . . , d− 1, then Γ is
distance-regular.

(b) If Γ is bipartite and all the pi’s, are monic for i = 1, . . . , d− 2,
then Γ is distance-regular.
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Thanks for your attention
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